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Abstract

The Gulf of Gdańsk is influenced by freshwater inflow from the River Vistula
and by a wind-driven current along the coast. Bacterial communities from five
stations along a salinity gradient were sampled during one day and analysed by
terminal restriction fragment length polymorphism (T-RFLP), catalysed reporter
deposition-fluorescence in situ hybridisation (CARD-FISH) and 16S rRNA gene
libraries. On the day of sampling, we observed a probable current-driven seawater
influx into the inner part of the gulf that separated the gulf into distinct water
bodies. Members of the diatom Coscinodiscus sp. dominated one of these water
bodies and influenced the bacterial community. The coexistence of typically
freshwater and marine bacterioplankton populations in the Vistula river plume
suggested an integration of some freshwater populations into the Baltic Sea
bacterioplankton.

1. Introduction

Heterotrophic bacteria play a significant role in marine habitats. Caus-
ing organic matter to decay and mineralise, they are, together with the
phytoplankton, the most important organisms responsible for the carbon
cycle in fresh and marine waters (Hoppe et al. 2002). Intensively respiring
bacteria influence the carbon dioxide concentration in the hydrosphere and
indirectly in the atmosphere. Moreover, chemotrophic bacteria use dissolved
organic matter (DOM) to build up fresh particulate matter. Thus, they play
an important part in the carbon cycle, often called the microbial loop in
the food web (Azam et al. 1983).
After the Black Sea, the Baltic Sea is the second largest brackish sea in

the world. Its salinity ranges from 2 to 30. In the southern Baltic Proper
and the Gulf of Gdańsk, the salinity of the surface layer oscillates around
7. Such conditions permit the real coexistence of marine and freshwater
bacteria, as observed in the Baltic Sea (Riemann et al. 2008, Holmfeldt
et al. 2009, Herlemann et al. 2011). The metabolic activity of freshwater
bacteria and their importance in bacterial production was confirmed by
Piwosz et al. (2013).
Compared to other Baltic Sea regions, the Gulf of Gdańsk is a highly

productive region and the high level of community respiration makes the
system net-heterotrophic (Witek et al. 1997). The River Vistula is the
second largest river flowing into the Baltic Sea (mean annual flow rate –
1081 m3 s−1, HELCOM 2004). Since the end of 19th century, the Vistula
has entered the Gulf of Gdańsk directly through an artificial channel. This
direct inflow without a transitional estuary causes the water masses to mix



Bacterial community structure influenced by Coscinodiscus . . . 827

in the gulf. Depending on the wind and the currents, the two water bodies

can mix vigorously, creating dynamic water fronts or broken off portions

of riverine waters moving into the gulf as freshwater plumes. Conveyed by

rivers, terrestrial organic matter may be a very important source of energy

for the Baltic’s trophic levels (Rolff & Elmgren 2000).

In recent years, the structure and activity of bacterial communities have

been investigated in several estuaries along salinity gradients (Langenheder

et al. 2004, Kirchman et al. 2005, Campbell & Kirchman 2013). In the

Skagerrak-Kattegat water front area, along salinity gradients ranging from

21 to 30, differences in bacterioplankton composition were due to qualitative

differences in bacterial growth conditions, as documented by changes in

phytoplankton biomass, dissolved organic carbon and bacterial production

(Pinhassi et al. 2003).

The Landsort Deep surface waters (salinity between 5.9 and 6.7) were

dominated by Bacteroidetes and a mixture of typical freshwater bacteria

like Actinobacteria, Verrucomicrobia and Betaproteobacteria. Marine taxa

were not found (Riemann et al. 2008). In the coastal zone of the Gulf

of Gdańsk (salinity ca 7), Piwosz et al. (2013) recorded the activity of

freshwater lineages of acI Actinobacteria, LD12 Alphaproteobacteria and the

betaproteobacterial genus Limnohabitans (R-BT), while the marine lineage

SAR11 was thought to have originated from a passive inflow from the Baltic

Proper. Studies performed along the 2000 km salinity gradient of the Baltic

Sea showed that marine SAR11 and Rhodobacteriaceae were noted mainly

in the marine part of the Baltic Sea or below 50 m depth in the Baltic

Proper (Herlemann et al. 2011). Roseobacter, which are very abundant in

marine environments and also culturable, have been broadly studied from

different aspects (Buchan et al. 2005, Wagner-Döbler & Biebl 2006, Dang

et al. 2008). They are often associated with diatoms in cultures (Allgaier

et al. 2003) and frequently observed in the phytoplankton-attached fraction

of bacterioplankton in environmental samples (Rooney-Varga et al. 2005).

In a previous study, a significantly higher bacterial production to pri-

mary production ratio was observed in the inner part of the Gulf of Gdańsk

(Ameryk et al. 2005). The aim of this study was to investigate changes

along the salinity gradient, as well as other environmental parameters,

with the focus on the abundance and composition of bacterioplankton

populations. Bacterial interactions with some phytoplankton organisms,

especially Coscinodiscus sp. were noted by chance. Based on a wide range

of methods, this study gave a precise snapshot of the microbial system

observed during one sampling day. It is the first such detailed study of the

bacterial composition in riverine transformed waters with salinities of ca 7.
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2. Material and methods

2.1. Sampling site

The Gulf of Gdańsk is situated on the southern Baltic Sea coast. The
time necessary for a complete water exchange with the open sea is about
15 days (Witek et al. 2003). The gulf is supplied by freshwater from the
River Vistula, which slightly reduces its salinity in comparison to the Baltic
Proper (6–7 vs. 7–8). The surface water samples were collected August
31, 2008 on the road bridge at Kiezmark over the Vistula (KIE) and also
during a r/v ‘Baltica’ cruise at four different stations (ZN2, E53, E54, E62;
Figure 1) along a salinity gradient ranging from 0.33 (river station KIE) to
7.25 (sea station E62). Conductivity, temperature and depth were measured
using a CTD-rosette from on board the vessel.

