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Extremal problems for parabolic systems
with time-varying lags

ADAM KOWALEWSKI

Extremal problems for parabolic systems with time-varying lags are presented. An optimal
boundary control problem for parabolic systems in which time-varying lags appear in the state
equations and in the boundary conditions simultaneously is solved. The time horizon is fixed.
Making use of Dubovicki-Milutin scheme, necessary and sufficient conditions of optimality for
the Neumann problem with the quadratic performance functionals and constrained control are
derived.
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1. Introduction

Extremal problems are now playing an ever-increasing role in applications
of mathematical control theory. It has been discovered that notwithstanding the
great diversity of these problems, then can be approached by a unified functional-
analytic approach, first suggested by Dubovicki and Milutin. The general theory
of extremal problems has been developed so intensely recently that its basic con-
cepts may now be considered complete.

Extremal problems were the object of mathematical research at the very ear-
liest stages of the development of mathematics.

The first results were then systematized and brought together under the head-
ing of the calculus of variations with its innumerable applications to physics,
automatic control, and mechanics.

In 1962 Dubovicki and Milutin found a necessary condition for an extremum
in the form of an equation set down in the language of functional analysis. They
were able to derive, as special cases of this condition, almost all previously
known necessary extremum conditions and thus to recover the lost theoretical
unity of the calculus of variations.
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For example, in the papers [3, 4] the Dubovicki-Milutin method was applied
for solving boundary optimal control problems for the case of time lag parabolic
equations [3] and for the case of parabolic equations involving time-varying lags
in the Neumann boundary conditions [4].

Such equations with deviating arguments are a well-known mathematical tool
for representing many physical problems.

Parabolic equations with deviating arguments are widely applied in optimal
control problems of distributed parameter systems with time lags.

Consequently, in the papers [3,4] linear quadratic problems of optimal control
for the case of parabolic systems with time lags given in various forms (constant
time lags [3], time-varying lags [4], etc.) were solved.

Extremal problems for time-varying lag parabolic systems are investigated.
The purpose of this paper is to show the use of Dubovicki-Milutin method in
solving optimal control problems for parabolic systems in which time-varying
lags appear both in the state equations and in the Neumann boundary conditions.

As an example, an optimal boundary control problem for a system de-
scribed by a linear time-varying lag partial differential equation of parabolic type
with the Neumann boundary condition involving a time-varying lag is consid-
ered. Such equation constitutes in a linear approximation universal mathematical
model for many diffusion processes. The right-hand side of this equation and the
initial condition are not continuous functions usually, but they are measurable
functions belonging to L2 or L∞ spaces. Therefore, the solution of this equation
is given in a certain Sobolev space.

The performance functionals have the quadratic form. The time horizon is
fixed. Finally, we impose same constraints on the boundary control. Making use
of the Dubovicki-Milutin theorem, necessary and sufficient conditions of opti-
mality with the quadratic performance functionals and constrained control are
derived for the Neumann problem.

2. The Dubovicki-Milutin method [3]

The Dubovicki-Milutin theorem arises from the geometric form of the Hahn-
Banach theorem (a theorem about the separation of convex sets). We shall show
it on the example.
Let us assume that:

E – a linear topological space, locally convex,
I(x) – a functional defined on E,
Ai, i = 1,2, ...,n – sets in E with inner points which represent inequality con-

straints,
B – a set in E without inner points representing equality constraint.
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We must find some conditions necessary for a local minimum of the
functional I(x) on the set Q =

⋂n
i=1 Ai ∩ B, or find a point x0 ∈ E, so that

I(x0) = min
Q∩U

I(x), where U means a certain environment of the point x0.

We define the set A0 = {x : I(x)< I(x0)}.
Then we formulate the necessary condition of optimality as follows: in the

environment of the local minimum point, the intersection of system of sets (the
set on which the functional attains smaller values than I(x0) and the sets repre-
senting constraints) is empty or

⋂n
i=0 Ai ∩B = Ø.

The condition
⋂n

i=0 Ai∩B = Ø is also equivalent to the one in which there are
approximations of the sets Ai, i = 1,2, ...,n and B instead of Ai or B ones. These
approximations are cones with the vertex in a point {0}.

