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Abstract 
 

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal 
levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal 
with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary 
manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process 
variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the 
responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present 
manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) 
and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple 
outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and 
MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time. 
 
Keywords: Squeeze casting process, Multi-objective optimization, Genetic algorithm, Particle swarm optimization and multi-objective 
particle swarm optimization based on crowding distance (MOPSO-CD). 
 
 
 

1. Introduction 
 

Metal casting process is considered always to be the most 
economical route to convert raw materials into finished parts [1]. 
The near net-shaped manufacturingcapability of the squeeze 
casting process wasdeveloped by combining the distinguished 
features of conventional casting (economic and design flexibility) 
and forging (strength and structural integrity) processes [2]. It is 
important to note that refined structure, minimum porosity, 
weldability, heat-treatability, near-net shape manufacture, 

enhanced mechanical properties, good surface quality, better 
dimensional accuracy, no runners, feeders and post solidification 
examinations are the major advantages of squeeze cast processing 
method [3-5]. It was observed that the product quality in direct 
squeeze casting wasinfluencedmainly by the structural defects 
like, oxide inclusions, blistering, under-fill, hot tearing, sticking, 
cold laps, segregation (v-type, centre line, extrusion) case 
debonding, porosity and extrusion debonding [6-7].However, 
appropriate choice of the process variable combinations might 
eliminate most of the above mentioned defects [7-8].  
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This led the research work directed towards improvement of 
mechanical and micro-structure properties during 1990s and 
2000s. The major class of research work reported across the world 
during that period was on the use of classical engineering 
experimental, analytical and numerical approaches. The analytical 
studies mentioned in [9] were carried out to determine the effects 
of solidification time on mechanical properties using steady state 
heat flow and Gracias virtual models. It was observed that shorter 
solidification resulted in yielding better mechanical properties. 
The influence of squeeze pressure at varying heat transfer rates on 
the solidification time were studied using numerical approach 
[10]. The refined microstructure with smaller dendrite cell size 
and closer spacing of silicon particles was observed at higher 
values of squeeze pressure. Moreover, the influence of casting 
temperature and squeeze pressure on the mechanical properties of 
the component was studied using classical engineering 
experimental (varying one parameter at once while keeping other 
parameters constant) approaches [5, 11-12]. In addition to the said 
approaches, the influence of casting temperature on mechanical 
properties was studied in [13] for the fixed die temperature, 
squeeze pressure and pressure durations. In [14], the effects of 
squeeze pressure, pouring temperature, die temperature, 
inoculants, degassing and time delay before pressurization on 
formation of macro defects with evolution of microstructures 
were investigated via classical engineering experimental 
approach. The above approach identified only main effect of the 
process variables and neglected the interaction factor effects 
completely. Estimating the interaction effects requires the process 
parameters need to be simultaneously varied under 
experimentation. In addition, the authors did not develop a model 
that could predict the responses without the requirement of actual 
experiments. To overcome these short comings the statistical 
modelling tools are developed during recent years. 

Modelling is the method of identifying, analyzing and 
establishing the input-output relationship of a physical system 
[15]. The modelling of casting and solidification were used for 
solving various problems like solidification of metal ingots, 
micro-segregation and simple fluid flow analysis during 1930s-
1950s [1]. However, these methods are based on the analytical 
and numerical approaches which are relatively slow and 
computationally expensive. Later on, Statistical Taguchi method 
has been used to study the effects of several process variables by 
varying them simultaneously with minimum number of 
experiments. The influence of squeeze pressure, pouring and die 
temperature on surface roughness, tensile strengths, hardness and 
density of aluminium alloy casting parts were studied using 
Taguchi method [16 & 17]. The effects of pressure duration 
variations are not considered during their analysis. The effects of 
squeeze pressure, compression holding time, die-materials, 
casting and die temperature were studied on yield strength, 
ultimate tensile strengths and hardness using Taguchi method [18 
& 19]. The effect of squeeze pressure, die temperature and die 
materials on surface roughness of LM 13aluminium alloy were 
studied using statistical Taguchi method [20 & 21]. It is 
noteworthy that the experiments were conducted for the fixed 
pressure duration and pouring temperature. Moreover, the 
influence of die temperature, squeeze pressure and pressure 
durations were studied for the fixed pouring temperature on the 
mechanical properties of non-ferrous alloys [22 and 23]. In [24], 
the forming pressure, filling velocity, pouring and die temperature 

influence on mechanical properties were studied using Taguchi 
method. It is important to note that experiments were conducted 
for the fixed pressure duration. The key observations that are 
made from the above literature are as follows: 1) The identified 
optimal process parameter levels using Taguchi method are not 
considered to be globally optimal always, 2) Many authors 
developed models after leaving some of the important parameters 
and their interaction effects or could not modelled it properly. It is 
important to note that identifying the extreme values of the 
responses require the precise relationship between input-output 
parameters.  

The well planned statistical design of experiments (DOE) and 
response surface methodology (RSM) are used successfully to 
study the influence of several process parameters by varying them 
simultaneously. They were studied to provide complete insight on 
the information related to main, square and interaction effects 
under those experimental conditions. Two non-linear regression-
based DOE models, such as Box-Behnken Design (BBD) and 
Central Composite Design (CCD) [25] were used to study the 
effects of process variables (that is, squeeze pressure, pressure 
duration, pouring temperature and die temperature) on surface 
roughness, yield strength and ultimate tensile strengths (UTS) of 
the cast parts. It is important to note that, the authors derived the 
response equations expressed as a non-linear function of process 
variables for each model separately. Further, prediction accuracy 
of the developed models are compared among themselves with 
fifteen random test cases. It is interesting to note that, CCD based 
model performed better for predicting yield strength and surface 
roughness and BBD model for ultimate tensile strength. 
Identifying the optimal process variable combinations that could 
yield minimum surface roughness and higher tensile strengths is 
of industrial relevance. The conventional methods (that is, 
Taguchi method, analytical, numerical, conventional engineering 
experimental, linear, goal, and quadratic programming 
approaches) might fail to optimize multiple responses, when large 
number of process variables and their corresponding interaction 
effects become complex and non-linear in nature. It is also 
important to note that conventional optimization methods follow 
the deterministic search procedure with specified rules to move 
from one solution with respect to other that leads to many sub-
optimal solutions. To overcome these limitations, 
nonconventional optimization methods are developed with certain 
set of probabilistic transition rules to identify the global optimal 
solutions at many distinct locations in a multi-dimensional space 
[26]. Moreover, process optimization can be done to either for a 
single response or multiple responses. The optimal solutions can 
be clearly determined based on the problem domain (global 
maxima or minima) for single objective function. Identifying 
single optimal process variable combinations for surface 
roughness, yield strength and ultimate tensile strengths is 
considered to be difficult due to conflicting requirements. Further, 
the statistical analysis showed that the relationship of the yield 
and ultimate tensile strength with surface roughness is conflicting 
in nature. Therefore, this problem requires multi-objective 
optimization to optimize multiple responses. Multi-objective 
optimization is the process of optimizing two or more responses 
(after converting all the responses to form single objective 
function using suitable mathematical formulation) simultaneously.  