Figure 1. Sampling stations (KIE, ZN2, E53, E54, E62) shown against the
background of the current situation one and two days before sampling (current
maps from the University of Gdańsk ecohydrodynamic model http://model.ocean.
ug.edu.pl/, Jędrasik et al. 2008, Kowalewski & Kowalewska-Kalkowska 2011). Black
dots – numerical values of current velocities

2.2. Primary production, chlorophyll a and phytoplankton
composition

Primary production was determined using the 14C method (Evans
et al. 1987, HELCOM 1988). For measurements of chlorophyll a and
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phaeopigment concentrations, a fluorometric method with acetone extrac-
tion was used (Evans et al. 1987). The assimilation number (AN), which
shows the efficiency of phytoplankton production, was calculated by dividing
the primary production by the chlorophyll a concentration.

For the phytoplankton analysis, 200 ml of the surface water samples
were immediately fixed with acidic Lugol’s solution to a final concentration
of 0.5% (Edler 1979). Subsamples of 20 ml were analysed using an
inverted microscope Olympus IMT-2 with phase contrast and DIC. The
individual phytoplankton cells were counted according to the Helsinki
Commission recommendations (HELCOM 2001) and the biomass was

calculated according to Olenina et al. (2006).

2.3. Dissolved organic carbon and nutrients

Samples for measuring the concentration of dissolved organic carbon
(DOC) were stored in the dark at −20◦C. Nitrocellulose filters (Millipore,
0.45 µm pore size) previously rinsed with deionised water were used
for filtering the defrosted samples before analysis. DOC analyses were
conducted by high-temperature combustion (HTC) (Shimadzu TOC-5000
analyser, Japan) (Dunalska et al. 2012). The quality of the dissolved organic
matter was measured by using specific ultraviolet absorbance (SUVA),

defined as the UV absorbance of a water sample at a given wavelength,
normalised against DOC concentration. A spectrophotometer (Shimadzu
UV-1601PC, Japan) was used to measure the UV absorbance (at 260 nm)
in the water samples (Fukushima et al. 1996).

Nutrients such as nitrite, nitrate, ammonium, orthophosphate, silicates,

total nitrogen and total phosphorus were freshly analysed on board,
according to the recommendation of the Baltic Monitoring Programme
(Grasshoff et al. 1983, UNESCO 1983, BMEPC 1988).

2.4. Bacterial numbers and biomass

Water samples were fixed with formaldehyde (final 1%), stained for
5 min with 4′,6-diamidino-2-phenylindole (DAPI, Sigma Aldrich, USA)
(final 1 µg ml−1), filtered on polycarbonate black membrane filters
and stored at −20◦C. The bacterial biomass (BBM) was determined
after conducting cell measurements under an Olympus BX50 microscope

(New Porton G12 eyepiece graticule). The biovolume of the cells was
calculated using the following formula for a prolate spheroid:
V = (π/4)W 2(L−W/3) where W = cell width and L= cell length. A con-
version factor of 0.35 pgC µm−3 (Bjørnsen 1986) was used to calculate the
carbon biomass from the biovolume of the cells.
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To obtain total bacterial cell counts (TCC), fixed samples (1% formalde-
hyde) were incubated for 30 min with 5 mM (final conc.) EDTA (for
dissolving aggregates), stained for 15 min with SYBR Green (1x, Sigma

Aldrich, USA) and analysed with a BDbiosciences FACS Calibur flow
cytometer. The flow cytometer was equipped with an argon ion laser
(15 mW) and the 488 nm emission line was used as the light source. Right-
angle light scatter (SSC) was detected with a 488/10 nm band-pass filter and
fluorescence (FL1) with a 530/30 nm band-pass filter. The system threshold

was set to FL1 and SSC. The sample flow was calibrated by weighing three
sets of water samples before and after each set of samples. The salinities
(densities) of the samples were included in the calculations.

2.5. Catalysed Reporter Deposition-Fluorescence In Situ
Hybridisation (CARD-FISH)

10 ml water samples were fixed with filtered formaldehyde (final conc.
1%), filtered on polycarbonate white filters (Osmonics INC., Poretics,

0.2 µm pore size, diameter 47 mm), rinsed with 100 ml sterile distilled
water, dried and stored at −20◦C. CARD FISH hybridisation was performed
according to the protocol of Pernthaler et al. (2004). Oligonucleotide
probes with horse-radish peroxidase were used to specifically stain bacterial

populations (Table S1, see page 853). CARD-FISH preparations were
evaluated on an epifluorescence microscope from Zeiss Axiophot. The
photomicrographs were taken using an Axio Vision Camera (Carl Zeiss,
Jena, Germany), and the bacteria were counted manually by ImageJ (Collins

2007). At least 1000 DAPI-stained cells per sample were counted. The
nonEUB counts were non- or individual (1–2) cells per filter and therefore
neglected. Relative numbers were based on DAPI counts. In the case of
Bacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria, the
mean percentage of hybridised cells were calculated from two filters.

2.6. Bacterial production and activity

The bacterial biomass production was determined by the 3H-leucine

uptake method (Kirchman et al. 1985), using a mixture of radioactive
leucine (8.3 nmol l−1, specific activity 60 Ci mmol−1) and non-radioactive
leucine (100 nM) (Hoppe et al. 1998). Triplicates and a negative control
(fixed with 1% formaldehyde, final concentration) were incubated at the in
situ temperature for one hour. The incubation was stopped by adding sterile

filtered formaldehyde (final conc. 1%). The protein production (BPP) was
calculated based on the equation of Simon & Azam (1989), assuming an
intracellular leucine isotope dilution of two. The cell-specific exponential
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growth u was calculated with the equation u= ln((BBM + BPP)/BBM).

The doubling time (DT) was calculated with the equation DT= ln(2)/u

(Crump et al. 2004).

2.7. DNA extraction and T-RFLP analysis

Genomic DNA was isolated, following the protocol of Boström et al.

(2004), from one half of a filter, representing 50 ml of water samples.

The DNA was quantified with a NanoDrop ND-1000 Spectrophotometer

(NanoDrop Technologies Inc., Wilmington, DE, USA) and yielded 10–50 ng

genomic DNA per 100 ml water sample.

