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Abstract This paper presents the results of computer simulations car-
ried out to determine coordination numbers for a system of parallel cylin-
drical fibres distributed at random in a circular matrix according to two-
dimensional pattern created by random sequential addition scheme. Two
different methods to calculate coordination number were utilized and com-
pared. The first method was based on integration of pair distribution func-
tion. The second method was the modified sequential analysis. The calcu-
lations following from ensemble average approach revealed that these two
methods give very close results for the same neighbourhood area irrespective
of the wide range of radii used for calculation.
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Nomenclature

A – total area
a – fibre radius
a/R – ratio of fibre radius to matrix radius
d – diameter of one fibre, d=2a
f – volume fraction
g2(r) – pair distribution function (PDF) or radial distribution function

(RDF)
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N – total number of fibres in given matrix
Nk – number of particle centres inside one numerical interval
r – location in matrix
rmin – location of the first minimum of the PDF
R – matrix radius
X0 – normalized location of first minimum of the PDF: X0 = rmin/d
Z – coordination number
Z(r) – cumulative coordination number
Z1 – coordination number calculated from the PDF for neighbourhood ra-

dius equal to the PDFs first minima location
Z2 – coordination number calculated from sequential analysis (SA) for

neighbourhood radius equal to PDFs first minima location
Z3 – coordination number calculated from the PDF for neighbourhood ra-

dius equal to 1.5d
Z4 – coordination number calculated by the SA for neighbourhood radius

equal to 1.5d
ZC – coordination number of one fibre
ZP DF – coordination number calculated using the PDF method
ZSA – coordination number calculated using the SA method

Greek symbols

λ – neighbourhood region radius normalized by fibre diameter
△r – width of one numerical interval (bin)
ρ – particle area density (number of particles per unit area)

1 Introduction

Effective transport properties of heterogeneous media such as thermal con-
ductivity, elastic moduli or dielectric or magnetic permittivity depend on
properties of individual constituents, their interaction and way of distri-
bution in the medium. One of the indicators describing microgeometry
of heterogeneous media with dispersed constituents such as granular me-
dia or fibrous composites is the coordination number. It is understood as
the mean number of particles which are the closest to the selected parti-
cle. Proper estimation of the coordination number may therefore allow for
better tailoring of the effective properties of these materials to their appli-
cations.

The main motivation of this paper was to compare two distinctly dif-
ferent methods of calculating the coordination number for a composite re-
inforced with unidirectional aligned cylindrical fibres of constant diameter
randomly distributed in a matrix. The first method is derived from the
statistical mechanics and is based on integration of the pair distribution
function (PDF). The second one, the sequential analysis (SA) has its origin
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in methods relevant to granular media and is based on simple counting of
contacts between fibres. In the beginning ensemble averaged PDFs and CNs
for thousands of geometries were found. Subsequently in the same manner,
PDFs and CNs for six example cases of one geometry realization were cal-
culated and compared with ensemble averaged results for both PDF and
SA methods. The SA is applicable to any geometry, however, for the PDF
method some limitations exist associated with the ability to find the pair
distribution function for systems with a small number of fibres. This work
should also help to answer if it is possible to assess reasonable evaluation
of CNs by PDF method from a single geometry configuration of fibres and
in fact it was the second motivation of this work. The third objective was
to examine qualitative differences between pair distribution function of the
finite geometry with radial distribution function of the infinite medium. In
consequence, such examination will allow to estimate influence of geomet-
rical boundary on CNs calculated by PDF method. An important problem
associated with evaluation of CNs for geometries with random sequential
addition (RSA) packing scheme is how to select the area of neighbourhood.
Two approaches were here compared and applied to both CN finding meth-
ods. Additionally, the cumulative coordination numbers were calculated to
give more general conclusions about that problem and to find a relation
between the CN and the volume fraction of fibres. To authors knowledge
no correlation between the mean coordination number and volume fraction
for the RSA packing scheme has been presented in literature till now.