Multi-objective optimization can be effectively solved by 
using non-traditional search techniques such as, ant colony 
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optimization, artificial bee colony, bacterial foraging 
optimization, differential evolution, genetic algorithm, harmonic 
search, particle swarm optimization, shuffled frog leaping, 
simulated annealing, teaching learning based optimization and so 
on. The evolutionary algorithms, such as particle swarm 
optimization (PSO) and genetic algorithm (GA) determine the 
optimal solutions through heuristic search mechanisms at many 
distinct locations in a multi-dimensional space. The concept of 
identifying the global minima or maxima for the problem domain, 
using evolutionary computational search mechanisms is first 
reported by Rosenberg in 1960s [27]. Later on, Schaffer [29] 
introduced the multi-objective evolutionary computation concept 
to optimize simultaneously two or more responses. In multi-
objective optimization, there are multiple solutions depending on 
the importance given to the response by the investigator/decision 
maker. Therefore, the multi-objective optimization can be solved 
using two general approaches. Two or more responses are 
combined to form a single composite function after assigning 
different combination of weights to the objective function, in the 
first approach. The second approach generates the Pareto 
solutions depending on the different weights. The weight method 
was used in the recent past, to resolve different optimization 
problems in various manufacturing processes, like wire electrical 
discharge machining [29], tube spinning process [30] and green 
sand molding process [31]. The present work uses the first 
approach for identifying the extreme values of different responses 
through heuristic search mechanisms of GA and PSO. It is 
important to note that, GA and PSO determines optimal process 
variable combinations for the extreme values of the responses 
more quickly through the competitive solutions among the 
potential populations. In recent past, PSO and GA has been 
implemented successfully for multi-objective optimization of 
different manufacturing related problems, such as surface 
grinding [32], squeeze casting [22], electro chemical machining 
[33], turning [34] abrasive flow machining [35], surface 
machining [36] etc. The parameters of evolutionary algorithms 
are to be modified suitably to successfully handle the multiple 
objective functions, which are conflict in nature [37]. To 
determine the best guides for updating both position and velocity 
of the particles the major modifications are made for simple PSO 
algorithm [38]. MOPSO-CD method performed better compared 
to other modification methods like m-DNPSO, CSS-MOPSO, 
MOPSO and MOPSOCDLS for solving multi-objective 
optimization problems [39]. The authors [22] attempted to 
optimize the squeeze casting multiple outputs simultaneously 
through the response equation derived using statistical Taguchi 
method via popular genetic algorithm (GA). It is important to note 
that the derived response equation used for optimization includes 

only main (linear) effect terms and optimization is conducted for 
hardness and ultimate tensile strength which does not have 
conflicting requirements. Further, attempt made by authors [40] to 
optimize the multiple outputs like density, secondary dendrite arm 
spacing and hardness of squeeze cast samples using evolutionary 
algorithms. To the best of authors’ knowledge not much work has 
been reported on surface quality to internal soundness (surface 
roughness, yield strength and ultimate tensile strength) property 
optimization of process variables in squeeze casting process.   

The response equations derived using two non-linear 
regression models (that is, CCD and BBD) are used as the 
objective functions for multi-objective optimization [25]. Three 
popular evolutionary algorithms such as PSO, MOPSO-CD and 
GA are used for the said task. The influencing process variables, 
such as squeeze pressure, pressure duration, pouring temperature 
and die temperature were considered as inputs, and the responses, 
namely surface roughness, yield strength and ultimate tensile 
strengths are treated as objective functions (outputs) for GA, PSO 
and MOPSO-CD. All objective functions are suitably modified to 
form a single composite function after assigning different weights 
for each individual objective function. The validation tests are 
conducted for the determined optimal process variable 
combinations for the extreme values of the responses via GA, 
PSO and MOPSO-CD. Further, GA, PSO and MOPSO-CD 
prediction performances were compared among themselves with 
that of experimental values. 
 
 

2. Mathematical formulation of the 
problem 
 

The casting quality (that is, surface roughness, yield strength 
and ultimate strength) in squeeze casting process is mainly 
influenced by the process variables, namely squeeze pressure, 
pressure duration, pouring temperature and die temperature. The 
schematic diagram that represents the input-output model of the 
squeeze casting process is shown in Fig. 1. Selection of 
appropriate process variables and their corresponding levels prior 
to development of non-linear models is of paramount importance. 
Too wide and narrow range of input parameters may result in 
infeasible solution and incomplete information, respectively about 
the process for the output function. Therefore, in the present work 
the choice of process variables and their operating levels are 
decided after conducting pilot experiments in the research 
laboratory and available literature (Refer Table 1). 

 

 
Fig. 1. Input-output model of the squeeze casting process 
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Table 1.  
Squeeze casting process variables and their operating levels 

Process Parameters Operating levels 
Source Symbols Units Low  Medium High 
Pressure Duration, PD A S 20 35 50 
Squeeze Pressure, SP B MPa 40 80 120 
Pouring Temperature, PT C °C 630 675 720 
Die Temperature, DT D °C 150 225 300 

 
 

Experiments are conducted for different process variable 
combinations and operating levels in accordance with the standard 
experimental matrices of the non-linear (that is, CCD and BBD) 
models. Three replicates are prepared for each casting conditions 
to measure the responses such as yield strength, surface roughness 
and ultimate tensile strength. The prediction performances of the 
developed models are evaluated for fifteen random experimental 

test cases [25].It has been observed that CCD based model 
performed better for predicting yield strength and surface 
roughness, whereas, BBD model found better for ultimate tensile 
strength. The predicted best response equations by the non-linear 
models were used for the said squeeze casting process 
optimization. The regression equations that represent the casting 
quality in terms of process variables is shown below. 