A terminal-restriction fragment length polymorphism (T-RFLP) analy-

sis was performed following the protocol of Hahnke et al. (2013). In short:

the fluorescently labelled general bacterial primers 27F (FAM, 5’-AGA GTT
TGA TCC TGG CTC AG-3’) and 907R (HEX, 5’-CCG TCA ATT CCT

TTR AGT TT-3’) were used to amplify the partial 16S rRNA gene (Muyzer

et al. 1995). Approximately 25 ng of purified PCR products were digested

with 5 U of the restriction enzyme AluI. The terminal restriction fragments

(TRFs) were detected on an ABI Prism 3130 XL Genetic Analyzer (Applied

Biosystems, California), equipped with an 80 cm capillary, a POP-7 polymer

and the filter set D (Filter DS-30). The ROX-labelled MapMarker 1000

(Eurogentec, Belgium) served as a size standard between 50 bp and 1000 bp.

Forward TRFs were analysed only because of the higher variability at the

beginning of the 16S rRNA gene (Hahnke et al. 2013).

The T-RFLP patterns were analysed following the protocol of Hahnke

et al. (2013). In short: TRFs between 50 and 1000 bp were identified and
sized with the Genetic Analyser 3.7 (Applied Biosystems, California, USA)

software, using a fluorescence intensity threshold of 20 U. The individual

patterns were processed, applying the interactive binner (Ramette 2009)

in R (http://www.r-project.org, version 2.3.1). The binning size was one

nucleotide and the binning shift 0.1 nucleotides. The TRFs were named by

subtracting 0.1 bases from the TRF length. The resulting pattern with

normalised relative fluorescence intensities (RFI) were visualised in rank

versus cumulated abundance curves with the k-dominance plot in PRIMER

(v.6, PRIMER-E, Plymouth Marine Laboratory, UK) (Clarke 1993), in

order to identify and remove outlying samples within the triplicates (one
from station E53 and one from station E54) and identify the final T-RFLP

data set. Fragments smaller than 100 nt were not included. There was

a shift between closely situated intensive fluorescence peaks, which impaired

data interpretation. Fragments of 230–232 nt were therefore excluded from

analysis.
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Visual comparisons between bacterial communities at each station

were explored by ordination using non-metric multidimensional scaling

(nMDS) and applying the isoMDS function of the MASS package (Venables

& Ripley 2002) with 100 random restarts, Bray-Curtis dissimilarity and 999

iterations. The environmental parameters were fitted into the nMDS plot

by applying the function envfit of the R package VEGAN (v.1.8–3, Dixon

2003) with 1000 permutations, Euclidian distances and P -values smaller

than 0.001. The MANTEL test of the Vegan package in R was used to

determine the Pearson product moment correlation of the TRF pattern

at each station with environmental parameters. Similarity percentage

analysis (SIMPER) and principal component analysis (PCA), overlain with

Bray-Curtis similarity using PRIMER 6 (PRIMER Ltd., Plymouth, UK,

Plymouth Marine Laboratory, UK) (Clarke 1993), were used to identify the

TRFs that contributed most to the dissimilarity between stations.

2.8. Clone library construction

One microlitre of DNA extract from sample E54 was the template for

the PCR reaction, using universal bacterial primers GM3 (5’-AGA GTT

TGA TCC TGG C-3’) and 1507R (5’-TAC CTT GTT ACG ACT T-3’)

for the 16S rRNA gene (Muyzer et al. 1995). The PCR reaction contained

25 µl PCR Master Mix (Promega GmbH, Mannheim, Germany) and 4 µM

of forward and reverse primer in 50 µl. The cycle programme was 94◦C for

1 min, 25 cycles of 94◦C for 1 min, 42◦C for 1 min, and 72◦C for 3 min,

followed by 60◦C for 60 min. The PCR amplicons were purified on Sephadex

columns (SephadexTM G-50 Superfine, Amersham Bioscience AB, Uppsala,

Sweden) and approximately 10 ng DNA were cloned with a PCR 4.0-TOPO

kit, following the manufacturer’s instructions (Invitrogen, Carlsbad, CA,

USA). Positive clones were selected by ampicillin resistance and the blue or

white colony colour. The cloned and amplified 16S rRNA sequences were

purified on Sephadex columns. The sequencing reaction was determined

using the ABI Dye Terminator technology and the Applied Biosystems

3130xl DNAsequencer (Applied Biosystems, Foster City, USA). The 16S

rRNA gene sequences were analysed with Sequencing Analysis 5.2 (Applied

Biosystems, Foster City, USA) and assembled with Sequencer 4.6 (Gene

codes, Ann Arbor, MI). Bellerophon (Huber et al. 2004), Chimera-Check

(DeSantis et al. 2006), DECIPHER (Wright et al. 2012) and BLAST (Zhang

et al. 2000) were used to check for chimeras. From each full length 16S rRNA

gene sequence the primer sequences were removed. The initial phylogenetic

affiliation was assigned using SeqMatch (Wang et al. 2007) of the Ribosomal

Database Project (Cole et al. 2009).



Bacterial community structure influenced by Coscinodiscus . . . 833

Sequences were aligned with the SINA online aligner tool (www.arb-sina.
de) (Pruesse et al. 2012). The alignment was imported into the ARB and
manually corrected. Sequences were incorporated into the 16S rRNA tree
(SILVA rel 111) by the parsimony method. Phylogenetic affiliation was

assigned based on information in the tree. Clones of phytoplankton plasmids
(15 of all 101 submitted clones) were excluded from further analyses. The
16S rRNA gene sequences were deposited under Acc. No. KF596513 –
KF596613.

2.9. In silico prediction of fragment size

With Lasergene SeqBuilder (DNASTAR) the length of the in silico

terminal restriction fragments (iTRF) of 16S rRNA gene sequences were
determined by (i) trimming the sequences at the restriction recognition
site of the restriction enzyme AluI, and (ii) adding the 20 nucleotides of
the forward primer 27F to each sequence. The online programs MiCA 3
(http://mica.ibest.uidaho.edu, Shyu et al. 2007) and TRFragCalc (Hahnke
et al. 2013) were used for in silico prediction of important TRFs absent from
the clone library.