1.1 Coordination number

There is no strict definition of the coordination number (CN) and it depends
on the field of research considered. In chemistry the CN is the number of
atoms directly linked by chemical bonds with the specified atom [1]. This
term is also used in crystallography where it is understood as the number
of atoms touching the given atom in a crystal lattice [2]. In granular media,
powder technology and pebble bed theory the mean coordination number
is defined as the average number of particles in direct contact with the
analysed particle. In this case coordination number has a huge impact on
properties like conductivity or elasticity of such materials in diverse condi-
tions [3–6]. The statistical mechanics attempts to describe microscopically
complex processes where many particles interact in a sophisticated way.
Hence, there is another and more abstract way of understanding the coor-
dination number. It is calculated as an integral of the specified function
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called the pair distribution function in given integration limits [6–8]. Such
integral may give valuable information about many processes, for instance
about fluid-solid phase transition [9]. The coordination number is strongly
coupled with behaviour of the PDF function. Nevertheless, in the statistical
approach there is no constraint on taking into account only direct contacts
between particles.

A vast number of studies were conducted to describe the structure of
random patterns in the granular media for both constant and variable size
of particles including many different packing schemes. Special concern
was given to investigate packing of spherical grains with much theoreti-
cal and experimental research referring to the coordination number as the
important quantity [10,11,5,12]. However much less publications considered
two-dimensional systems and therefore this problem became recently more
interesting. Until now most engineering applications related to three di-
mensions, however, with the development of nanotechnology and thin layer
science, two-dimensional structures become more significant. For example
it was suggested that hard disk model proposed to find the CN can be use-
ful in description of interaction of thin layers with radiation [13]. Similarly,
this approach may be appropriate to describe some phenomena occurring
during clustering or deposition of molecules on surfaces and description of
other processes like adsorption or catalysis [14,15].

The approach presented in this paper is the combination of methods
of statistical mechanics (PDF function) and a method created for granu-
lar media (SA). Coordination numbers are predicted without the necessity
for fibres to be in the direct contact. Therefore a problem appears how to
define a distance for which one particle is considered as the neighbour of an-
other particle. Statistical nature of the RSA causes that the probability of
perfect contact between two particles goes to zero [9]. In effect typical coor-
dination number calculation with direct contact condition is rather useless
and to omit this problem specified neighbour radius is defined [9,14,8]. It is
worth here to mention that the sequential analysis was initially introduced
for particles in direct contact, and it is extended to more general case in
this paper.
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2 Methods and geometry

2.1 Geometry

The simulations were performed for two dimensional random suspensions
of fibres with constant diameter distributed inside circular matrix with the
fibre volume fractions corresponding to 30%, 40%, and 49%. The RSA
saturation limit, i.e., the maximum possible volume fraction was estimated
to be about 54%. This result agrees well with the results for the so called
‘hard disks jamming limit’ presented in [4,16,17]. Simulations for fibre vol-
ume fractions exceeding 49% took too much computational time to collect
satisfactory amount of data and that is the reason why the lower values
were chosen. Smaller volume fractions, i.e., 40% and 30% were arbitrarily
selected for comparison. A few different radii of fibres normalized to radius
of matrix were considered: a/R = 0.03, 0.04, 0.05, and 0.06 with R being
the matrix radius. These radii with the volume fractions listed above pro-
vide reasonable number of particles ranging from 83 to 544. This range is
wide enough to show some features of the coordination numbers and pair
correlation functions using PDF method. It is worth here to mention that
the sequential analysis can be applied in any range so there is no constraint
on the number of particles used to obtain reasonable results.

2.2 Numerical scheme

Geometrical input to the numerical code was the volume fraction and the
first guess of the fibre radius. The code started with initial values of fibre
radius and area. Subsequently product of total system area and volume
fraction was divided by area of one fibre to find the required number of
fibres. If the expected amount of fibres inside matrix was not an integer
the iteration process started. New number of fibres was set to be equal to
closest integer number and the current fibre radius was changed by small
steps until the volume fraction was equal to the assumed value.