 
2 2

YS
2 -4 2   

CCD = -1071.38 - 1.26601A - 0.797501B + 3.36494C + 0.902819D + 0.0123095A + 0.00276227B

              - 0.00238537C - 8.58733 10 D + 0.00253125AB + 0.000101852AC + 0.000627778AD
                  

×
-4+0.00034375BD               + 0.000746528BC - 8.87037 10 CD                                            (1)  ×

 

2
UTS

2 2

2

-4 -5

BBD =  -1176.2 - 4.71685A - 1.29458B + 3.97148C + 0.932667D - 0.00137037A

                 - 0.00293004C  - 8.21481 10 D  + 0.00354167AB+ 0.00651852AC + 4.44444 10 AD  
              

+ 0.00234635B

× ×

2          + 0.00155556BC + 0.001025BD - 0.00102693CD                                                          ( ) 
2

SR

2 2 2

-5

-5 -5 -6 -5 -5

CCD = 15.2320 - 0.0215093A - 0.0249583B - 0.0376636C + 0.00577407D+2.22222 10 A  

               + 6.875 10 B + 2.71605 10 C  8.88889 10 D + 2.70833 10 AB + 2.40741 10 AC 

               - 2.222

-
×

× × × × ×
-6 -6 -5 -6  22 10 AD+ 2.08333 10 BC + 1.08333 10 BD  - 5.92593 10 CD                  (3)× × × ×

 

 
The solid thin layer that is formed on the casted aluminium 

skin may include casting defects larger than that of other 
microstructure features [41]. Therefore, the surface finish of the 
cast component is of paramount importance not only in terms of 
aesthetic appearance, but also forthe proper functionalityof the 
component during its service life.The near net-shape manufacture 
ability of the squeeze casting process need to produce the smooth 
uniform surface with better tensile properties and would not add 
costly secondary manufacturing processes like, shot blasting, 
plating, polishing, machining and heat treatment. Therefore, the 
quality characteristics, such as surface roughness, yield strength 
and ultimate tensile strength are of industrial relevance to 
optimize simultaneously with respect to the process variables. 

The conflicting objective functions are suitably modified to 
form a single composite objective function for maximization 
towards the betterment of casting quality using evolutionary 
algorithms. To enhance the properties of casting, the responses 
such as, yield strength and ultimate tensile strength are need to be 
maximized while minimizing the surface roughness. The 
statistical analysis and surface plots showed relationship of tensile 
strengths with the surface roughness are opposite in nature [25]. 

Therefore, surface roughness is suitably modified for 
maximization using Eq. [7]. The weighted average method has 
been employed to form a single composite objective function. The 
formulated weighted objective function used for maximization is 
shown below,  
 
Objective function (O1) = Yield Strength (4) 
 
Objective function (O3) = 1/Surface Roughness (5) 
 
Objective function (O2) = Ultimate Tensile Strength (6) 
 
Maximize Z = (W1O1 + W2O2 + W3O3) (7) 
 
Subject to constraints 
 
20 ≤ A ≤50 (8) 
 
40 ≤ B ≤120 (9) 
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630 ≤ C ≤720 (10) 
 
150 ≤ D ≤300 (11) 
 

 
The terms O1, O2 and O3 are the objective functions that 

representyield strength (YS), surface roughness (SR) and ultimate 
tensile strength (UTS), respectively. A, B, C and D are the 
process variables representing pressure duration, squeeze 
pressure, pouring temperature and die temperature, respectively. 
Moreover, W1, W2, and W3are the weight factors correspond to 
YS, SR and UTS,respectively. In multi-objective optimization, 
there exist multiple combinations of optimal solutions 
corresponding to the value of the weight factors used in the 
objective function. The weighted fraction for each objective 
function is assigned based on the requirement of the decision 
maker. It is important to note that the summation of the weight 
factors used in the objective function must be equal to one. 
Further, four different cases studies are selected in such a way 
that, case 1 deals with equal importance assigned for each 
individual objective function, followed by maximum importance 
(cases 2-4) for the response yield strength, surface roughness and 
ultimate tensile strength, respectively. For the present work four 
different case studies are considered after assigning different 
combination of weights. Case 1: W1 = 0.3333, W2 = 0.3333 and 
W3 = 0.3333, Case 2: W1 = 0.8, W2 = 0.1 and W3 = 0.1, Case 3: 
W1 = 0.1, W2 = 0.8 and W3 = 0.1 and Case 4: W1 = 0.1, W2 = 0.1 
and W3 = 0.8. 

 
 

3. Multi-objective optimization  
 

In the present research work, squeeze cast process parameters 
are optimized corresponding to the multiple objectives, such as 
surface roughness, yield strength and ultimate tensile strength of 
the process using evolutionary computational tools such as GA, 
PSO and MOPSO-CD. The methodology adopted to optimize the 
multiple responses simultaneously with the working principle of 
PSO, MOPSO-CD and GA is discussed in the subsequent 
sections. 

 
 

3.1. Genetic Algorithm (GA) 
 
Genetic algorithm was introduced to mimic the biological 

process observed in the natural system over successive 
generations necessary for evolution. The concept of GA works 
with the well-known principle of survival of fittest among the 
potential populations over successive generations, introduced by 
Prof. John Holland during 1970s at University of Michigan. In 
recent past, GA has been applied to optimize various classes of 
real world manufacturing problems [29-32, 35 and 36]. The 
traditional optimization methods do not guarantee to locate the 
optimal solution due to their deterministic search mechanisms 
with certain combination of specified rules to move from one 
solution with respect to the other. However, randomized heuristic 
search mechanisms with probabilistic transition rules and adaptive 

capability help the GA to take many actions simultaneously at 
different spatial locations for near optimal solution identification. 
In the present work binary coded GA has been used to optimize 
the process variables of the squeeze casting process of LM 20 
aluminium alloy. The steps followed to formulate the problem and 
the working cycle with GA is shown in Fig. 2. The tournament 
selection and bit-wise mutation schemes are used as GA operators 
and a systematic study has been conducted to identify the best GA 
parameters (probability of cross over, probability of mutation, 
population size and maximum generations) to avoid local minima, 
if any.  
 