3. Results

3.1. Environmental factors measured at the sampling sites

The freshwater station in the River Vistula at Kiezmark (KIE) differed
from the station in the vicinity of the river mouth – ZN2 and the seawater
stations E53, E54 and E62 in that salinities and silicate concentrations were

both lower (Table 1). The water temperature (17.3–18.9◦C) was relatively
constant at all stations. The large differences in salinity (between KIE and
ZN2), together with the linear vertical salinity and temperature profiles
(down to 20 m depth, data not shown), indicated a mixing of freshwater
with the seawater in the river mouth or upstream of station ZN2.

The nutrient concentrations were in the micromolar range, but generally
2–25 times higher (except silicates) at the Kiezmark station (Table 1).
At the same station, the concentration of dissolved organic carbon was
the highest (5.6 mgC dm−3), but simultaneously less labile. Allochthonous
organic matter, as determined by the specific ultraviolet absorbance

measurements (SUVA) (the higher the SUVA, the higher the ratio of
molecules with aromatic rings and the less labile DOC), had its maximum at
the river station KIE, with 18.8 dm−3 gC−1 cm−1 (Table 1). SUVA values
(11.6–12.6 dm3 gC−1 cm−1) were the lowest at stations E53, E54 and E62,
which potentially indicated DOC of phytoplankton origin.
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Table 1. Measured chemical and biological parameters of the freshwater station
KIE and the seawater stations ZN2, E53, E54, and E62

Abbreviation Unit KIE ZN2 E53 E54 E62

Temperature Temp ◦C 18.9 17.3 17.6 17.7 17.6

Salinity Sal 0.3 7.1 7.1 7.0 7.2

Silicates Si µM 2.8 8.1 8.1 7.7 8.9

Total nitrogen Ntot µM 61.0 23.0 21.5 23.4 20.8

Nitrite NO2 µM 0.3 0.0 0.0 0.0 0.0

Nitrate NO3 µM 15.2 0.6 0.2 0.2 0.3

Ammonium NH4 µM 1.9 0.9 0.7 0.8 0.8

Organic nitrogen Norg µM 43.5 21.4 20.6 22.4 19.7

Total phosphorus Ptot µM 4.7 0.9 0.6 0.6 0.6

Orthophosphate PO4 µM 1.7 0.4 0.2 0.2 0.3

Organic phosphorus Porg µM 3.0 0.5 0.4 0.4 0.3

Chlorophyll a Chl a mg m−3 63.5 4.0 3.1 3.2 3.1

Primary production PP mgC m−3 h−1 331.6 22.8 17.7 22.0 21.2

Total bacterial cell counts TCC 106 cm−3 3.8 1.2 1.0 1.0 0.9

Bacterial protein production BPP mgC m−3 d−1 34.0 7.3 6.1 6.2 3.2

Dissolved organic carbon DOC mgC dm−3 5.6 4.3 4.5 4.3 4.5

Specific ultraviolet
SUVA dm3 gC−1 cm−1 18.8 13.5 12.2 12.6 11.6

absorbance

Interestingly, station E54 differed from the neighbouring stations E53
and E62 in terms of its organic nitrogen and silica concentrations. We
suggest that the slightly higher organic nitrogen content and the reduced
silica content indicated a local water body. According to the ecohydrody-
namic model of the University of Gdańsk (http://model.ocean.ug.edu.pl/,
Jędrasik et al. 2008, Kowalewski & Kowalewska-Kalkowska 2011), three days
before sampling, a strong south-easterly current along the Hel Peninsula had
pushed water masses from the open sea into the inner parts of the Gulf of
Gdańsk (Figure 1). The more saline waters at stations ZN2 and E53 may
have originated from the open sea, whereas the water around station E54
was a separate ‘aged gulf’ water body.

3.2. Phytoplankton communities and primary production

The freshwater Kiezmark station had the most productive phytoplank-
ton community. The concentration of chlorophyll a (Table 1) coincided with
the biomass of phytoplankton (Figure 2) and the highest primary production
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Figure 2. Biomass of phytoplankton groups present at the freshwater station KIE
and the seawater stations ZN2, E53, E54 and E62

(Table 1). Our microscopic inspection detected 67 taxa, of which 32 belonged
to green-algae, 10 to cyanobacteria and 8 to diatoms. Quantitatively,
85% of the phytoplankton biomass were diatoms. The dominant species
was diatom Cyclotella meneghiniana (77% of the total phytoplankton
biomass). Freshwater species were represented by Skeletonema subsalsum
(2%) and the green-algae Pediastrum duplex (2%) and Chlamydomonadales
(2%).

The highest growth efficiency of phytoplankton (assimilation number,
AN) was found at the river mouth station ZN2 (Figure 3). This location
reflects the direct influence of the River Vistula, where nutrient concen-
trations were higher compared to the other seawater stations. At the
ZN2 sampling point, the highest taxonomic diversity in the phytoplankton
community was observed. Among 73 taxa, 31 belonged to green-algae,
10 to diatoms and 8 to cyanobacteria. The dominance of the phytoplankton
biomass by diatoms was noticeable at this station as well. They constituted
47% of the total phytoplankton biomass, including undefined Centrales
10–60 µm in diameter (36%), Actinocyclus octonarius var. octonarius
(6%), C. meneghiniana (3%). Cryptophyceae constituted 22%, including
Teleaulax spp. (15%) and Plagioselmis prolonga (7%), green-algae made
up 18%, including the most frequent species Pediastrum boryanum (5%),
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Figure 3. Phaeopigment/chlorophyll a ratio – left axis and assimilation number
(AN) – right axis in the Gulf of Gdańsk

and dinoflagellates contributed 6%, including the most frequent genus
Protoperidinium (5%).
Stations E54 and E62 had the highest proportion of decomposed

chlorophyll a relative to intact chlorophyll a (phaeopigment/chlorophyll a
ratio), which indicated accelerated phytoplankton decomposition
(Figure 3). All the seawater stations (E53, E54 and E62) were similar in
terms of phytoplankton diversity. The number of taxa was low (28–37),
and the biomass was dominated by diatoms (63–90%) and Cryptophyceae
(5–16%), while only a few cyanobacteria species were observed. The diatom
Coscinodiscus sp. was the main component at station E54, constituting
88% of the whole phytoplankton biomass there. At stations E53 and E62
this diatom was less abundant (Figure 2); A. octonarius var. octonar-
ius (4–57%), the Cryptophyceae Teleaulax spp. (11%) and P. prolonga
(4–5%), as well as the ciliate Mesodinium rubrum (4%) contributed to
the biomass of phytoplankton. The clone library (station E54) contained,
besides bacterioplankton, some eukaryotic sequences, mostly of phytoplank-
ton: 7 Chlorophyta, 6 Stramenopiles, 1 Haptophyceae and 1 Alveolata.