We shall approximate the inequality constraints by the regular admissible
cones RAC(Ai,x0)(i = 1,2, ...,n), the equality constraint by the regular tangent
cone RTC(B,x0) and for the performance functional we shall construct the reg-
ular improvement cone RFC(I,x0).

Then we have the necessary condition of the optimality I(x) on the set Q =⋂n
i=1 Ai ∩ B in the form of Euler-Langrange’s equation ∑n+1

i=1 fi = 0, where fi

(i = 1,2, ...,n+1) – are linear, continuous functionals, all of them are not equal
to zero at the same time and they belong to the adjoint cones

fi ∈ [RAC(Ai,x0)]
∗, i = 1,2, ...,n ,

fn+1 ∈ [RTC(B,x0)]
∗, f0 ∈ [RFC(I,x0)]

∗,

{ fi ∈ [RAC(Ai,x0)]
∗ ⇔ fi(x) ­ 0 ∀x ∈ RAC(Ai,x0)}.

For convex problems, i.e. problems in which the constraints are convex sets
and the performance functional is convex, the Euler-Lagrange equation is the
necessary and sufficient condition of optimality if only certain additional as-
sumptions are fulfilled (the so-called Slater’s condition).

Using the Dubovicki-Milutin theorem we shall derive the necessary and suf-
ficient conditions of optimality for time lag parabolic systems with the quadratic
performance functionals and the constrained control.

3. Preliminaries

Consider now the distributed parameter system described by the following
parabolic equation

∂y

∂ t
+A(t)y+ y(x, t−h(t)) = u x ∈ Ω, t ∈ (0,T ), (1)

y(x, t ′) = Φ0(x, t
′) x ∈ Ω, t ′ ∈ [−h(0),0), (2)
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y(x,0) = y0(x) x ∈ Ω, (3)

∂y

∂ηA

= y(x, t −h(t))+ v x ∈ Γ, t ∈ (0,T ), (4)

y(x, t ′) = Ψ0(x, t
′) x ∈ Γ, t ′ ∈ [−h(0),0), (5)

where: Ω ⊂ Rn – a bounded, open set with boundary Γ which is a C∞-manifold
of dimension (n−1). Locally, Ω is totally on one side of Γ.

y ≡ y(x, t;v), u ≡ u(x, t), v ≡ v(x, t),

Q = Ω× (0,T), Q̄ = Ω× [0,T ], Q0 = Ω× [−h(0),0),

Σ = Γ× (0,T ), Σ0 = Γ× [−h(0),0).

h(t) is a function representing a time-varying lag, Φ0 is an initial function defined
on Q0, Ψ0 is an initial function defined on Σ0.

The parabolic operator
∂

∂ t
+A(t) in the state equation (1) satisfies the hy-

pothesis of Section 1, Chapter 4 ( [10], vol. 2, p. 2), A(t) is given by

A(t)y =−
n

∑
i, j=1

∂

∂xi

(
ai j(x, t)

∂y(x, t)

∂x j

)
, (6)

and the functions ai j(x, t) satisfy the ellipticity condition

n

∑
i, j=1

ai j(x, t)ϕiϕ j ­ α
n

∑
i=1

ϕ2
i ,

α > 0, ∀(x, t) ∈ Q, ∀ϕi ∈ R,

(7)

where ai j(x, t) are real C∞ functions defined on Q (closure of Q).
The equations (1)–(3) constitute a Neumann problem. Then the left-hand side

of (4) is written in the form

∂y

∂ηA

=
n

∑
i, j=1

ai j(x, t)cos(n,xi)
∂y(x, t)

∂x j
= q(x, t), (8)

where
∂

∂ηA

is a normal derivative at Γ, directed towards the exterior of Ω,

cos(n,xi) is an i-th direction cosine of n, n-being the normal at Γ exterior to
Ω and

q(x, t) = y(x, t −h(t))+ v(x, t). (9)
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Let t → t−h(t) be a strictly increasing function on [0,T ], h(t) being non-negative
in [0,T ] and also being a C1 function. Then, there exists the inverse function of
t → t −h(t).

Let us denote r(t) =̂ t − h(t), then the inverse function of r(t) has the form
t = f (r) = r+ s(r), where s(r) is a time-varying prediction.