 
3.2. Particle Swarm Optimization (PSO) 

 
The particle swarm optimization (PSO) is a population based 

search algorithm that has implicit parallelism wherein the 
probability of getting trapped in premature solutions is less. It 
offers many advantages over conventional optimization tools such 
as search mechanism uses the probabilistic transition rules, starts 
search in multi-dimensional space at different spatial locations 
and no prior knowledge requirement of the initial solution of the 
problem domain [42]. Few algorithm parameters, easy to 
implement, fast convergence rate and control over convergence 
are the major advantages draw much attention towards solving 
both the continuous and discrete manufacturing problems [30, 31 
and 33]. Eberhart and Kennedy introduced the concept of PSO 
during 1995. Particle swarm optimization mimics the foraging 
behaviour of the organisms, such as bird flock and fish schooling. 
In PSO each particle represents the candidate to form a group 
referred as swarm and all particles change their positions by 
flying around in multi-dimensional search space at many spatial 
locations until the computation time exceeds or relatively 
unchanged positions encountered [43].  

The particles adjust their individual fly path by self-flying 
experience and neighbour particle experiences. In addition each 
particle keep track on the neighbour particle best solution in the 
problem domain. In PSO, no evolutionary operators such as cross 
over and mutations are required. However, PSO use the particles 
which start with certain velocity and are dynamically adjusted in 
multi-dimensional search space at many spatial locations. The 
parameters are iteratively updated for its positions and velocity 
using Eq. [12] and [13], respectively.  

K+1 k k k
i i 1 i i

k k
2 i i

New Velocity : V   = W × V + rand Pbest - P

                        + rand Gbest - P                     (12)

   
  

 

k+1 k k+1
i i iNew  Position : P  = P  + V                        (13)  

The term inertia weight (W) is a parameter that controls the 
impact of previous velocities on the current velocity. However for 
initial search, higher inertia weight is recommended to enhance 
the global search capabilities, while low inertia weight for the 
final stage during local search. k

iV is the current velocity of the 

individual particle i at iteration k, K+1
i V is the iterative update 

velocity of the individual particle i at iteration k+1, rand1 and 
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rand2 are the random numbers distributed uniformly in the range 
between zero and one. k

iPbest , k
iGbest depicts the best positions 

of individual particle i have reached and group until iteration k 
respectively. The second term in Eq. 12 refers to cognitive part, 
wherein the particle change velocity with self-experience and the 
third term (social part) adjust the particle velocity through their 
neighboring particle experience. The methodology employed in 
identifying the optimal variable combinations responsible for 
extreme response values and working cycle of PSO is illustrated 
in Fig. 2. 
 
 
3.3. Multi-objective particle swarm 
optimization with crowding distance 

 
MOPSO-CD method is associated with the evolutionary 

operator namely, mutation that is introduced in the simple PSO to 
maintain the different class of non-dominated solution in an 
external achieve [43]. In MOPSO-CD, mutation operator is used 
to avoid the premature convergence (local solutions) by widening 
the search space, when the initial population (swarm size) is not 
sufficient [43]. The cognitive leader ( Pbest ) and social leader (
Gbest ) are selected in MOPSO-CD based on the Pareto 
dominance and crowding distance methods. Therefore, MOPSO-
CD is considered as an excellent tool to map the complex multiple 
conflicting response functions for optimization. The working 
cycle of MOPSO-CD method is shown schematically in Fig. 3. 

 
 

4. Results and Discussions 
 
The results of parametric study that is used for the 

optimization of the algorithms, and the optimal process variable 
combinations that are obtained for four case studies are discussed 
in the following sections.  
 
 
4.1. Genetic Algorithm 
 

The genetic algorithm is capable of identifying the potential 
solutions responsible for better surface quality and mechanical 

properties of cast component. In multi-response optimization, the 
quality performance characteristic depends mainly on the weight 
factors assigned for each response. In the present study, three 
conflicting responses are chosen for optimization. Further, four 
different case studies are considered after assigning different 
combination of weights. It is important to note that identifying 
near optimal solutions for the problem domain using GA rely 
mainly on the appropriate choice of GA parameters, such as 
probability of cross over (PC), probability of mutation (PM), 
population size (Pop. Size) and maximum number of generations 
(Gen). There are no global acceptable standards available for 
selection of GA parameters. Therefore, the optimal GA 
parameters are determined using the parametric study by varying 
one parameter at a time and keeping rest at the fixed values (see 
Fig. 4). In the first stage of GA parametric study, probability of 
cross over (PC) is varied in the range between 0.5-1 to identify the 
maximum fitness value after keeping the values of probability of 
mutation, population size and generation number fixed at 0.15, 80 
and 100, respectively. The optimized probability of cross over 
(PC

*) for the maximum fitness value is found equal to 0.7 (see Fig. 
4 (a)). Therefore for the second stage and further the PC is kept 
equal to 0.7, and determined the maximum fitness values for PM, 
Pop. Size and Gen. The optimized GA parameters responsible for 
maximum fitness values determined using the parameter study is 
shown below, 
 
Probability of crossover (PC

*) = 0.7 
Probability of mutation   (PM

*) = 0.15 
Population size (Pop. Size*) = 130 
Generation number (Gen*) = 90 
 

The maximum fitness values obtained for the optimal casting 
conditions obtained for case 1 to case 4 is found to be equal to 
122.8, 138.2, 38.25 and 193.6, respectively. The optimum casting 
conditions for the multiple outputs obtained for different weight 
factor combinations is showed in Table 2. Since the performed 
multi-objective optimization is done for maximization and the 
case 4 is recommended as their corresponding maximum fitness 
value found to be greater than other case studies, considered to 
give lower surface roughness and higher tensile strength values. 
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Fig. 2. Methodology formulation with working cycle of GA nd PSO 
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Fig. 3. The working cycle of MOPSO-CD 

 
Table 2.  