3.3. Genetic fingerprints of bacterioplankton communities and
the environment

Terminal restriction fragment length polymorphism (T-RFLP) analysis
based on the 16S rRNA gene diversity illustrated the differences in bacterial
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communities among the sampling sites. Each terminal restriction fragment
(TRF) represents an operational taxonomic unit (OTU). The presence of
TRFs in a sample and their relative abundance are indications of differences
between bacterial communities. Overall, 232 terminal restriction fragments
(TRFs) were identified, with 52–95 TRFs (median 75 TRFs) per individual
sample. We statistically analysed the presence and relative abundance of
TRFs and investigated environmental parameters to gain further insights
into the ecosystem.

The nMDS, CCA and PCA analyses suggested a separation of bacterio-
plankton communities into populations inhabiting the inner part of the gulf
(E53, ZN2) and the outer part of the gulf together with the open sea (E54,
E62) (Figure 5, see page 836). The Kiezmark station was excluded from the
statistical analysis, because the biological and environmental parameters
there had much higher values. CCA explained 77% of the variability (inertia
of total variance = 1.3483, inertia of the first two constrained axes = 1.0441)
and PCA 63.2% (34.6% PC axes 1, 28.6% PC axes 2). In the PCA
analysis, the eigenvector of TRF 194nt and TRF 271nt pointed to samples
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from the inner part of the gulf, whereas the eigenvectors of TRF 233nt,

TRF 242nt, TRF 270nt, TRF 206nt and TRF 249nt pointed to samples
from the outer part of the gulf and the open sea. TRF 249nt and TRF 206nt
had the strongest influence on the discrimination of station E54 (the longest
eigenvector in the direction of station E54).

Both the nMDS biplot of the Bray-Curtis dissimilarities between stations
ZN2, E53, E54 and E62 based on TRF (Figure 4) and the principal compo-

nent analysis (PCA) (Figure 5) detected a separation of station E54 (mean
dissimilarity 61.5% SIMPER) from all the other stations. The correlation
of environmental parameters with the bacterial community composition

(MANTEL test) identified the biomass of Coscinodiscus sp. (ρ= 0.78,
P = 0.001) and Cryptophyceae (ρ= 0.79, P = 0.001), the concentration of
organic nitrogen (ρ = 0.61, P = 0.002) and salinity (ρ= 0.60, P = 0.001) as

the most important independent factors explaining the separation of station
E54 (Table S2, see page 854).

Individual TRFs were used to trace differences between bacterial

communities in the water bodies using similarity percentage analysis
(SIMPER, Table 2). The two fragments – TRF 274nt and TRF 242nt –
were detected at all stations. The Kiezmark river station was characterised

by TRF 140nt, TRF 195nt and TRF 161nt, accounting for 25.6% RFI.
TRF 194nt was significant at the river mouth station ZN2. TRF 152nt,
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Table 2. Abundance (relative fluorescence intensity, RFI) and significance of
terminal restriction fragments (TRF) representative of the freshwater sampling
site KIE, the mixed water sampling sites ZN2 and E53, the phytoplankton bloom
sampling site E54, and the open sea sampling site E62. Listed are the average RFI
at the sampling sites, the average RFI of TRFs at the sampling site (in) and at
all other sampling sites (out), and mean dissimilarity (Diss/SD) from SIMPER.
Additionally, the same information is given for the sum of TRF (Σ) representative
of the sampling site

TRF [nt] Average RFI at stations [%] Diss/SD

KIE ZN2 E53 E54 E62 out in

KIE (freshwater)

140 14.9 0.0 0.2 0.2 3.1 0.9 14.9 10.0

195 8.1 0.9 0.3 0.1 1.1 0.6 8.1 12.0

161 2.5 0.0 0.0 0.0 0.6 0.2 2.5 8.4

Σ 25.6 0.9 0.5 0.3 4.8 1.8 25.6 12.4

ZN2 (mixed water)

194 0.0 6.7 0.0 0.0 0.2 0.1 6.9 15.5

E53 (mixed water)

272 0.9 1.2 15.3 0.3 2.2 1.2 15.3 19.0

152 0.4 0.3 1.4 0.2 0.0 0.3 1.4 6.7

189 0.5 0.2 2.3 0.0 0.3 0.3 2.4 6.1

Σ 1.7 1.7 19.0 0.6 2.6 1.8 19.1 17.7

ZN2–E53

542 0.0 3.8 3.0 0.5 0.0 0.2 2.7 1.9

241 0.9 1.3 2.1 0.2 1.1 0.7 1.6 1.6

147 0.1 1.0 1.0 0.0 0.0 0.0 1.0 17.0

Σ 0.9 6.2 6.0 0.6 1.1 0.9 5.3 2.8

E54 (Coscinodiscus station)

249 0.1 0.0 0.0 13.9 1.7 0.5 13.9 9.7

206 3.6 1.8 3.2 8.0 1.9 1.8 5.0 1.8

149 0.6 1.9 3.6 4.5 1.5 1.6 4.5 2.4

461 0.0 0.1 0.0 2.2 0.0 0.0 2.2 10.1

234 0.0 0.0 0.0 1.7 0.2 0.1 1.7 3.4

455 0.0 0.1 0.1 1.7 0.0 0.0 1.7 8.1

238 0.0 0.0 0.0 0.9 0.0 0.0 0.9 3.5

Σ 4.4 3.8 6.9 32.9 5.3 3.9 29.9 7.9

E62 (seawater)

145 0.2 0.1 0.0 0.2 1.2 0.1 1.2 8.0
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Table 2. (continued)

TRF [nt] Average RFI at stations [%] Diss/SD

KIE ZN2 E53 E54 E62 out in

E54–E62

187 0.0 0.1 0.0 2.3 1.5 0.0 1.4 2.0

270 7.4 6.9 8.7 16.4 17.1 7.7 16.7 6.6

Σ 7.4 7.0 8.7 18.7 18.6 7.68 18.2 10.1

all

274 2.5 4.8 5.1 4.3 3.3 n.d. n.d. n.d.

