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MULTISCALE APPROACH FOR MODELING FRACTURE IN PIEZOELECTRIC CERAMICS

The barium titanate material is the most intensively studied perovskite material due to its wide use in the ceramic industry. 
Barium titanate is also technologically important material owing to its ferroelectric behaviour at and above room temperature. 
The paper presents an effective implementation of boundary element multiscale method in analyzing of fracture of piezoelectric 
ceramics. This method can be easily used to get a better understanding of damage mechanism in the ceramic materials in order 
to improve the constitutive models and to support the future design of those materials. In this method the relation of boundary 
element method for obtaining traction is presented. The main advantage of boundary element method is the reduction of the di-
mensionality of the problem. Boundary element method becomes very attractive in cases of numerically complex problems that 
are computationally expensive. 
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1. Introduction

The barium titanate (BaTiO3) compound is the most 
intensively studied perovskite material due to its wide use in 
the ceramic industry [1,2]. Barium titanate is also a useful and 
technologically important material owing to its ferroelectric 
behaviour at and above room temperature [1]. Barium titanate 
is widely used in electronic devices, such as multilayer ceramic 
capacitors, tunable filters and piezoelectric sensors due to its 
high chemical and mechanical stability [3]. 

Over the past decades numerical simulation of fracture in 
piezoelectric ceramics has primarily been based on linear elastic 
fracture mechanics models [4,5]. The use of either impermeable 
or permeable boundary conditions has been studied extensively 
[6]. A partition of unity-based multiscale approach for modeling 
fracture in piezoelectric ceramics. Nowadays, the heavy and 
difficult calculations and computations for nanoscale till macro-
scale take lot of time and need powerful computational machines. 
According to this fact that time is valuable factor in modern 
world and especially for computational science, proposing new 
methods for doing computational procedure and using optimal 
ways can lead to saving time and doing more and more tasks 
compared with time consuming old methods.

Boundary element method is one the favourite optimized 
numerical computational method which is used by scientists in 
many areas of engineering and science including fracture mechan-
ics, fluid mechanics, electromagnetics, acoustics and geology. 
The reason why boundary element method has become very 

popular is that not only this method is so applicable in saving the 
time and performing the calculation fast, but also it is easier than 
many other numerical methods. In order to use boundary element 
method, one need to mesh only boundary of the system without 
calculation parameter inside of case study, so the dimension of 
the problem can decrease dramatically and size of algebraic equa-
tions can considerably be smaller than finite element equation 
[7,8]. That is why there are widespread belief that this method 
is suitable for saving the time and doing much less calculations.

In area of fracture mechanics and mechanical engineering, 
some researchers have utilized boundary element method. This 
method is very applicable in determining the behaviour of solid 
body which contains several numbers of cracks and holes. It is 
worth noting that both finite and infinite bodies can be studied 
via boundary element method. In order to use this method, one 
must pay attention to this fact that traction fundamental solution 
and displacement fundamental solution for isotropic bodies are 
different than anisotropic bodies. It is the most important fact 
that researcher have to consider it when they are using boundary 
element method for the investigations and studies [9,10].

For abstaining the traction fundamental solution and dis-
placement fundamental solution for anisotropic bodies there are 
two main methods that researchers have used widely [11,12]. 
The first method uses Stroh formulation which is utilized in 
current study and second one refers to Lekhnitskii’s formalism. 
The most important note which can be mention here for using 
Stroh formulation is normalization of matrices which will be 
mentioned in future chapters.
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There are different methods to understand the properties 
and behaviour of materials. One of the most favourite methods 
that is receiving attentions of researcher during last years is 
multi-scale modeling which is able to model the properties of 
materials simultaneously at different alternative scales. Modeling 
a specific material at different scales at the same time makes it 
possible to study the behaviour of heterogynous materials actu-
ally [13-15]. Due to the complexity of the material structure, 
there are no exact information about special characteristic of 
materials in a certain scale, therefore, one is able to determine 
these properties through a smaller scale. Thus, different classes 
of heterogeneous materials at different scales can be studied 
according to the same rules and the results can be compared in 
order to achieve exact and actual behaviour of materials [16]. 
Another advantage of multiscale that can be mentioned is that 
damage evaluation can be predicted via this method overall 
different scale [17-19].