Let f (t) be the inverse function of t → t−h(t). Thus we define the following
iteration f j(t) =̂ f ...[ f [ f (t)]]︸ ︷︷ ︸

j

such that f0(t) = t, where f j(t) is a j-th iteration

of the operation f (t) for j = 0,1.... .
For simplicity, we introduce the notation

E j =̂ ( f j−1(0), f j(0)), Q j = Ω×Σ j, Q0 = Ω× [−h(0),0),

Σ j = Γ×E j, Σ0 = Γ× [−h(0),0) for j = 1, . . . .

Then the following result is fulfilled [5]:

Theorem 1 Let y0, Φ0, Ψ0, v and u be given with y0 ∈ H1/2(Ω), Φ0 ∈
H3/2,3/4(Q0), Ψ0 ∈ L2(Σ0), v ∈ L2(Σ) and u ∈ H−1/2,−1/4(Q). Then, there exists

a unique solution y ∈ H3/2,3/4(Q) for the mixed initial-boundary value problem

(1)–(3). Moreover, y(·, f j(0)) ∈ H1/2(Ω) for j = 1, . . . .

We refer to Lions and Magenes ( [10], vol. 2) for the definition and properties
of Hr,s and (Hr,s)′ respectively.

In the sequal, we shall fix u ∈ H−1/2,−1/4(Q).

4. Problem formulation. Optimization theorems

We shall restrict our considerations to the case of the boundary control.
Therefore we shall formulate the optimal control problem in the context of The-
orem 1 [5].

Let us denote by Y = H3/2,3/4(Q) the space of states and by U = L2(Σ) the
space of controls. The time horizon T is fixed in our problem.

The performance functional is given by

I(v) = λ1

∫

Q

| y(x, t;v)− zd |2 dxdt +λ2

T∫

0

∫

Γ

(Nv)v dΓdt, (10)

where: λi ­ 0 and λ1 +λ2 > 0; zd is a given element in L2(Q) and N is a strictly
positive linear operator on L2(Σ) into L2(Σ). We note from Theorem 1 [5] that
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for any v ∈Uad the cost function (10) is well-defined since y(v) ∈ H3/2,3/4(Q)⊂
L2(Q).

We assume the following constraints on controls: v ∈Uad is a closed, convex
subset of U with non-empty interior,

a subset of U. (11)

The optimal control problem (1)–(3), (10), (11) will be solved as the optimization
one in which the function v is the unknown function.

Making use of the Dubovicki-Milutin theorem [3] we shall derive the neces-
sary and sufficient conditions of optimality for the optimization problem (1)–(3),
(10), (11).

The solution of the stated optimal control problem is equivalent to seeking
a pair (y0,v0) ∈ E = H3/2,3/4(Q)×L2(Σ) that satisfies the equation (1)–(3) and
minimizing performance functional (10) with the constraints on control (11).

We formulate the necessary and sufficient conditions of the optimality in the
form of Theorem 2.

Theorem 2 The solution of the optimization problem (1)–(3), (10), (11) exists
and it is unique with the assumptions mentioned above; the necessary and suf-
ficient conditions of the optimality are characterized by the following system of
partial differential equations and inequalities:

∂y0

∂ t
+A(t)y0+ y0(x, t −h(t)) = u (x, t) ∈ Ω× (0,T ), (12)

y0(x, t ′) = Φ0(x, t
′) (x, t ′) ∈ Ω× [−h(0),0), (13)

y0(x,0) = y0(x) x ∈ Ω, (14)

∂y0

∂ηA

= y0(x, t −h(t))+ v0 (x, t) ∈ Γ× (0,T ), (15)

y0(x, t ′) = Ψ0(x, t
′) (x, t ′) ∈ Γ× [−h(0),0). (16)

Adjoint equations

−∂ p

∂ t
+A∗(t)p+ p(x, t + s(t))(1+ s′(t)) = λ1(y

0 − zd)

(x, t) ∈ Ω× (0,T −h(T )), (17)

−∂ p

∂ t
+A∗(t)p = λ1(y

0 − zd) (x, t) ∈ Ω× (T −h(T ),T ), (18)

∂ p

∂ηA∗
= p(x, t + s(t))(1+ s′(t)) (x, t) ∈ Γ× (0,T −h(T )), (19)
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∂ p

∂ηA∗
= 0 (x, t) ∈ Γ× (T −h(T ),T ), (20)

p(x,T ) = 0 x ∈ Ω. (21)

Maximum condition

T∫

0

∫

Γ

(p+λ2Nv0)(v− v0) dΓdt ­ 0 ∀v ∈Uad . (22)

We can also notice that

∂ p

∂ηA∗
=

n

∑
i, j=1

a ji(x, t)cos(n,xi)
∂ p

∂x j
,

A∗(t)p =−
n

∑
i, j=1

∂

∂x j

(
ai j(x, t)

∂ p

∂xi

)
.