A random number generator with constant probability density was used
to obtain a series of random distributions of fibres inside the matrix. The
following limits for the sampling process were assumed: fibres cannot inter-
sect the outer boundary of matrix and they cannot intersect the boundary
of other particles. The random sequential addition method was used to
create proper distribution of fibres [4]. In this method, fibres are added one
by one to the matrix and if a sampled particle violates any boundary, the
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current sampling cycle is stopped and a new particle is generated. Such
procedure is repeated until the assumed amount of particles is achieved
[4,8,14].

After the sampling process is over the pair distribution functions (PDF)
for every realization are found and the coordination numbers are calculated.
The steps described above constitute the inner computation process which
is conducted many times for all the analysed realizations of fibres distri-
butions and creates the main computational loop. At the end of main
computational loop the ensemble averages for all coordination numbers
with standard deviations are calculated and averaged PDF is found. The
computer code has been written using Alglib numerical library [17]. This
library was subsequently used to find penalized regression spline to fit the
PDF. One thousand realizations for analysed geometries were generated.
For every realization, the first minimum of the pair distribution function
was determined.

2.3 Pair distribution function method

The pair distribution function (PDF) or pair correlation function, g2(r), is
one of the simplest statistical descriptors of random ensemble of particles
[18,19]. It gives the probability of finding a particle in vicinity of other
particles. In the case of isotropic system when its geometric properties
are not dependent on direction and for the infinite number of particles,
the PDF becomes the well-known radial distribution function (RDF). The
RDF quickly tends to one for increasing distance between particles and it
is significantly varying only near the particle-particle contact region. The
radial distribution function (Figs. 1–3) has at least one peak, which lies in
the point of contact r/d = 1.0, where d is a particle diameter. In the case of
nonoverlapping fibres, the pair distribution function or radial distribution
function is equal to zero for r/d < 1.0.

The coordination number and the more general cumulative coordina-
tion number for the analysed structures was found by integration of the
PDF function. The cumulative coordination number for two dimensions is
defined as [14,8]

Z(r) =

∫ r

0
2πrg2(r)ρ dr . (1)

The mean coordination number

ZP DF =

∫ λd

0
2πrg2(r)ρ dr . (2)
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is the value of the cumulative coordination number for upper integration
limit corresponding to r/d = λ, where λ is a radius of neighbourhood.
Usually mean coordination number is calculated for direct contact of par-
ticles, i.e., λ = 1.0 [4]. However with the RSA method used for the non-
overlapping fibres the cumulative coordination number attains zero when
upper limit equals r/d = 1.0 [9,8]. Therefore, for the integral with such
limit, the mean coordination number also goes to zero. Thus, to find physi-
cally reasonable estimate of these numbers and overcome the cited problem
it is required to choose different upper limit of the integral. Two cases were
considered following suggestions found in the literature. In the first case
the upper limit of the integral was assumed to be λ = 1.5 [7,11,14] and
in the second case it was made equal to the distance corresponding to the
location of the first minimum of the pair distribution function [9,2].

The numerical procedure for calculation PDF function follows the one
suggested in literature [20,4]. Around every cylindrical particle, a set of
bins with the thickness ∆r are created and particles inside each bin are
counted. With Nk being the number of particles in kth bin. After that the
histogram of Nk values is sorted in increasing radius r. In this way, the
pair distribution function is obtained and given by the formula

g2(r) =
Nk R2

2 N2 r ∆r
, (3)

where

∆r = rk − rk−1 (4)

is the width of the bin. The quantity N in Eq. (3) corresponds to total
number of particles in composite. The discrete radial distance r is assumed
to be in midway of every shell bin. Some bin width ∆r values were tested
and the value of 0.0125d was selected as adequate in these calculations.
Pair distribution function, g2(r), was calculated for every single realization
of geometry and at the end the ensemble averaged value of that function
was calculated [4]. For numerical simulation an integral in Eq. (2) was
approximated by a simple summation

ZP DF =
r=rmin
∑

r=1

2πrg2(r)
N

A
∆r . (5)

The correlation function in range 0 < r/dr < 1 is zero so the lower inte-
gration limit was set at r = 1.0. The upper limit was the first minimum
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of the pair distribution function, X0 = rmin/d, or the value of r = 1.5d,
respectively. In order to avoid the numerical determination of the first
minimum a linear correlation between location of the first minimum of the
PDF function and volume fraction of particles was found basing on data
obtained for the ensemble averaging:

X0 = −1.0171f + 2.2597 , (6)

where f is the volume fraction. The values X0 calculated from the corre-
lation above were used as the approximate first minimum of the neighbour
particle locations. For f = 0.49, 0.4, and 0.3 this correlation predicts
X0 = 1.7613, 1.8529, and 2.0321, respectively. It was observed that loca-
tions of the first minima are not strongly sensitive to the size of particle so
that the created correlation depends only on volume fraction (Figs. 4–6).