242 4.5 1.9 2.3 3.0 6.0 n.d. n.d. n.d.

Σ 7.0 6.7 7.3 7.3 9.3 n.d. n.d. n.d.

TRF 189nt and TRF 272nt (together 19.1% RFI) were representative of
station E53, located in the inner part of the gulf. Seven significant TRFs
accounted for 29.9% RFI at sampling site E54, where the large-scale
occurrence of Coscinodiscus sp. was recorded. At this station, TRF 249nt
had the highest RFI of 13.9%. TRF 145nt occurred in the open sea waters
at station E62. The analysis revealed a high percentage of RFI, due to
TRF 147nt, TRF 241nt and TRF 542nt in the inner part of the Gulf of
Gdańsk. In the outer part of the gulf (stations E54 and E63), TRF 187nt
and TRF 270nt accounted for 18.2% RFI. Thus, the bacterioplankton
community of station E54 differed markedly from those of the freshwater,
the river mouth and the Gulf of Gdańsk.

3.4. Bacterioplankton diversity

Because of the unique T-RFLP pattern at station E54, a 16S rRNA
gene library was generated from this station. Of the 86 good-quality bac-
terial sequences, 35% belonged to Alphaproteobacteria. Among these, 31%
were affiliated with the brackish and marine SAR11 type. Actinobacteria
represented 23%, Bacteroidetes 16%, Gammaproteobacteria 8%, Betapro-
teobacteria 6%, Cyanobacteria 6% and Planctomycetes 5%. One clone was
sequenced from Verrucomicrobia and one from Roseobacter (Table S3, see
page 855). The sequence of Roseobacter corresponded to iTRF 249nt (in
silico TRF of 249 nt in length) which was a characteristic TRF at station
E54. Other important TRFs at station E54 were iTRF 149nt belonging to
Spartobacteriaceae, iTRF 461nt belonging to Polaribacter and iTRF 455nt
belonging to Flavobacterium. Very likely, iTRF 140nt originated from
the 16S rRNA gene sequence of Flammeovirgaceae, iTRF 233nt from
Actinobacterium hgcl, and iTRF 270nt from Verrucomicrobia.



Bacterial community structure influenced by Coscinodiscus . . . 841

3.5. Bacterioplankton communities

Total bacterial cell counts (TCC) (1–3.8 cells 106 cm−3) and bacterial
protein production (BPP) (3.2–34 mgC m−3 d−1) reached their maxima
at the Kiezmark station (Table 1). The bacterial doubling times (DT)
(19.8 h to 2.17 d) showed a reverse pattern (Figure 6). The doubling
time of the investigated bacterioplankton was 20 hours in the river,
40 hours at station E54 and more than 2 days in the open sea. Bacterial
biomass (BBM, 9.9–39.8 mgC m−3) had the highest values in the river
and decreased towards the open sea (Figure 6). Bacteria (EUBI-III)
accounted for 38–69% of the total cell counts (DAPI). The amount of
Betaproteobacteria and Actinobacteria (freshwater bacteria) was highest in
the River Vistula (18.0% and 14.2%). In contrast, both bacterioplankton
populations accounted for less than 5% of the total cell counts close to
the river mouth, at station ZN2. With increasing distance from the land,
the relative proportion of Betaproteobacteria and Actinobacteria decreased,
and stayed constant at ca 3.5%, starting at station E53 and into the open
Baltic Sea (Figure 7a). Gammaproteobacteria and Roseobacter achieved
their maximum amounts (4.8% and 0.58%) at station E54. The SAR11
group was barely detectable, with a maximum amount (0.7%) at station
E53 (Figure 7b). Alphaproteobacteria accounted for 5.7% of the total cell
counts at the Kiezmark station and decreased to 2.2% at the open sea
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CARD-FISH. The error bars indicate standard deviations (a); CARD-FISH of less
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Gdańsk

station E62. Members of the Bacteroidetes group accounted for 6.5%–
11.1% (Figure 7b). The representative freshwater betaproteobacterium
Limnohabitans was below the level of detection at all stations.

4. Discussion

In this study, we investigated the differences between the microbial
communities of different water bodies in the Gulf of Gdańsk in late
summer. The eutrophic waters of the Gulf of Gdańsk are phytoplankton-
rich habitats during the growing season, lasting from April to October
(Witek et al. 1997). The River Vistula stimulates both phytoplankton and
bacterioplankton growth in the inner part of the Gulf of Gdańsk (Wielgat-
Rychert et al. 2013). Allochthonous organic matter, as well as autochthonous
matter of phytoplankton origin, are substrates which cause the growth of
heterotrophic bacteria in the Gulf of Gdańsk (Ameryk et al. 2005). The
phytoplankton composition in the Gulf of Gdańsk was typical for this
season, as documented for the southern Baltic Proper since 2005 (Kownacka
& Gromisz 2011). Coscinodiscus sp., which was the most important factor
explaining the separation of station E54, is commonly present in the
southern part of the Baltic Sea at the end of summer and in autumn
(unpublished observation).
Members of the Alphaproteobacteria, Betaproteobacteria, Gammapro-

teobacteria and Bacteroidetes groups were repeatedly found associated
with diatoms (Amin et al. 2012). In our study the three identified
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TRFs (TRF 149nt, TRF 249nt and TRF 270nt) contributed significantly

(35%) to the discrimination of station E54 from the other stations. Both
TRF 149nt and TRF 270nt were affiliated with Verrucomicrobia, of which

iTRF 149nt belonged to Spartobacteriaceae and iTRF 270nt to a 16S rRNA

sequence of uncultured Verrucomicrobia (AM040118). The latter 16S rRNA
sequence was found in the sediment off Sylt (Musat et al. 2006). Recently,

Verrucomicrobia were observed in the Baltic Sea (Andersson et al. 2010) and

Spartobacteriaceae were found to be quantitatively important in the Baltic
Sea at salinities between 5 and 10 (Herlemann et al. 2011). Verrucomicrobia,

which can make a considerable contribution to polysaccharide degradation,

can also be expected to be associated with phytoplankton (Martinez-Garcia
et al. 2012). Spartobacteria in particular have been directly associated with

phytoplankton in the Baltic Sea (Herlemann et al. 2013).