In this study, a multiscale method via boundary element 
method was introduced. Then bridges meso-scale to macro-scale 
by a damage parameter were performed. This method was ap-
plied on piezoelectric ceramics.

2. Methodology and basic formulations

2.1. Fundamental solution and Stroh formulations

The paper presents an effective implementation of bound-
ary element multiscale method in analyzing of piezoelectric 
ceramics. The presented method is applied based on constitutive 
equations and numerical modeling. This method can be easily 
used to get a better understanding of damage mechanism in the 
ceramic materials in order to improve the constitutive models 
and to support the future design of those materials. In this method 
the relation of boundary element method for obtaining traction 
in order to analysis cracked plate as well as plate with inclusion 
is presented. Then the basic will be used for multiscale modeling 
of piezoelectric ceramic.

First of all, the Stroh formulation which is applicable for 
obtaining fundamental solution equation of boundary element 
method is explained as below. In this method, the linear relation 
for piezoelectric materials is applied as,
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In these equations, σ, D, u and φ are stress, electric displace-
ment, displacement and uα respectively; c, e and κ are elastic 
stiffnesses (elastic moduli), piezoelectric constants, dielectric 
constants respectively. In the next step, the equilibrium equation 
can be introduced as follow,

 , ,0,   0ij j i i if D q   (2)

In the case that fi = 0 and absence of body charge, for two-
dimensional displacement, solution of equilibrium equation 
which only depends on x1 and x2 can be considered as follow,

 1 2( )    1,2,3,4u a f x px   (3)

For the α = 1-3 the uα is mechanical displacement and for 
α = 4, uα is electric field. a and p are constants which have to 
be determined according to properties of materials. Inserting 
Eq. (3) into linear piezoelectric materials relation can have fol-
lowing result:
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where, f ' is derivative of f and δ is Kronecker delta. Substitution 
of (4) into equilibrium equation, leads to following equation 
which gives solution for aα and p,
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These equations can be written as

 2( ) 0p pTQ R R T a   (6)

where 

 
e e e

11 21 22
T T T
11 11 21 12 22 22

Q e R e T e
Q  ,  R  ,  T  

e e e
  (7)

Via this system of linear equations, the eigenvalues p and 
eigenvectors a = [a1 a2 a3 a4] can be approached. The matrices 
Qe, Re, Te and eij are defined as follow:

 1 1 1 2 2 2 ,  ,  e e e
ij i k ik i k ik i kQ c R c T c   (8)

Nonzero solution of Eq. (6) needs to calculate its determi-
nant as follow:

 2( ) 0p pTQ R R T   (9)

Via solving this equation, eight values can be obtained 
for p. pα (α = 1,2,3,4) which has positive imaginary part, leads 
to have eigenvector aα (α = 1,2,3,4). Other four eigenvalues and 
corresponding eigenvectors can be written as follow,

 4 4 ,  Im( )  0p p a a p   (10)

The result of these activities leads to have general solution 
for displacement and electric field in the form [20]:

 ( ) ( ) 1,2,3,4i i iu A f z A f z i   (11)

which is written as

 2 Re ( ) 1,2,3,4i iu A f z i   (12)

Now, by differentiation the equation of displacement, the 
stress and electrical displacement can be obtained as follow [20]:

 1 ,2 2 ,1, 1,2,3,4i i i i i   (13)

where φi = bi f (x1 + px2) is generalized stress and electrical dis-
placement functional vector, the vector b is defined as
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Equation (14) can be rewritten as eigenvector equation in 
the form

 1 2 T

3 1
, ,p pT

N N
N N N

N N
  (15)

where N1 = –T–1RT, N2 = T–1, N3 = RT–1RT – Q; ξ = [a,b]T is 
a right eigenvector; η = [b,a]T is left eigenvector of matrix N; 
vector ηi and ξi obtained for the eigenvalue pi and qi can be 
normalized as

 T
i j ij  (16)

This rule (16) is the most important for obtaining fundamen-
tal solution via Stroh formulation for boundary element method. 
Without establishing this rule, the boundary element method will 
have accurate solution for elasticity problems. So, the general 
solution for electromechanical problems can be written as 
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where A = [a1 a2 a3 a4] and B = [b1 b2 b3 b4]; zα = x1 + pαx2. 
Generalized solution of Stroh electroelastic problem by Stroh 
formulations, allows to define fundamental solution for linear 
force and point charge acting at point Z0 = (x01, x02) of infinite 
piezoelectric medium [11];
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where Zα(X,Z0) = x1 + pαx2 – (x01 + pαx02). 