The PDF method is generally applicable to the large groups of particles
due to its statistical nature or according to the ergodic hypothesis to smaller
groups of particles but for large number of realizations [21]. The research
reported in the literature usually concerns very huge (infinite) media and it
is the common practice to simulate only small representative parts of them
with special procedures (i.e., periodic boundaries) to omit direct influence
of boundaries on the obtained results. Typically, in calculations of PDF
one particle is placed in the centre of system and PDF (RDF) is calculated
as ensemble average for that particle for huge amount of realizations [4].
On the contrary, in this paper it was assumed that investigated system is
the whole composite with boundary effects and no central particle present.

2.4 Sequential analysis method

The sequential analysis (SA) is a different and simpler way to find the
coordination number. The basis of that method is the counting process
of particles in the nearest neighbourhood of the analysed particle. The
mean coordination number, (Eq. (2)), is obtained by summing CNs of every
particle and dividing this sum by number of particles:

ZSA =

∑Z
i=1 ZCi

N
. (7)

In the literature, this method was introduced for sets of self-touching parti-
cles [3]. Here we propose to use the SA method for nontouching (in general)
sets of parallel fibres and introduce the concept of neighbourhood with the
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same radius as for PDF method.
It was assumed that the neighbourhood area is contained inside a cir-

cle located in the centre of every cylindrical particle and has the radius
r/d = 1.5 or r/d = X0 found from Eq. (6). If any other particle centre
is located inside this circle, it is counted as a neighbour. In calculations
also the cumulative coordination number, (Eq. (1)), for the SA method was
determined according to the formula

ZSA(r) =

∑N
i=1 ZCi

(r)

N
. (8)

2.5 Approaches to CN determination

Four different mean coordination numbers were calculated: Z1, Z2, Z3, and
Z4. The first two were calculated from the first minima of the PDF func-
tions given by Eq. (6). Coordination number Z1 was calculated by direct
integration of pair distribution functions and Z2 was determined by the se-
quential analysis. The coordination numbers Z3 and Z4 were calculated for
neighbourhood area corresponding to the radius equal to r/d = 1.5 either
by the PDF integration or by the SA, respectively.

3 Results and discussion

3.1 Comparison of PDF and RDF functions

The resulting ensemble PDF functions were compared with the available
numerical results obtained by Monte Carlo method [22], theoretical calcu-
lations carried by Percus-Yevick approximation [22] and the recent residual
Helmholtz energy calculations introduced by Boublik [15]. Our numerical
data for finite systems were matched with the RDF functions for the infinite
systems corresponding to the particle volume fractions f = 0.3628, 0.4535,
and 0.5441. The last volume fraction (f = 0.49) was different and chosen
because of difficulty to obtain the ensemble averaged results in a reasonable
computational time for the case f = 0.5441 close to jamming limit (it is
about f = 0.5470 [8]).

The results reveal that the PDFs obtained are close to RDFs for the
region below the first minimum (Figs. 1 and 2). Nevertheless, above this
point effects of the external boundary appear and the PDFs slowly converge
to zero. Therefore, all coordination numbers were calculated using the
region under the first minimum so that the influence of boundary effects
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Figure 1: Comparison of numerical ensemble averaged PDF’s for f = 0.3628 with radius
a = 0.03R (R is a matrix radius) with data obtained from Monte Carlo (MC)
simulations of RDF’s, obtained from Percus-Yevick (PY) approximation [22]
and based on the residual Helmholtz energy calculations [15].