TRF 249nt was identified as a candidate for Roseobacter. A clone

sequence with this TRF was affiliated with the Roseobacter DC5-80-3

branch in the RCA cluster and CARD-FISH showed an abundance of less
than 1%. The RCA cluster is widespread in temperate and polar oceans,

but constituted less than 0.5% of all bacteria in the Baltic Sea (Selje

et al. 2004). In surface waters, no representative was found at the Landsort
Deep station (Riemann et al. 2008) or in the Baltic Proper (Herlemann

et al. 2011). As its absence was observed in spring (Riemann et al. 2008)

and summer (Herlemann et al. 2011) and its presence in late summer (our
data) and in autumn (Selje et al. 2004), such differences may be explained

by the seasonal dynamics of taxa within the Baltic Sea bacterioplankton

communities (Andersson et al. 2010). Roseobacter was often shown to co-
occur with phytoplankton (Buchan et al. 2005), especially with natural

phytoplankton blooms (O’Sullivan et al. 2004) or in mesocosm studies of

Thalassiosira (Allgaier et al. 2003). It was also shown to be an early surface
coloniser in temperate marine waters (Dang et al. 2008); the DC5-80-3

clade has been linked with the degradation of aromatic compounds (Buchan

et al. 2005).

Crump et al. (2004) showed that a shift from a mixture of allochthonous

communities to a native estuarine community requires bacterial doubling
times much shorter than the local water residence time. The doubling time

(DT) calculated on the basis of leucine bacterial production and bacterial

biomass (all DAPI stained cells) was about 1.7–2.2 days in the Gulf of
Gdańsk; a shorter doubling time would probably be based on active cells

only. The DT was at least seven times shorter than the residence time in

the Gulf of Gdańsk, calculated by Witek et al. (2003). Bacteria in the water
at station E54 had enough time to establish a stable community connected

with the occurrence of Coscinodiscus sp.
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Along increasing salinity gradients in estuaries, Alphaproteobacteria

and Gammaproteobacteria populations increase, whereas Betaproteobacteria

decrease, as shown for the bacterial populations in the Gulf of Delaware

(Cottrell & Kirchman 2003), in Chesapeake Bay (Bouvier & del Giorgio

2002) and in the estuary of the River Pearl (Zhang et al. 2006). Our sampling

data did not strictly follow a salinity gradient, but rather the distance from

the river mouth, owing to the unexpected hydrological situation. However,

the 16S rRNA gene library (station E54) revealed bacterial genera affiliated

with marine, fresh and brackish waters.

Surprisingly, Alphaproteobacteria did not follow the expected pattern.

In addition to the marine and brackish types, Alphaproteobacteria have

a typically freshwater group, like the LD12 clade (the sister clade of SAR11).

This group was recorded by Piwosz et al. (2013) in the Gulf of Gdańsk.

The high amount of Alphaproteobacteria in Vistula waters might have been

caused by a LD12 group characterised by a relatively small cell size. SAR11

itself had the highest number (27/86) of representatives in the clone library.

Twenty-five of its clones belonged to the brackish clade of Chesapeake –

Delaware Bay, and two to the oceanic clade surface 1. However, their

relative abundance ratio did not exceed 0.7% and they were rather a minor

fraction in the Gulf of Gdańsk bacterial community. SAR11 activity was

investigated during different seasons in the coastal region of the Gulf of

Gdańsk and showed low activity, which is probably due to the passive inflow

of more saline waters from the Baltic Proper (Piwosz et al. 2013).

The marine Bacteroides (Cytophagia, Flavobacteriia and Sphingobac-

teriia) dominated the bacterioplankton community in the Landsort Deep

(Riemann et al. 2008) and in the Gulf of Gdańsk. Five clone sequences

were affiliated with Sphingobacteriales and eight with Flavobacteriales. The

fresh-brackish clade Fluviicola (1 clone) was present, as well as the marine

brackish clades NS3 and NS9, and Owenweeksia (1 clone each).

Actinobacteria, which are usually rare in pelagic marine systems (Pom-

mier et al. 2007), were found to have significant autochthonic populations

in the central Baltic Sea (Riemann et al. 2008). Actinobacteria accounted

for 25% of the bacterioplankton in the Gulf of Bothnia (salinity 0–5)

(Holmfeldt et al. 2009). The freshwater lineage acI was mainly active when

the salinity in the Gulf of Gdańsk was low (Piwosz et al. 2013). Salinity

changes may cause sudden changes in the amounts of Actinobacteria and

Betaproteobacteria. Only Verrucomicrobia, the freshwater Actinobacteria

lineage hgcl, and probably Synechococcus (TRF 194nt) were dominant in

these waters. Many other groups (74 TRFs) accounted for less than

5% of all the bacterioplankton combined. Seven of the 20 Actinobacteria
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clones were from the fresh-brackish clade hgcl and eleven from the marine
Acidimicrobiaceae group.

Betaproteobacteria, which are mainly freshwater species (Zwart
et al. 2002), were present in the Vistula as well as in the Gulf of
Gdańsk. Betaproteobacteria were present at station E54, affiliating with
the freshwater Alcaligenaceae MWH-UniP1, the coastal clade OM43 and
the clade Comamonadaceae BAL58, which was isolated from the Baltic
Proper (Simu & Hagström 2004). The bacterial community structure in the
Baltic Sea is characterised by a large seasonal diversity change (Andersson
et al. 2010). The lack of the freshwater betaproteobacterium Limnohabitans
in August may be explained by its seasonal appearance just after the spring
phytoplankton bloom in the Gulf of Gdańsk (Piwosz et al. 2013).