Yes 

No 

Evaluate swarm 

En

Is maximum  
Iteration 
reached? 

Randomly choose the global 
best leader  

Update particles position and 
velocity 

Sort the non-dominant 
solutions stored in repository 

in descending order  

Update Repository 

Calculate crowding distance 
in the repository 

Evaluate fitness function for 
all particles 

Locate earlier best  

Start MOPSO-CD 

Set initial population, size of 
swarm and generations 

Create initial population 
velocity and its position 
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Optimum casting conditions for multiple outputs with different combination of weight factors via GA 

Process 
variables 

& Outputs 

Optimum values of casting conditions and casting properties 
Case 1 

(W1 = 0.333, W2 = 0.333 
and W3 =0.333) 

Case 2 
(W1 = 0.8, W2 = 0.1 and W3 

=0.1) 

Case 3 
(W1 = 0.1, W2 = 0.8 and 

W3 =0.1) 

Case 4 
(W1 = 0.1, W2 = 0.1 

 and W3 =0.8) 
A: PD, sec 49.87 49.94 49.95 49.97 
B: SP, MPa 119.51 119.51 119.98 119.06 
C: PT, ˚C 709.84 691.35 706.29 719.81 
D: DT, ˚C 201.17 210.27 211.06 193.79 
SR, µm 0.550 0.529 0.534 0.570 
YS, MPa 143.7 144.9 144.3 142.2 
UTS, MPa 223.2 220.3 223.2 224 

 

(a) (b) 

(c) (d) 

Fig. 4. GA parametric study: (a) Fitness vs. Probability of crossover (Pc), (b) Fitness vs. Probability of mutation (Pm), (c) Fitness vs. 
Population size and (d) Fitness vs. Generation number 

 
4.2. Particle Swarm Optimization 
 

PSO is also a population based search algorithm that is used 
to identify the optimal casting conditions. It is important to note 
that the optimal values of the process depend on the parameters of 
PSO, such as best values of inertia weight, swarm size and 
number of generations. The swarm size in particle swarm 
optimization decides the computational time to locate the optimal 
solutions. Larger swarm size has more probability to identify the 

global solutions than with smaller swarm size. Moreover, smaller 
swarm size has greater susceptibility to get trapped at local 
minima solutions. As discussed in the earlier section no universal 
standards are reported for the identification of optimal parameters 
of PSO. Therefore, a systematic study has been conducted by 
varying one parameter at a time after keeping the rest as constant 
(see Fig. 5). Initially, the inertia weights (W) are varied in the 
range between zero and one, after keeping both the swarm size 
and number of generations fixed at 50. The optimized inertia 
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weight (W*) corresponding to the maximum fitness value is seen 
to be equal to0.3 (see Fig. 5 (a)). This value is further used for 
identifying the optimum swarm size (SS*) and maximum number 
of generations (Gen*). The optimized values of PSO parameters 
that represent the better casting quality are shown below,  
 
Inertia weight (W*) = 0.3 
Swarm size (SS*) = 50 
Number of generations (G*) = 60 
 

In this case also, the same four case studies that explained in the 
earlier section are considered. The maximum fitness values 
obtained for Case 1 through4 are found to be equal to 122.8, 
138.1, 38.23 and 193.6, respectively. From the result, it has been 
observed that Case 4 of PSO algorithm has outperformed the 
other cases to give low values of surface roughness and higher 
tensile strengths. Table 3 shows the optimum casting conditions 
determined for multiple responses with different combination of 
weight factors. 

 
Table 3.  
Optimum casting conditions for multiple outputs with different combination of weight factors via PSO 

Process variables 
& Outputs 

Optimum values of casting conditions and casting properties 
Case 1 

(W1 = 0.333, W2 = 0.333 and 
W3 =0.333) 

Case 2 
(W1 = 0.8, W2 = 0.1 and 

W3 =0.1) 

Case 3 
(W1 = 0.1, W2 = 0.8 and 

W3 =0.1) 

Case 4 
(W1 = 0.1, W2 = 0.1 

 and W3 =0.8) 
A: PD, sec 49.32 49.84 49.44 49.48 
B: SP, MPa 119.78 119.99 119.79 119.49 
C: PT, ˚C 710.23 704.95 691.43 716.99 
D: DT, ˚C 210.29 212.86 214.68 198.44 
SR, µm 0.539 0.536 0.524 0.559 
YS, MPa  143.5 143.8 144.8 142.6 
UTS, MPa 223.4 223.6 220.5 223.2 

 
4.3. Multi Objective Particle Swarm 
Optimization – Crowding Distance  
 

Here also, a parametric study has been conducted to 
determine the optimum evolutionary operator that is mutation and 
PSO parameters (that is, inertia weight, swarm size and 
generations). The best parameters responsible for maximum 
fitness values determined after conducting the detailed parameter 
study (refer Fig. 6) is as follows, 
 
Probability of Mutation (PM

*) = 0.21 

Inertia Weight (W*) = 0.1 
Swarm Size (SS*) = 50 
Number of Generations (G*) = 40  
 
The extreme values of the conflicting objective functions and 
their associated process variable combinations are presented in 
Table 4. It is noteworthy that the fitness values as obtained for 
case 1 to case 4 are found equal to 123.1, 138.4, 38.17 and 194.1, 
respectively. Furthermore, for MOPSO-CD the case 4 is 
considered to be the best, as their associated process variable set 
are responsible for the maximum fitness values.  

 

(a) (b) 
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(c) 
Fig. 5. Particle swarm optimization (PSO) parametric study: (a) Fitness vs. Inertia weight, (b) Fitness vs. Swarm size and (c) Fitness vs. 