2.2. Basic equations of boundary element method

Now it is opportunity to define boundary element method 
which is a numerical method based on numerical integral over 
boundary of model. The Eq. (19) shows the traditional boundary 
element equation of displacement. In this equation u and t are 
displacement and traction, U and T are fundamental solution for 
displacement and traction, respectively.
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The figure 1 shows a simple example that how the bound-
ary integral method should be discretized over boundary of 
solids to obtain unknown. In this figure as it is clear, in some 
boundaries traction is unknown and in other ones displacement 
is unknown so via discrediting the Eq. (19), numerical equation 
can be obtained as,
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in which ΔTi and ΔUi can be obtained as follow,
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The following linear algebraic equation can be achieved.

  T u U t  (22)

In the Eq. (22), [ΔT] and [ΔU] can be defined as follow:
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Fig. 1. Simple example of using boundary element equation in order to 
obtain displacement and traction

Through solving these algebraic equations, the unknown 
parameters can be approached. One the most important applica-
tion of boundary element method is solving the plate problem 
which contains different kinds of crack and holes. So far, some 
researchers investigated this kind of problem via different nu-
merical and analytical methods. Particular attention should be 
paid to model the singular integral near the crack tip. This issue 
will be discussed in future chapters of current paper. By the 
way, the displacement equation of boundary element method 
for cracked plate can be written as follow [21]:
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In this equation, Δu is difference between displacements at 
crack upper and lower crack surface and ∑tj is sum of the traction 
at upper and lower crack surface. Generally speaking, ∑tj should 
be equal to zero, however, here we ignore this simplification in 
order to achieve correct equation for traction boundary element 
equation. s is boundary of main body and Γ is boundary of crack. 
Via differentiation of Eq. (24) and utilizing Hook’s law, the 
following equation can be achieved which is boundary element 
equation for traction [21]:
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where 
( )

( )
ju Z

s Z
 is dislocation density. D and W can be written as,

 0 2 1
0

0 1 2 2 1 0

1 1( , )  Im[ ( ) ],
Z ( , )

( , ) ( ) ( , )

ijk i k j j

jlm lmik i j i j ijk

D X Z B A p
X Z

W X Z c D X Z
  

In the Eq. (25), the dislocation density can be obtained 
over the crack tip (Fig. 2) which is useful for obtaining stress 
intensity factor.

Fig. 2. Discritized boundary on the element and crack surface

2.3. Numerical implementation of boundary 
element method

Similar to all numerical methods, boundary element method 
needs to be discretized in order to be solved numerically. Fig. 1 
shows clearly that the boundary of model can be replaced by 
assembly of linear elements. In this subsection, some explanation 
about discretization of all the boundaries of body into serious 
of segments will be presented. To discretized the integral over 
boundary to small linear element, it is essential to define variable 
coordinate for each element as follow,

 (1) (2)
1 2( ) ( ) ,    1i i ix N x N x   (26)

where N1 and N2 as shape functions can be defined as:
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where (x1
(1), x1

(2)) and (x2
(1), x2

(2)) are coordinate of initial and end 
node of element, respectively. For general elements, traction and 
dislocation density can be shown as: 

 

(1) (2)
1 2

(1) (2)

1 2

( ) ( ) ,

( ) ( )i

i i i

i i

t N t N t

uu u
N N

s s s

 
 (28)

and for crack surface: 
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In the case of element on crack tip, the formulation is a lit-
tle different than normal ones considering that these elements 
must treat singularity on the crack tip. For an element at crack 
tip, two different formulations can be define according to nodes, 
for local node 1 it can be represented by:
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and for node 2, similarly it can be approximated by:
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3. Results and discussion