(23)

Outline of the proof:
According to the Dubovicki-Milutin theorem, we approximate the set represent-
ing the inequality constraints by the regular admissible cone, the equality con-
straint by the regular tangent cone and the performance functional by the regular
improvement cone.

a) Analysis of the equality constraint

The set Q1 representing the equality constraint has the form

Q1 =





∂y

∂ t
+A(t)y+ y(x, t −h(t)) = u (x, t) ∈ Ω× (0,T )

y(x, t ′) = Φ0(x, t
′) (x, t ′) ∈ Ω× [−h(0),0)

y(x,0) = y0(x) x ∈ Ω
∂y

∂ηA

= y(x, t −h(t))+ v (x, t) ∈ Γ× (0,T )

y(x, t ′) = Ψ0(x, t
′) (x, t ′) ∈ Γ× [−h(0),0)





. (24)

We construct the regular tangent cone of the set Q1 using the Lusternik theo-
rem (Theorem 9.1 [2]). For this purpose, we define the operator P in the form

P(y,v) =

(
∂y

∂ t
+Ay+ y(x, t −h(t))−u, y(x, t ′)−Φ0(x, t

′), y(x,0)− y0(x),

∂y

∂ηA

− y(x, t −h(t))− v, y(x, t ′)−Ψ0(x, t
′)
)
. (25)
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The operator P is the mapping from the space H3/2,3/4(Q)×L2(Σ) into the
space H−1/2,−1/4(Q)×H3/2,3/4(Q0)×H1/2(Ω)×L2(Σ)×L2(Σ0).

The Fréchet differential of the operator P can be written in the following
form:

P′(y0,v0)(y,v) =

(
∂y

∂ t
+Ay+ y(x, t −h(t)), y

∣∣
Q0
(x, t ′), y(x,0),

∂y

∂ηA

− y(x, t −h(t))− v, y
∣∣
Σ0
(x, t ′)

)
. (26)

Really,
∂

∂ t
(Theorem 2.8 [11]), A(t) (Theorem 2.1 [9]) and

∂

∂ηA

(Theo-

rem 2.3 [10]) are linear and bounded mappings.
Using Theorem 1 [5], we can prove that P′ is the operator “one to one” from

the space H3/2,3/4(Q)×L2(Σ) onto the space H−1/2,−1/4(Q)×H3/2,3/4(Q0)×
H1/2(Ω)×L2(Σ)×L2(Σ0).

Considering that the assumptions of the Lusternik’s theorem are fulfilled, we
can write down the regular tangent cone for the set Q1 in a point (y0,v0) in the
form

RTC(Q1,(y
0,v0)) = {(y,v) ∈ E,P′(y0,v0)(y,v) = 0}. (27)

It is easy to notice that it is a subspace. Therefore, using Theorem 10.1 [2] we
know the form of the functional belonging to the adjoint cone

f1(y,v) = 0 ∀(y,v) ∈ RTC(Q1,(y
0,v0)). (28)

b) Analysis of the constraint on controls

The set Q2 = Y ×Uad representing the inequality constraints is a closed and
convex one with non-empty interior in the space E.

Using Theorem 10.5 [2] we find the functional belonging to the adjoint reg-
ular admissible cone, i.e.

f2(y,v) ∈ [RAC(Q2,(y
0,v0))]∗.

We can note if E1,E2 are two linear topological spaces, then the adjoint space to
E = E1 ×E2 has the form

E∗ = { f = ( f1, f2); f1 ∈ E∗
1 , f2 ∈ E∗

2}

and
f (x) = f1(x1)+ f2(x2).
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So we note the functional f2(y,v) as follows

f2(y,v) = f ′1(y)+ f ′2(v) (29)

where:
f ′1(y) = 0 ∀y ∈ Y (Theorem 10.1 [2])
f ′2(v) is a support functional to the set Uad in a point v0 (Theorem 10.5 [2]).

c) Analysis of the performance functional

Using Theorem 7.5 [2] we find the regular improvement cone of the performance
functional (10)

RFC(I,(y0,v0)) = {(y,v) ∈ E, I′(y0,v0)(y,v)< 0}, (30)

where: I′(y0,v0)(y,v) is the Fréchet differential of the performance functional
(10) and it can be written as

I′(y0,v0)(y,v) = 2λ0λ1

∫

Q

(y0 − zd)y dxdt

+2λ0λ2

T∫

0

∫

Γ

(Nv0)v dΓdt .