Figure 2: Comparison of numerical ensemble averaged PDF’s for f = 0.4535 with radius
a = 0.03R with data obtained from Monte Carlo (MC) simulations of RDF’s
[22], obtained from Percus-Yevick (PY) approximation [22] and based on the
residual Helmholtz energy calculations [15].
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Figure 3: Comparison of numerical ensemble averaged PDF’s for volume fraction f =
0.49 and radius a = 0.03R with data obtained for f = 0.5441 from Monte
Carlo (MC) simulations [22] of RDF’s, obtained from Percus-Yevick (PY) ap-
proximation [22] and based on the residual Helmholtz energy calculations [15].

is insignificant. For f = 0.49 case an acceptable agreement between PDF
and RDF based on Helmholtz energy calculations was observed (Fig. 3).
It seems that this simple method gives proper RDF for r/d <

√
3. It was

possible to calculate g2(r) above this point but the results were found less
satisfactory [15].

3.2 Ensemble averaged results

The mean coordination numbers obtained both from the PDF and SA
approaches were evaluated for three volume fractions of particles f =
0.3, 0.4, 0.49, and for four different fibres diameters a/R = 0.03, 0.04, 0.05,
and 0.06. All CNs were averaged over one thousand realizations. The re-
sulting PDFs reveal that all four density functions converge asymptotically
to zero (Figs. 4–6). The respective functions with same volume fraction and
different particle size are generally similar in shape. The smaller cylindrical
particle diameter gives higher amount of particles spread in the same vol-
ume of the matrix. Hence, in the limit case of infinitely small particles, the
PDF function will gain shape of radial distribution function converging to
one. For lower values of the dimensionless distance (r/d < X0) functions for
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the same volume fractions overlap each other. Above this limit decreasing
slope with decreasing size of particles can be observed for PDF functions.
As it was discussed before, region (r/d < X0) is important for calculation
of the coordination number. Therefore, it seems correct to conclude that
the external boundary of the domain exerts little influence on CNs due to
overlapping.

Shifting of the first minimum locations of the PDFs was observed for
the same size of particles and different volume fractions (Figs. 4–6). The
location of the first minimum increases with decreasing volume fraction.
For high volume fraction it is very close to r/d =

√
3 but for lower volume

fraction it tends to r/d = 2.0. Equation (6) takes this effect into account
without the necessity of numerical search of the first minimum. For high
volume fractions (f = 0.49) first minima are simple to observe (Fig. 4) but
for lower fraction (f = 0.3) these minima are difficult to perceive (Fig. 6).
Finally, for the volume fractions f < 0.3 the minimum in the PDF disap-
pears. This effect causes a problem to find the location of the minimum
numerically and to calculate CNs using PDF method.

Figure 4: PDF’s for volume fraction f = 0.49 and different diameter of fibres.

The first thing which should be highlighted is the equivalence of re-
sults following from the sequential analysis and pair distribution function
method for the same neighbourhood region (Tab. 1). The relative difference
between Z1 and Z2 is less than 0.6% and for Z3 and Z4 it is less than 1.3%.
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Figure 5: PDF’s for f = 0.4 and for different diameter of fibres.

Figure 6: PDF’s for f = 0.3 for different sizes of diameter of fibres.

The CNs calculated from the first minimum have a tendency to be higher
for smaller particles and the difference can be as high as 2-3% between both
cases when a = 0.03R and a = 0.06R. For the CNs with r/d = 1.5 such
effect is observable only for Z3 for f = 0.49 and the difference is close to
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Table 1: CNs calculated from the ensemble averaged PDF and SA methods. Integration
limit equal to first minima of PDF function was applied to Z1 (PDF) and Z2

(SA). Constant integration limit r/d = 1.5 was applied to Z3 (PDF) and Z4

(SA); σ is standard deviation of the CN.

1.6%. In general the standard deviations for the analysed cases (Tab. 1)
increase with increasing fibres radius due to the smaller number of fibres
and poorer statistics.