3.1. Cracked plate

In order to measure efficiency of presented formulation, 
some numerical examples were done. The Fig. 3 shows variation 
of stress versus the distance from crack tip. It can be concluded 
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that the stress near crack tip has the highest amount and by 
moving far from crack tip, stress is decreased which show the 
accuracy of Eqs. (30) and (31) in treating singular integral near 
crack tips. The figure shows the variation of stress for three 
different paths with different angles. In order to show the influ-
ence of crack length on stress intensity factor, the kinked crack 
was simulated. The result is shown in Fig. 4. By variation of θ 
and increasing the length of crack, the stress intensity factor for 
mode I increases and after pick at θ = 0 crack length decreases 
again to its lowest amount. The equation provided in reference 
[22] is used in this paper for obtaining stress intensity factor.

Fig. 3. Central crack in a rectangular piezoelectric plate, a/w = 0.06

Fig. 4. Variation of the normalized mode I stress intensity factor for 
a/b = 10, and 20

3.2. Piezoelectric plate with inclusion

In this subsection, first some equation for plate with inclu-
sion will be presented, the results will be discussed. In the case 
when there are inclusions (Fig. 5), boundary element integral 
can be written for matrix s and inclusion Γ as:
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where 0 and 1 indicate the matrix and inclusion sub domain, 
respectively. After discretization and using linear or quadratic 
elements, Eq. (32) can be expressed as:
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where U0 and T– 0 represent the unknown nodal displacement and 
known nodal traction, respectively, on matrix; T0 and U– 0 are 
the unknown nodal traction and known nodal displacement on 
matrix; Ui is the unknown nodal displacement on interface: while 
Ti0and Tii express the unknown nodal traction on the interface 
for the matrix and inclusion, respectively.

The results of numerical examples are presented in Figs. 6 
and 7. 

Fig. 6. Variation of stress near circular inclusion in rectangular piezo-
electric plate

Fig. 5. The rectangular piezoelectric with circular inclusion
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Fig. 7. Variation of stress near circular and rectangular inclusion at 
centre of inclusion in piezoelectric plate

It is clear from Fig. 6 that near interface of circular inclusion 
(which is shown in Fig. 5) and matrix, the stress has its highest 
amount and when it goes far from interface, the stress decrease 
to its lowest amounts. So, it can be concluded that inclusion can 
have the effect similar to hole and crack. Another point in this 
figure is that for bigger inclusion, the higher amount of stress 
can happen. Fig. 7 compares the variation of stress near interface 
of rectangular and circular inclusion. The length of rectangular 
inclusion is equal to diameter of circular one. The variation of 
stress near interface of both inclusions is the same which shows 
that stress is independent of shape of inclusion. 

3.3. Results of multiscale modelling

Let us to write the boundary element equation of grains 
again in local coordinate in order to talk comprehensively about 
this topic.
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In Eq. (34), Tij
k(z', z) and Uij

k(z', z) are fundamental solution 
for traction and displacement which can be obtained via Stroh 
formulation for each grain. Sc

H and Snc
H belong to boundary of 

internal grain (contact boundary) and free boundary. Cij
k refers to 

free term. After obtaining traction and displacement, the average 
of micro-stress of a RVE can be calculated as;
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where xi
k and tjk are the position vector which is located on RVE 

boundary and their traction respectively.

Similarly, the average strain of RVE can be evaluated as;
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The divergence theory can be applied on Eq. (36) which 
leads to;
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According to this assumption that for two grains which 
are located next to each other namely, u9 and u10, the displace-
ment discontinuity are defined as δu

I = u9 – u10  and the normal 
vector of these grains are defined in such a way that u9 = –u10, 
respectively. So, the Eq. (37) takes the form
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In this section, the efficiency developed grain boundary 
formulation will be proved via some numerical examples. The 
properties of PZT-4 are utilized here in order to confirm the 
validation of numerical algorithm (Table 1).

The results of using these formulation in micro-mechanical 
analysis of piezoelectric ceramics are discussed as below.