T-RFLP and the clone library, which are methods based on polymerase
chain reactions, cannot be treated quantitatively. In contrast, CARD-
FISH enables the counting of single cells and the comparison of relative
abundances of the investigated bacterial groups. However, as there is no
perfect oligonucleotide probe that targets only the group of interest, the
use of probes that target broader bacterial groups at the phyla level carries
the danger of over- or underestimation (Amann & Fuchs 2008). Relative
bacterial numbers based on the CARD-FISH probes used in this study
showed only a general picture of the community composition in the Vistula
river plume.

5. Conclusions

The occurrence of the diatom Coscinodiscus sp. influenced the bacterial
communities in the Gulf of Gdańsk. The mix of freshwater and typical
marine bacteria exhibited a high diversity in this region. The change in
environmental conditions from the river to the open sea may have caused
the death of some freshwater bacteria, but some of them probably adapted
to marine conditions and became an integral part of the southern Baltic Sea
bacterioplankton.
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Supplementary information

Table S.1. Probes and competitors used in this study

Probe name Target group Reference

EUB 338-I Eubacteria Amann et al. (1990)

EUB 338-II Supplement to EUB338 Daims et al. (1999)

EUB 338-III Supplement to EUB338 Daims et al. (1999)

NON 338 Control Wallner et al. (1993)

Alf 968 Alphaproteobacteria Neef (1997)

Bet 42a Betaproteobacteria Manz et al. (1992)

Gam 42a-Comp Competitor for Bet42a Manz et al. (1992)

Gam 42a Gammaproteobacteria Manz et al. (1992)

Beta 42a-Comp Competitor for Gam42a Manz et al. (1992)

HGC 69a Actinobacteria Roller et al. (1994)

ROS 537 Roseobacter clade Eilers et al. (2001)

CF 319a Bacteroidetes Manz et al. (1996)

RB-T 065 Limnohabitans Šimek et al. (2001)

SAR11-441R SAR11-clade Morris et al. (2002)
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Table S.2. Results of MANTEL test using sampling sites ZN2, E53, E54, E62

EnvProp ρ (rho) P

overall 0.692 0.001

Temp 0.481 0.016

Sal 0.603 0.001

PO4 0.492 0.007

NO2 0.531 0.006

NO3 0.265 0.055

Si 0.507 0.004

NH4 0.259 0.076

Porg 0.331 0.036

Ptot 0.221 0.086

Norg 0.614 0.002

Ntot 0.385 0.010

Chl a 0.223 0.079

PP 0.207 0.048

BPP 0.309 0.067

DOC 0.237 0.045

SUVA 0.320 0.036

Diatoms 0.880 0.001

Chlorophyta 0.207 0.097

Cryptophyceae 0.787 0.001

Cyanophyta 0.251 0.074

Coscinodiscus sp. 0.781 0.001
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Table S.3. 16S rRNA clone, their phylogenetic affiliation and the corresponding
in silico terminal restriction fragment (iTRF) (station E54). There were 86 good
quality bacterial clones. TRF> 100 nt. One access number (Ac. No.) per TRF. Ac.
no of clones with TRF< 100 nt not shown. B, brackish; M, marine; F, freshwater;
N, nonaquatic

16S rRNA Phylogenetic affiliation No. of TRF

gene sequences clones [nt]

Actinobacteria

Acidimicrobiaceae, CL500-29 marine group 11 (M)

KF596583 1 243

KF596551 3 244

Sporichthya hgcl 6 (F)

KF596585 3 191

KF596574 1 233

KF596520 2 235

KF596581 Sporichthya ACK-M1 1 (F) 233

Microbacteriaceae, Candidatus Aquiluna 2 (F, M)

Bacteroidetes

KF596527 Cytophagia, Cyclobacteriaceae, uncult. 2 (F) 197

KF596562 Cytophagia, Rhodothermaceae, uncult. 1 (M) 152

KF596595 Cytophagia, Reichenbachiella, 1 (M) 139

Flavobacteriaceae, uncultured 3 (M)

KF596589 1 811

KF596609 1 812

KF596588 Flavobacteriia, Croceitalea 1 (M) 204

Flavobacteriia, marine group NS3a 1 (M)

KF596556 Flavobacteriia, Owenweeksia 1 (M) 236

KF596542 Flavobacteriia, marine group NS9 1 (M) 456

Flavobacteriia, Fluviicola 1 (F)

KF596544 Sphingobacteriia, Chitinophagaceae, uncult. 1 (F) 198

Cyanobacteria

Synechococcus, subsection I 4 (F)

KF596515 1 188

KF596607 1 190

KF596563 1 191

KF596516 1 193

KF596593 Synechococcus 2, subsection I 1 (B) 190

Planctomycetes

KF596513 Planctomycetaceae, uncultured 4 (B, F) 137
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Table S.3. (continued)

16S rRNA Phylogenetic affiliation No. of TRF

gene sequences clones [nt]

Proteobacteria

Alphaproteobacteria

SAR11Chesapeake-Delaware Bay 25 (B)

KF596555 1 143

KF596545 1 144

KF596517 9 208

KF596536 4 209

KF596521 1 210

KF596514 1 211

KF596576 1 251

Alphaproteobacteria SAR11 surface 1 2 (M)

KF596608 1 173
Rhodospirillaceae AEGEAN-169 2 (M)

KF596553 Roseobacter DC5-80-3 1 (B; M) 250

KF596537 Rickettsiales uncultured 1 (N) 208

uncult. Alphaproteobacteria 1 (M)

Betaproteobacteria, OM43 1 (F)

Alcaligenaceae MW-UniP1 2 (F)

Comamonadaceae BAL58 2 (B)

KF596578 1 152

KF596531 1 153

KF596538 Gammaproteobacteria, OM182 3 (M) 257

KF596573 Gammaproteobacteria, OM60 NOR5 2 (M) 152

Oceanospirillaceae Pseudospirillum 1 (M)

Verrucomicrobia

KF596560 OPB35 soil group 1 (F) 162