More general quantity, the cumulative coordination number was also
investigated and convergence between the SA and PDF methods was ob-
served for a wide domain of possible neighbourhood radii (Fig. 7). This re-
sult shows again that the methods are equivalent and the simple SA method
can be used instead of PDF in two dimensional systems. Dependence of
the cumulative coordination number on the radius of fibres is presented
in Fig. 8. The cumulative coordination number increases with decreasing
radius of fibres for the same volume fraction and difference between top
and bottom value becomes higher with increasing integration limit r/d. It
is possible to observe that near to the contact region Z(r) is concave for
high volume fraction. The same effect was observed by Stillinger [8] other-
wise for higher r/d opposite behaviour is visible. Upper single line on Fig. 8
shows expected behaviour of Z(r) near the jamming limit (f = 0.54689) [8].
The shape of the cumulative coordination number for r/d > X0 predicted in
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Figure 7: Cumulative coordination numbers for a = 0.03R versus dimensionless distance
(neighbourhood radius) and volume fraction.

Figure 8: Cumulative coordination number for the PDF method calculated for different
particle radii and different volume fractions compared with approximated re-
lation for the cumulative CN proposed by Stillinger (f = 0.54689) near the
jamming limit (upper thick line) [8].
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this paper are slightly different than Stillinger’s predictions where the main
reason of discrepancy is convergence of the PDF function to zero (Fig. 8).
In consequence, the integral Z(r) will be affected by this convergence and
therefore it should be smaller than for the RDF case presented in [8].

3.3 Single geometry results

It is well known that the sequential analysis is applicable for any amount
of particles but it is not the case for the PDF method. Because of its
statistical nature the PDF function needs sufficient amount of data to be
constructed. Comparison of coordination numbers obtained by SA and
PDFs is presented here to outline the limit for PDF method.

Six different single geometry realizations were analysed for two extreme
particle diameters a = 0.03R and a = 0.06R. Figures 9–14 compare PDFs
fitted by spline with the theoretical prediction of RDF given by Boublik [15]
with the ensemble averaged data for one thousand realizations. Obtained
spline fits of the PDFs for single geometry show their unexpected compati-
bility with ensemble averaged data and theoretical predictions (Figs. 9–14).

Two problems appear during spline calculations – the first minimum lo-
cation changes its value significantly in comparison to its actual position
and shape of PDF near the contact is deformed. Therefore calculation of
CN by integration will lead to difference with ensemble data calculations.
Additionally, oscillations of spline appear for r/d > X0 but they can be
reduced by choosing a proper spline smoothing parameter and some fur-
ther research is here necessary [17]. Generally speaking the shape of fitted
spline can be improved by changing the smoothing parameter and in conse-
quence the problem with poor spline fitting near contact region and problem
with spline first minimum location could be solved. Nevertheless using the
proposed approximate formula given by Eq. (6) the problem of proper esti-
mation of location of the PDF minimum can be omitted. Concluding, the
shape of the PDFs obtained in numerical simulations with one realization
are quite correct but resulting coordination numbers can be treated only
as unreliable approximation.

What is interesting, the coordination numbers obtained for those ran-
domly chosen geometries are consistent with results from the ensemble av-
erage (Tabs. 1, and 2). An attempt was undertaken to integrate fitted
splines but the results were found not as satisfactory as from the direct
integration of resulting PDF data. For a = 0.03R the relative difference
between CNs is less than 2% for all cases. When a = 0.06R this relative dif-
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Figure 9: One realization of the PDF for the volume fraction f = 0.49 and the fibre
radius a = 0.03R with the number of particles equals N = 544.

Figure 10: One realization of the PDF for the volume fraction f = 0.49 and fibre radius
a = 0.06R with N = 136.

ference is less than 8%. Comparing Z1 and Z3 calculated by the PDF with
Z2 and Z4 calculated by the SA differences are estimated to lie between
0.1–1.3% – see Tab. 2.
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Figure 11: One realization of the PDF for the volume fraction f = 0.4 and the fibre
radius a = 0.03R with N = 444.

Figure 12: One realization PDF with volume fraction f = 0.4 and fibre radius a = 0.06R
with N = 111.

3.4 Correlation between volume fraction and coordination
number

A lot of correlations between the coordination number and the volume frac-
tion were proposed in literature for heterogeneous media made of spherical
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Figure 13: One realization PDF with volume fraction f = 0.3 and fibre radius a = 0.03R
with N = 333.