Maximum generations 
 
Table 4. 
Optimum casting conditions for multiple outputs with different combination of weight factors via MOPSO - CD 

Process variables 
& Outputs 

Optimum values of casting conditions and casting properties 
Case 1 

(W1 = 0.333, W2 = 0.333 and 
W3 =0.333) 

Case 2 
(W1 = 0.8, W2 = 0.1 and 

W3 =0.1) 

Case 3 
(W1 = 0.1, W2 = 0.8 and 

W3 =0.1) 

Case 4 
(W1 = 0.1, W2 = 0.1 

 and W3 =0.8) 
A: PD, sec 49.99 49.95 49.94 49.95 
B: SP, MPa 119.99 119.96 119.98 119.96 
C: PT, ˚C 709.52 692.87 695.48 718.26 
D: DT, ˚C 199.16 208.26 211.06 195.05 
SR, µm 0.548 0.529 0.527 0.563 
YS, MPa  144.0 145.1 145.1 142.9 
UTS, MPa 223.7 220.9 221.5 224.5 

 
4.4. Confirmation Test 
 

Experiments have been conducted to determine the response 
values with the optimum values of parameters obtained in 
MOPSO-CD. The experiments conducted for case 4 of MOPSO-
CD is having higher fitness value as compared to other case 
studies. It is to be noted that, the experiments have been 
conducted under similar condition as those used to develop CCD 
and BBD model (refer Table 5). Surface roughness, yield strength 
and ultimate tensile strengths are measured in accordance with 
test methods, JIS 2001 and ASTM E8 standards. High yield 
strength and ultimate tensile strength, with low surface roughness 
values are obtained for the optimum casting conditions suggested 
by MOPSO-CD. The ability of evolutionary algorithms to yield 
best process variable combinations in a complex input-output 
relation is found to be very good. High squeeze pressure forces 
the melt close to die surface walls, thereby improves the surface 
finish, rate of heat extraction and alters microstructure which will 
result in better yield and ultimate tensile strength. Pressure 
duration is found to have negligible influence on the quality of 
squeeze cast parts, when it is varied between the respective 
boundary conditions [25]. It is to be noted that, beyond the 
suggested (required) squeeze pressure and duration have found 
negligible improvement on casting properties. On the other-hand 
they affect the die life and require high tonnage equipment facility 

[4 and 7]. The impact of die temperature to improve casting 
properties is found to be more as compared to pouring 
temperature [25]. Low and high die temperatures are not desirable 
in squeeze casting process due to premature solidification and 
high cycle time (that is, rate of heat extraction decreases), 
respectively. The aforementioned reasons resulted in relatively 
fine size particles with refinement of eutectic silicon particles on 
the inter-granular fracture surface (refer Fig. 7). The 
microstructure explained above, results in a better tensile strength 
property. 

 
 

4.5. Comparison of PSO, MOPSO-CD and GA 
 

The results obtained from three non-traditional evolutionary 
algorithms, such as GA, PSO and MOPSO-CDare compared in 
terms of identification of extreme values of multiple outputs 
responsible for better casting quality. The optimum locations are 
identified by all the evolutionary algorithms accurately in multi-
dimensional space at many spatial locations simultaneously. It is 
interesting to note that all evolutionary algorithms recommended 
the case 4, as their corresponding maximum fitness value is found 
to be greater than the rest all case studies considered for 
investigation. 
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(a) (b) 

(c) (d) 

Fig. 6. MOPSO-CD parametric study: (a) Fitness vs. Probability of mutation, (b) Fitness vs. Inertia weight, (c) Fitness vs. Swarm size and 
(d) Fitness vs. Maximum generations 

 
Table 5.  
Results of confirmation test for the optimal casting conditions 

 
Algorithm 

Optimal process variables Responses 
Pressure 

duration, s Squeeze pressure, MPa Pouring temperature, °C Die 
temperature, °C SR, µm YS, MPa UTS, 

MPa 
MOPSO-CD 50 120 718 195 0.52 144.8 229.4 

 

(a) (b) 
Fig. 7. Scanning electron micrographs of tensile fracture surface obtained for optimum casting conditions recommended by MOPSO-CD: 

(a) Low Magnification and (b) High magnification 
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The maximum fitness values as obtained for case 4 using GA, 
PSO and MOPSO-CD are found to be equal to 193.6, 193.6 and 
194.1, respectively. MOPSO-CD located the extreme response 
values with higher fitness and found to give better performance 
when compared with that of GA and PSO. The recommended 
process variable combinations are tested under experimental 
conditions to confirm the optimal locations determined by 
MOPSO-CD. Prior to confirmation experiments the parameters of 
evolutionary algorithms are optimized by conducting systematic 
study (that is, varying one parameter at once after keeping the rest 
at fixed value). The systematic study is of prior importance not 
only in terms of convergence speed, but also to avoid local 
minima (if any). The optimized GA parameters such as 
probability of cross over (PC

*), probability of mutation (PM
*), 

population size (Pop*) and number of generations (Gen*) are 
found to be equal to 0.7, 0.15, 130, and 95, respectively. The 
optimized PSO parameters such as inertia weight (W*), swarm 
size (SS*) and number of generations (G*) are found to be equal to 
0.3, 50 and 70 respectively. Similarly, the optimized MOPSO-CD 
parameters namely, PM

*, W*, SS* and G* are found equal to 0.21, 
0.5, 80, and 65, respectively. It is important to note that the speed 
of convergence in terms of number of generations to locate the 
optimal values is found equal to 70 for PSO, 65 for MOPSO-CD 
and 95 for GA, respectively. This indicates the faster rate of 
convergence observed with regard to computation time using PSO 
than GA. Further, the confirmation test conducted for the 
recommended case 4 by the evolutionary algorithms are compared 
in terms of percent deviation. The percent deviation associated 
with surface roughness, yield strength and ultimate tensile 
strength are found equal to 8.35%,3.97%, and 2.14% for MOPSO-
CD, 9.65%, 4.43%, and 2.36% for GA and 7.67%, 4.17%, 2.70% 
for PSO, respectively. The average absolute percent deviation for 
all responses when compared to experimental values is found 
equal to 4.82%, 5.48% and 4.85% for MOPSO-CD, GA and PSO, 
respectively. The results showed that all the evolutionary 
algorithms identified the extreme values of the responses for the 
global process variable combinations accurately. However, PSO 
performed better in terms of computational time to reach the 
maximum fitness value with the number of generations. The 
better computation time of PSO might be due to the exhaustive 
search carried out in multi-dimensional space at many distinct 
spatial locations with simple structure and few tuning parameters. 
 