On the basis of Theorem 10.2 [2] we find the functional belonging to the
adjoint regular improvement cone, which has the form

f3(y,v) =−λ0λ1

∫

Q

(y0 − zd)y dxdt

− λ0λ2

T∫

0

∫

Γ

(Nv0)v dΓdt,

(31)

where: λ0 > 0.

d) Analysis of Euler-Lagrange’s equation

The Euler-Lagrange’s equation for our optimization problem has the form

3

∑
i=1

fi = 0. (32)
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Let p(x, t) be the solution of (17)–(21) for (y0,v0) and denote by y the solution
of P′(y,v) = 0 for any fixed v. Then taking into account (28), (29) and (31) we
can express (32) in the form

f ′2(v) = λ0λ1

∫

Q

(y0 − zd)y dxdt +λ0λ2

T∫

0

∫

Γ

(Nv0)v dΓdt

∀(y,v) ∈ RTC(Q1,(y,v)). (33)

We transform the first component of the right-hand side of (33) introducing the
adjoint variable by adjoint equations (17)–(21).

For this purpose, multiplying both sides of (17)–(18) by y, then integrating
over Ω×(0,T −h(T )) and Ω×(T −h(T ),T ) respectively, and then adding both
sides of (17)–(18), we get

λ0λ1

∫

Q

(y0 − zd)y dxdt

= λ0

∫

Q

(
−∂ p

∂ t
+A∗p

)
y dxdt +λ0

T−h(T )∫

0

∫

Ω

p(x, t + s(t))(1+ s′(t))y dxdt

= λ0

∫

Q

p
∂y

∂ t
dxdt +λ0

∫

Q

A∗pydxdt

+λ0

T−h(T )∫

0

∫

Ω

p(x, t + s(t))(1+ s′(t))y dxdt. (34)

Using the equation (1), the first integral on the right-hand side of (34) can be
written as

λ0

∫

Q

p
∂y

∂ t
dxdt = −λ0

∫

Q

pAy dxdt −λ0

T∫

0

∫

Ω

p(x, t)y(x, t −h(t))dxdt

= −λ0

∫

Q

pAy dxdt

−λ0

T−h(T )∫

−h(0)

∫

Ω

p(x, t ′+ s(t ′))(1+ s′(t ′))y(x, t ′) dxdt. (35)



EXTREMAL PROBLEMS FOR PARABOLIC SYSTEMS WITH TIME-VARYING LAGS 99

The second integral on the right-hand side of (34) in view of Green’s formula
can be expressed as

λ0

∫

Q

A∗p y dxdt = λ0

∫

Q

pAy dxdt

+λ0

T∫

0

∫

Γ

p
∂y

∂ηA

dΓdt −λ0

T∫

0

∫

Γ

∂ p

∂ηA∗
ydΓdt. (36)

Using the boundary condition (4), the second term on the right-hand side of (36)
can be written as

λ0

T∫

0

∫

Γ

p
∂y

∂ηA

dΓdt = λ0

T∫

0

∫

Γ

p(x, t)[y(x, t −h(t))+ v] dΓdt

= λ0

T−h(T )∫

−h(0)

∫

Γ

p(x, t ′+ s(t ′))(1+ s′(t ′))y(x, t ′) dΓdt ′+λ0

T∫

0

∫

Γ

pv dΓdt

= λ0

0∫

−h(0)

∫

Γ

p(x, t ′+ s(t ′))(1+ s′(t ′))y(x, t ′) dΓdt ′

+λ0

T−h(T )∫

0

∫

Γ

p(x, t ′+ s(t ′))(1+ s′(t ′))y(x, t ′) dΓdt ′

+λ0

T∫

0

∫

Γ

pv dΓdt. (37)