Figure 14: One realization PDF with volume fraction f = 0.3 and fibre radius a = 0.06R
with N = 83.

particles dispersed in a matrix [11,5,12]. For random sequential addition
with λ = 1.5 and cylinders the numerical data for CN can be found in
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Table 2: Examples of coordination numbers for one geometry realization.

Danawabichakul paper [14] and the proper fitting with the second order
polynomial to these data (the lower line on Fig. 15) allowed us to present
the following correlation:

Z(f) = 6.8898f2 + 4.3608f . (9)

Our numerical data (Tab. 1) agrees very well with this correlation in spite
of the finite system considered in calculations. For Z3 relative differences
for a/R = 0.03, 0.04, and 0.05 lie between 0.4–1.8% while for a = 0.06R
they are between 1.9–3.7%. In the case of Z4 all results fit even better and
they are between 0.02–2.5%. Value Z = 4.482605 is the mean coordination
number near jamming limit obtained by Stillinger [8] for volume fraction
f = 0.544689. It matches Eq. (9) with relative difference close to 1.47%
(Fig. 15). Presented results indicate that the obtained correlation and our
numerical data are consistent with the literature results.

The second correlation was obtained for coordination numbers calcu-
lated from the neighbourhood radii corresponding to the first minima (Z1

in Tab. 1) and fitted by logarithmic curve (the upper line on Fig. 15):

Z(f) = 2.6967 ln(f) + 7.002 . (10)

Unfortunately no data were found in literature to confirm this result. It
could only be expected that this curve should converge to the highest pos-
sible coordination number equal to 6 for the most dense packing of fibres
corresponding to f = 0.9068 for the hexagonal structure [8], but Eq. (10)
unfortunately does not meet this requirement.
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Figure 15: Correlations for dependence of mean coordination number on volume fraction.
Lower line presents polynomial fit of numerical data for RSA packing scheme
[14] for integration limit r/d = 1.5 compared with Z1 values for a = 0.03R, a =
0.04R, a = 0.05R, and a = 0.06R presented by circles. Upper line is a
logarithmic fit of Z3 numerical data (presented by crosses) for integration of
PDF with X0 as upper integration limit. Triangle on lower line presents mean
coordination number of RSA for jamming limit obtained by Torquato [8].

4 Conclusions

Results of calculations of the cumulative coordination numbers show that
the Sequential Analysis and Pair-Distribution Function integration are equiv-
alent for wide range of neighbourhood radii (Fig. 7 and Tab. 1). This
indicates that instead of conducting complicated integration by the PDF
method it is possible to perform simple counting and summation using the
SA method. Moreover, the modified SA method presented here should be
more general and applicable for any number of particles (even very small)
without concern about statistics of the medium structure. Nevertheless,
for the investigated single realization examples (Tab. 2) the CNs obtained
from the PDF method were surprisingly consistent with results given by
the SA method, despite of complete loss of pair distribution function shape
(Figs. 9–14). This allows to calculate the CN from the single geometry
pattern by the PDF method but such operation should be performed with
high caution.
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For fixed integration limits of the cumulative coordination number:
λ = 1.5 and λ = X0, Eq. (2) gives mean coordination numbers and they are
correlated with volume fraction (Fig. 15). The correlation between mean
coordination number for λ = 1.5 and volume fraction obtained for the RSA
packing scheme, Eq. (9), is in good agreement with the literature data and
such correlation could be helpful in engineering applications. One more
correlation between volume fraction and coordination number calculated
with integration limit equal to the first minimum of PDF (λ = X0) was
proposed, Eq. (10). The important conclusion derived from these two cor-
relations is an insignificant influence of particle size due to the overlapping
of PDF functions in neighbourhood region (Figs. 4–6). Additionally, it was
shown that boundary effect of the PDF function should have small influ-
ence on determination of the coordination number (Figs. 1–3).

Concluding, the methods described in this paper would be useful to cal-
culate coordination numbers of single geometries. This in turn will allow
to correlate effective properties of fibre-reinforced composites with their
microstructure.
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