 

5. Concluding Remarks 
 
In the present manuscript, an attempt is made to simultaneously 
optimize the multiple responses (that is, surface roughness, yield 
strength and ultimate tensile strengths) of a casting component 
that could put it in service immediately without the requirement of 
costly secondary manufacturing processes. Evolutionary 
algorithms offer greater advantage like general adaptability for 
wide range of problem domains, ease of implementation and no 
prior knowledge requirement of the initial search space of the 
problem. Therefore, three evolutionary algorithms, namely GA, 
PSO and MOPSO-CD are used to optimize the input-output 
variables of the squeeze casting process. The best response 
equations representing the function of process variables derived 
through non-linear models (that is, CCD and BBD) are used as the 

fitness function for the evolutionary algorithms. The conflicting 
(two responses are of maximization type and one response is 
minimization type) objectives of the present problem is solved 
after converting it into a single objective function for 
maximization with different combination of weights. All the 
evolutionary algorithms (that is, PSO, MOPSO-CD and GA) 
determined the optimal process variable combinations for extreme 
values of the responses. Confirmation experiments are conducted 
for the identified optimal process variable combinations 
corresponding to the observed maximum fitness values obtained 
under different case studies. The results showed that all the 
algorithms are effectively capable of identifying the optimal 
process variable combination for the extreme values of responses. 
However, MOPSO-CD and PSO outperformed GA with regard to 
computation time to reach the maximum fitness value 
corresponding to the number of generations. Improved 
performance of the particle swarm optimization might be due to 
simple structure and few tuning parameters. It is important to 
mention that the present research work is of much industrial 
relevance, since the determined optimal values of the process 
variables are capable of yielding better surface quality and 
internal casting strengths for the single process variable 
combination. The shortcomings of the existing approaches (like, 
casting simulation software, numerical, analytical and traditional 
experimental approaches) are overcome after using these 
evolutionary algorithms and this approach helped in determining 
the optimal process variable combinations responsible for 
enhanced casting properties.  
 
 

Acknowledgement 

The authors wish to thank the Department of Applied 
Mechanics & Hydraulics, National Institute of Technology 
Karnataka, India, for their kind cooperation in carrying out the 
experiments. 
 
 

References 
 
[1] Kuang-Oscar, Yu. (2001). Modeling for casting and 

solidification processing. CRC Press. 
[2] Vijian, P., Arunachalam, V.P. & Charles, S. (2007). Study of 

surface roughness in squeeze casting LM6 aluminium alloy 
using Taguchi method. Indian Journal of Engineering & 
Materials Sciences. 14, 7-11. 

[3] Ghomashchi, M.R. & Vikhrov, A. (2000). Squeeze casting: 
an overview, Journal of Materials Processing Technology. 
101(1), 1-9.  

[4] Yue, T.M. & Chadwick, G.A. (1996). Squeeze casting of 
light alloys and their composites. Journal of Materials 
Processing Technology. 58(2), 302-307. 

[5] Britnell, D.J. & Neailey, K. (2003). Macrosegregation in thin 
walled castings produced via the direct squeeze casting 
process. Journal of Materials Processing Technology. 
138(1), 306-310. 

[6] Krishna, P. (2001). A study on interfacial heat transfer and 
process parameters in squeeze casting and low pressure 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 6 ,  I s s u e  3 / 2 0 1 6 ,  1 7 2 - 1 8 6  185 

permanent mold casting. Ph.D. Thesis, University of 
Michigan. 

[7] Rajagopal, S. & Altergott, W.H. (1985). Quality control in 
squeeze casting of aluminium. AFS Transactions. 93, 145-
154. 

[8] Yang, L.J. (2007). The effect of solidification time in 
squeeze casting of aluminium and zinc alloys. Journal of 
Materials Processing Technology. 192, 114-120. 

[9] Hu, H. (1998). Squeeze casting of magnesium alloys and 
their composites. Journal of Materials Science. 33(6), 1579-
1589. 

[10] Chattopadhyay, H. (2007). Simulation of transport processes 
in squeeze casting. Journal of Materials Processing 
Technology. 186(1), 174-178. 

[11] Yue, T.M. (1997). Squeeze casting of high-strength 
aluminium wrought alloy AA7010. Journal of Materials 
Processing Technology. 66(1), 179-185. 

[12] Raji, A. & Khan, R.H. (2006). Effects of pouring 
temperature and squeeze pressure on Al-8% Si alloy squeeze 
cast parts. AU JT. 9(4), 229-237. 

[13] Yang, L.J. (2003). The effect of casting temperature on the 
properties of squeeze cast aluminium and zinc alloys. 
Journal of Materials Processing Technology. 140(1), 391-
396. 

[14] Hong, C.P., Lee, S.M. & Shen, H.F. (2000). Prevention of 
macrodefects in squeeze casting of an Al-7 wt. pct Si alloy. 
Metallurgical and Materials Transactions B. 31(2), 297-305. 

[15] Benguluri, S., Vundavilli, P.R., Bhat, R.P. & Parappagoudar, 
M.B. (2011). Forward and reverse mappings in metal 
casting—A step towards quality casting and automation (11-
009). AFS Transactions. 119, 19. 

[16] Souissi, N., Souissi, S., Niniven, C.L., Amar, M.B., Bradai, 
C. & Elhalouani, F. (2014). Optimization of squeeze casting 
parameters for 2017 a wrought al alloy using Taguchi 
method. Metals. 4(2), 141-154. 

[17] Patel, G.C.M., Krishna, P. & Parappagoudar, M.B. (2014). 
Optimization of squeeze cast process parameters using 
Taguchi and grey relational analysis. Procedia Technology. 
14, 157-164. 

[18] Senthil, P. & Amirthagadeswaran, K.S. (2012). Optimization 
of squeeze casting parameters for non symmetrical AC2A 
aluminium alloy castings through Taguchi method. Journal 
of Mechanical Science and Technology. 26(4), 1141-1147. 

[19] Senthil, P. & Amirthagadeswaran, K.S. (2014). Experimental 
study and squeeze casting process optimization for high 
quality AC2A aluminium alloy castings. Arabian Journal for 
Science and Engineering. 39(3), 2215-2225. 