The last term in (36) can be rewritten as

λ0

T∫

0

∫

Γ

∂ p

∂ηA∗
ydΓdt = λ0

T−h(T )∫

0

∫

Γ

∂ p

∂ηA∗
ydΓdt

+λ0

T∫

T−h(T )

∫

Γ

∂ p

∂ηA∗
ydΓdt. (38)
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Substituting (37), (38) into (36) and then (35), (36) into (34) we obtain

λ0λ1

∫

Q

(y0 − zd)y dxdt =−λ0

∫

Q

pAy dxdt

−λ0

0∫

−h(0)

∫

Ω

p(x, t+s(t))(1+s′(t))y dxdt −λ0

T−h(T )∫

0

∫

Ω

p(x, t+s(t))(1+s′(t))y dxdt

+λ0

∫

Q

pAy dxdt +λ0

0∫

−h(0)

∫

Γ

p(x, t + s(t))(1+ s′(t))y dΓdt

+λ0

T−h(T )∫

0

∫

Γ

p(x, t + s(t))(1+ s′(t))y dΓdt

+λ0

T∫

0

∫

Γ

pv dΓdt −λ0

T−h(T )∫

0

∫

Γ

∂ p

∂ηA∗
ydΓdt −λ0

T∫

t−h(T )

∫

Γ

∂ p

∂ηA∗
ydΓdt

+λ0

T−h(T )∫

0

∫

Ω

p(x, t + s(t))(1+ s′(t))y dxdt = λ0

T∫

0

∫

Γ

pv dΓdt. (39)

Substituting (39) into (33) gives

f ′2(v) = λ0

T∫

0

∫

Γ

(p+λ2Nv0)v dΓdt. (40)

Using the definition of the support functional [2] and dividing both members of
the obtained inequality by λ0, we finally get

T∫

0

∫

Γ

(p+λ2Nv0)(v− v0) dΓdt ­ 0 ∀v ∈Uad . (41)

The last inequality is equivalent to the maximum condition (22).
In order to prove the sufficiency of the derived conditions of the optimal-

ity, we use the fact that constraints and the performance functional are convex
and that the Slater’s condition is satisfied (Theorem 15.3 [2]). Then, there exists
a point (ỹ, ṽ) ∈ int Q2 such that (ỹ, ṽ) ∈ Q1.
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This fact follows immediately from the existence of non-empty interior of the
set Q2 and from the existence of the solution of the equation (1)–(3) as well.

This last remark finishes the proof of Theorem 2.
One may also consider analogous optimal control problem with the perfor-

mance functional

Î(y,v) = λ1

∫

Σ

| y(v) |Σ −zΣd |2 dΓdt +λ2

T∫

0

∫

Γ

(Nv)v dΓdt, (42)

where: zΣd is a given element in L2(Σ).
From Theorem 1 [5] and the trace theorem ( [10], vol.2, p.9) for such v ∈

L2(Σ), there exists a unique solution H3/2,3/4(Q) with y

∣∣∣
Σ
∈ L2(Σ). Thus Î(y,v)

is well-defined. Then the solution of the formulated optimal control problem is
equivalent to seeking a pair (y0,v0) ∈ E = H3/2,3/4(Q)×L2(Σ) that satisfies the
equation (1)-(3) and minimizing the cost function (42) with the constraints on
controls (11).

We can prove the following theorem:

Theorem 3 The solution of the optimization problems (1)-(3), (42), (11) exists
and it is unique with the assumptions mentioned above; the necessary and suf-
ficient conditions of the optimality are characterized by the following system of
partial differential equations and inequalities:
State equations (12)–(16).
Adjoint equations

−∂ p

∂ t
+A∗(t)p+ p(x, t + s(t))(1+ s′(t)) = 0 (x, t) ∈ Ω× (0,T −h(T )), (43)

−∂ p

∂ t
+A∗(t)p = 0 (x, t) ∈ Ω× (T −h(T ),T ), (44)

∂ p

∂ηA∗
= p(x, t + s(t))(1+ s′(t))+λ1(y

0 − zΣd)

(x, t) ∈ Γ× (0,T −h(T )), (45)

∂ p

∂ηA∗
= λ1(y

0 − zΣd) (x, t) ∈ Γ× (T −h(T ),T ), (46)

p(x,T ) = 0 x ∈ Ω. (47)

Maximum condition

T∫

0

∫

Γ

(p+λ2Nv0)(v− v0) dΓdt ­ 0 ∀v ∈Uad . (48)
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The idea of the proof of the Theorem 3 is the same as in the case of the Theo-
rem 2.