Fig. 8 shows the relation between stress and strain in the 
RVE of homogenous piezoelectric ceramic of Fig. 9 which is 
subjected to tensile mechanical load in horizontal direction 
by considering piezoelectric effect and without piezoelectric 
effect. It can be concluded that the piezoelectric coupling has 
significant influence on fracture criteria of aggregates which 
means that through considering the piezoelectricity and for 

Fig. 8. Normal strain and normal stress of polycrystalline in Fig. 9 
which is subjected to tensile mechanical load in horizontal direction 
by considering piezoelectric effects and without piezoelectric effects
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a specified amount of strain, the polycrystalline aggregate 
without piezoelectric effect can experience more stress. It could 
be deduced that for a specific strain energy which is entered to 
the system, the piezoelectric aggregate, it should be divided 
between mechanical and electric effects, while in polycrystal-

TABLE 1

The property of PZT-4 piezoelectric ceramic

c11, (N/m2) c13, (N/m2) c33, (N/m2) c44, (N/m2) e31, (C/m2) e33, (C/m2) e15, (C/m2) κ11, (C/Vm) κ33, (C/Vm)
13.9×1010 7.78×1010 11.3×1010 2.56×1010 –6.98 13.8 13.4 60×1010 54.7×1010

Fig. 9. The fracture pattern for polycrystalline aggregate which is subjected to tensile mechanical load in horizontal direction (a) without piezo-
electric effects and (b) with piezoelectric effects

line without piezoelectricity this energy can only have influence 
on mechanical properties. The intergranular fracture criteria of 
this aggregate which is subjected to tensile mechanical load 
in horizontal direction by considering piezoelectric effect and 
without it are shown in Fig. 9.
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Fig. 10. The influence of defect on mechanical behaviour of the barium titanate piezoelectric polycrystalline aggregates in Fig. 11 which is sub-
jected to tensile mechanical load in horizontal direction

It can be concluded in this figure that by increasing the 
strain, the crack grows faster and faster. One of the interesting 
results which can be visited in Fig. 9 is that in the grain aggregate 
with piezoelectric effect, the fracture grows up faster. The reason 
that can justify this event is that after the crack is nucleated, 
the distance between two grains behaves like a capacitor and it 
injects opposite traction to the grains boundary. This traction can 
create the situation that the crack grow up faster than the time 
when there is no piezoelectric effects.

One of the interesting topics which can be studied in this area 
is the investigation of predefined crack on the polycrystalline ag-
gregates and how they can affect the behaviour of materials. In the 
manufacturing process it is normal to have defects and sometimes 
these defects have a considerable influence on materials. Obvi-
ously, the boundary condition, the type and direction of loads et 
al. can have influence on how these defects affect the materials.

Fig. 10 compares the influence of defects and their loca-
tion which is shown in Fig. 11 on mechanical behaviour of 
piezoelectric polycrystalline aggregate by applying tensile 
mechanical load in horizontal direction. It could be concluded 
that apart from the location of the defects, they can decrease the 
strength of the materials. However, some of them, according to 
their position, can change the fracture pattern of the polycrystal-
line aggregate. Fig. 11 demonstrates the fracture pattern of the 
polycrystalline aggregates with predefine crack which can be 
seen in the Fig. 11(a).

The stress-strain curve of these polycrystalline is presented 
in Fig. 10. As it was mentioned, the external force is applied in 
the form of the displacement in horizontal or x direction and 
in Fig. 11 it has more effect on normal mode displacement in 
cases 1 and 2 than cases 3 and 4. Hence it may be noticed that 
the normal mode has more effect than tangential mode in grow-
ing of the effective displacement. This claim can be seen in the 
right hand side of Fig. 10 that cases 1 and 2 have more effect in 
the intergranular fracture of polycrystalline aggregate.

4. Summary

Response of piezoelectric materials was investigated 
through multiscale boundary element methods. Based on results 
of presented investigations the following conclusions were 
formulated:
1. The shape of interface does not have a great influence on 

the stress intensity.
2. The maximum stress can be hardly influenced by the cou-

pling between mechanical and electrical properties which 
means that through considering the piezoelectricity and for 
a specified amount of strain, the polycrystalline aggregate 
without piezoelectric effect can experience more stress.

3. Considering the dimensions of inclusion it can be concluded 
that inclusion can have the effect similar to the hole and the 
crack; bigger inclusion leads to an increase of the stress.
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