[20] Vijian, P. & Arunachalam, V.P. (2006). Optimization of 
squeeze cast parameters of LM6 aluminium alloy for surface 
roughness using Taguchi method. Journal of Materials 
Processing Technology. 180(1), 161-166. 

[21] Vijian, P., Arunachalam, V.P. & Charles, S. (2007). Study of 
surface roughness in squeeze casting LM6 aluminium alloy 
using Taguchi method. Indian Journal of Engineering & 
Materials Sciences. 14, 7-11. 

[22] Vijian, P. & Arunachalam, V.P. (2007). Modelling and multi 
objective optimization of LM24 aluminium alloy squeeze 
cast process parameters using genetic algorithm. Journal of 
Materials Processing Technology. 186(1), 82-86. 

[23] Guo, Z.H., Hou, H., Zhao, Y.H. & Qu, S.W. (2012). 
Optimization of AZ80 magnesium alloy squeeze cast process 
parameters using morphological matrix. Transactions of 
Nonferrous Metals Society of China. 22(2), 411-418. 

[24] Bin, S.B., Xing, S.M., Zhao, N. & Li, L. (2013). Influence of 
technical parameters on strength and ductility of AlSi9Cu3 
alloys in squeeze casting. Transactions of Nonferrous Metals 
Society of China. 23(4), 977-982. 

[25] Patel, G.C.M., Krishna, P. & Parappagoudar, M.B. (2015). 
Modelling of squeeze casting process using design of 
experiments and response surface methodology, International 
Journal of Cast Metals Research. 28(3), 167-180. 

[26] Rao, R.V., Savsani, V.J. (2012). Mechanical design 
optimization using advanced optimization techniques, 
London: Springer.  

[27] Rosenberg, R.S. (1967). Simulation of genetic populations 
with biochemical properties. Ph.D. Thesis, University of 
Michigan. 

[28] Schaffer, J.D. (1985). Multiple objective optimization with 
vector evaluated genetic algorithm. In Proceedings of 1st 
International Conference on Genetic Algorithms, 93-100. 

[29] Kuriakose, S. & Shanmugam, M.S. (2005). Multi-objective 
optimization of wire-electro discharge machining process by 
non-dominated sorting genetic algorithm. Journal of 
Materials Processing Technology. 170, 133–141. 

[30] Vundavilli, P.R., Kumar, J.P. & Parappagoudar, M.B. 
(2013). Weighted average-based multi-objective 
optimization of tube spinning process using non-traditional 
optimization techniques. International Journal of Swarm 
Intelligence Research. 4(3), 42-57. 

[31] Surekha, B., Kaushik, L.K., Panduy, A.K., Vundavilli, P.R. 
& Parappagoudar, M.B. (2012). Multi-objective optimization 
of green sand mould system using evolutionary algorithms. 
The International Journal of Advanced Manufacturing 
Technology. 58(1-4), 9-17. 

[32] Saravanan, R. & Sachithanandam, M. (2001). Genetic 
algorithm (GA) for multivariable surface grinding process 
optimisation using a multi-objective function model. The 
International Journal of Advanced Manufacturing 
Technology. 17(5), 330-338. 

[33] Rao, R.V., Pawar, P.J. & Shankar, R. (2008). Multi-objective 
optimization of electrochemical machining process 
parameters using a particle swarm optimization. Proceedings 
of the Institution of Mechanical Engineers, Part B, Journal of 
Engineering Manufacture. 222, 949-958.  

[34] Datta, R., Majumder, A. (2010). Optimization of turning 
process parameters using multi-objective evolutionary 
algorithms. In: Proceedings of the IEEE Congress on 
Evolutionary Computation, Barcelona, (July 2010). 38, 1-6. 

[35] Ali-Tavoli, M., Nariman-Zadeh, N., Khakhali, A. & Mehran, 
M. (2006). Multi-objective optimization of abrasive flow 
machining process using polynomial neural networks and 
genetic algorithms. Machining Science Technology: An 
International Journal. 10(4), 491-510.  

[36] Agrawal, R.K., Pratihar, D.K. & Choudhury, A.R. (2006). 
Optimization of CNC isoscallop free form surface machining 
using a genetic algorithm. International Journal of Machine 
Tools and Manufacture. 46(7), 811-819. 



186 A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 6 ,  I s s u e  3 / 2 0 1 6 ,  1 7 2 - 1 8 6  

[37] Navalertporn, T. & Afzulpurkar, N.V. (2011). Optimization 
of tile manufacturing process using particle swarm 
optimization. Swarm and Evolutionary Computation. 1(2), 
97-109. 

[38] Zhou, A., Qu, B.Y. Li, H., Zhao, S.Z., Suganthan, P.N. & 
Zhang, Q. (2011). Multi-objective evolutionary algorithms: 
A survey of the state of the art. Swarm and Evolutionary 
Computation. 1(1), 32-49. 

[39] Das, S., Maity, S., Qu, B.Y. & Suganthan, P.N. (2011). Real-
parameter evolutionary multimodal optimization—A survey 
of the state-of-the-art. Swarm and Evolutionary 
Computation. 1(2), 71-88. 

[40] Patel G.C.M., Krishna, P., Parappagoudar, M.B. & 
Vundavilli, P.R. (2016). Multi-objective optimization of 
squeeze casting process using evolutionary algorithms, 

International Journal of Swarm Intelligence Research,7(1), 
57-76. DOI: 10.4018/IJSIR.2016010103. 

[41] Linder, J., Axelsson, M. & Nilsson, H. (2006). The influence 
of porosity on the fatigue life for sand and permanent mould 
cast aluminium. International Journal of Fatigue. 28(12), 
1752-1758. 

[42] Abido, M.A. (2001). Particle swarm optimization for 
multimachine power system stabilizer design. In Power 
Engineering Society Summer Meeting, 2001 (3, 1346-1351). 
IEEE. 

[43] Raquel, C.R. & Naval, P.C. Jr. (2005). An effective use of 
crowding distance in multiobjective particle swarm 
optimization. Proceedings of the 2005 conference on Genetic 
and evolutionary computation, ACM, 257-264. 

 
 


	Fig. 3. The working cycle of MOPSO-CD
	4.3. Multi Objective Particle Swarm Optimization – Crowding Distance