Remark 1 The coupled system (12)–(16) with (43)–(47) corresponds to the case
of the observation on the boundary for the optimal control problem (1)–(3) with
(11) and (42).

Remark 2 The existence of a unique solution for the adjoint problem (43)–(47)
on the cylinder Q can be proved using a constructive method. It is easy to notice
that for given zΣd

and v, the problem (43)–(47) can be solved backwards in time
starting from t = T , i.e. first, solving (43)–(47) on subcylinder QK and in turn
on QK−1, etc. until the procedure covers the whole cylinder Q. For this purpose,
we may apply Theorem 1 (with an obvious change of variables) to the adjoint
problem (43)–(47) (with reversed sense of time, i.e. t ′ = T − t). Then, for given

zΣd
∈ L2(Σ) and any v ∈ L2(Σ), there exists a unique solution p(v) ∈ H3/2,3/4(Q)

for the adjoint problem (43)–(47).

We must notice that the conditions of optimality derived above (Theorems 2
and 3) allow us to obtain an analytical formula for the optimal control in particu-
lar cases only (e.g. there are no constraints on boundary control). It results from
the following: the determining of the function p(x, t) in the maximum condition
from the adjoint equation is possible if and only if we know that y0(x, t) will suit
the control v0(x, t). These mutual connections make the practical use of the de-
rived optimization formulas difficult. Thus we resign from the exact determining
of the optimal control and we use approximation methods.

In the case of performance functionals (10) and (42) with λ1 > 0 and λ2 = 0,
the optimal control problem reduces to the minimizing of the functional on a
closed and convex subset in a Hilbert space. Then, the optimization problem is
equivalent to a quadratic programming one [6–8] which can be solved by the use
of the well-known algorithms, e.g. Gilbert’s [1, 6–8] ones.

The practical application of Gilbert’s algorithm to optimal control problem
for a parabolic system with the boundary condition involving a time lag is pre-
sented in [8]. Using of the Gilbert’s algorithm a one dimensional numerical ex-
ample of the plasma control process is solved.

5. Conclusions and perspectives

The derived conditions of the optimality (Theorems 2 and 3) are original
from the point of view of application of the Dubovicki-Milutin theorem for solv-
ing optimal control problems for parabolic systems in which time-varying lags
appear both in the state equations and in the Neumann boundary conditions.
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The proved optimization results (Theorems 2 and 3) constitute a novelty of
the paper with respect to references [5–8] concerning application of the Lions
scheme [9] for solving linear quadratic problems of optimal control for the case
of the Neumann problem.

The results presented in the paper can be treated as a generalization of the
results obtained in [4] to the case of additional time-varying lags appearing in
the state equations.

Moreover, the optimization problems presented here constitute a generaliza-
tion of optimal control problems considered in [3] to the case of parabolic sys-
tems with time-varying lags appearing in the state equations and in the Neumann
boundary conditions simultaneously.

The obtained optimization theorems (Theorems 2 and 3) demand the assump-
tion dealing with the non-empty interior of the set Q2 representing the inequality
constraints.

Therefore, we approximate the set Q2 by the regular admissible cone (if
intQ2 = Ø, then this cone does not exist).

It is worth mentioning that the obtained results can be reinforced by omitting
the assumption concerning the non-empty interior of the set Q2 and utilizing the
fact that the equality constraints in the form of the parabolic equations are “de-
coupling”. The optimal control problem reduces to seeking v0 ∈Q′

2 and minimiz-
ing the performance index I(v). Then we approximate the set Q′

2 representing the
inequality constraints by the regular tangent cone and for the performance index
I(v) we construct the regular improvement cone.

Making use of the Dubovicki-Milutin method the similar conditions of the
optimality may be derived for a parabolic system with the Dirichlet boundary
condition involving a time-varying lag.

One may also derive the necessary and sufficient conditions of optimality
for parabolic system with more complex boundary conditions involving integral
time lags.

Finally, one may consider more complex optimization problems with non-
differentiable and non-continuous performance functionals.

According to the author similar optimal control problems can be solved for
hyperbolic systems.

The ideas mentioned above will be developed in forthcoming papers.
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