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A robust smooth controller for a unicycle-like robot

DARIUSZ PAZDERSKI

In this paper, a stabilizer dedicated for a unicycle-like robot is considered. The proposed
smooth control law ensures the global boundedness of position and orientation trajectories to a
neighbourhood of the desired point with an arbitrarily selected radius and it is robust to bounded
additive measurement noises. The controller consists of a smooth hybrid navigation algorithm
and a smooth feedback based on the transverse function approach. The stability proof, simula-
tion and experimental results illustrating properties of the algorithm are discussed.

Key words: transverse functions, nonholonomic system, control motion task, Lie group,
navigation vector fields, smooth feedbacks

1. Introduction

Navigation and control of mechanical systems subject to nonintegrable ve-
locity constraints constitute one of the fundamental issues in mobile robotics. It
is well known that nonholonomic systems cannot be stabilized by means of a
classic smooth time-invariant feedback, [2]. In order to overcome this obstruc-
tion, one can apply discontinuous controllers which are known as relatively sim-
ple and efficient solutions providing a suitable transient response of a closed-
loop system, at least in the nominal case, [16]. Simultaneously, discontinuous
feedbacks are heavily prone to bounded disturbances including a measurement
noise that may considerably deteriorate a controller performance near singular
points, [10]. Another control approach is based on the application of smooth
time-dependent asymptotic stabilizers which are usually less sensitive to uncer-
tainties and disturbances. However, they exhibit unsatisfactory convergence rate
and manifest usually highly oscillatory transient states.

Taking into account limitations of fundamental classes of stabilizers, it is
clear that a robust stabilization of perturbed nonholonomic systems is an impor-
tant issue. This problem has been already discussed in the robotics literature,
cf. [1, 5, 7, 14, 24–26] and [23]. However, most of the cited works deal with dis-
crete and discontinuous techniques. It turns out that the design of a robust smooth
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closed-loop algorithm which meets additional criteria and practically motivated
properties such as short transient states and a non oscillatory response, is a chal-
lenging task. In [13] a method of unifying two types of controllers using non-
differentially and smooth state feedbacks is outlined. This algorithm is based,
however, on a heuristic rule and no formal stability proof is given.

In this work, we propose a new control method dedicated for a unicycle robot
which involves the synthesis of a smooth navigation (possibly violating nonholo-
nomic constraints) and a smooth dynamic feedback that approximately decouples
the nonholonomic kinematics. The task of the navigation algorithm is to generate
instantaneous directions in the phase space using holonomic and nonholonomic
strategies which are smoothly switched in the prescribed set.

The holonomic smooth navigation strategy can be naturally employed to
avoid singularity at the desired point. Additionally, it can provide a robustness to
bounded uncertainties including a noise corrupting the measurement of a robot
posture. To accomplish the nonholonomic navigation, a method using vector
fields with the nonholonomic projection introduced by Lopes and Koditschek
is used, [11] (a similar technique is applied, among others, in [12, 19]). Based
on Lyapunov-like stability analysis, it is formally shown that a combination of
two navigation techniques taking advantage of so-called compatible vector fields
makes it possible to obtain the asymptotically stable closed-loop system.

Due to the fact that the navigator in a general case produces velocities which
can violate nonholonomic constraints, the obtained trajectory in the configura-
tion space cannot be directly followed by a robot with the unicycle-like kine-
matics. To overcome this obstruction, we apply the control method based on the
transverse functions approach, [15]. The designed controller is used to approxi-
mately decouple the nonholonomic kinematics and is unified with the proposed
smooth navigator such that the latter governs reference trajectory of virtual om-
nidirectional kinematics, while the nonholonomic robot approximates it with the
desired accuracy.

It is worth emphasizing that the control concept based on an approximation of
infeasible directions in the phase space is not new in mobile robotics. However,
typically it is applied using off-line global planning or iterative local methods,
[3, 4, 6, 9, 27]. Conversely, the algorithm proposed in this work is based on other
techniques since it is defined in the continuous time domain and takes advantage
of a smooth feedback.

The paper is organized as follows. In Section 2 basic notation and fundamen-
tal knowledge are outlined. Section 3 covers the presentation of two types of
navigation algorithms taking into account robustness issues. In the next section,
a new smooth navigation algorithm is proposed and the formal stability analysis
is provided. Section 5 is focused on the controller which decouples the unicycle
kinematics. Next, the structure of the controller with the navigator is considered.
In order to demonstrate the performance of the developed algorithm numerical
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simulations for navigation methods and the whole control system are conducted.
Additionally, experimental results using a laboratory robot are discussed in Sec-
tion 6. Section 7 concludes the paper.

2. Preliminaries

2.1. Selected kinematics on SE(2)

Let g = [x y θ ]⊤ denote a planar configuration describing the position and
orientation of a robot body. Simultaneously, it is assumed that g is an element of
Lie group G ≃ SE(2) with the group operation defined by

∀g, h ∈ G, gh := g+

[
R(gθ ) 0

0 1

]
h, (1)

where R ∈ SO(2) is the planar rotation matrix. The neutral element of G is de-
fined by e = 0 while the inverse element of g ∈ G, denoted by g−1, satisfies:
g−1g = gg−1 = e.

It is well known that for any Lie group G its tangent space is determined by
Lie algebra g. Here, it is assumed that basis of this algebra is represented in the
matrix form as

X(g) =

[
cosθ 0 −sinθ
sinθ 0 cosθ

0 1 0

]
, (2)

while ith column Xi of X is the independent left-invariant vector field on G,
namely the following relation holds

∀g,h ∈ G, dlg(h)Xi(h) = Xi(gh), (3)

where dlg(h) stands for derivative of left translation lg(h) = gh evaluated at h.
Employing the Lie algebra basis, one can naturally define the following pla-

nar kinematics
ΣO : ġ = X(g)η, (4)

where η = [η1 η2 η3]
⊤ ∈R3 denotes a vector of tree independent control inputs –

cf. Fig. 1. Since X is invertible from definition, it can be concluded that the phase
space of system ΣO is not constrained. Therefore we call ΣO as omnidirectional
kinematics.

Further, we consider that system (4) is subject to the following Pfaffian con-
straint

A(g)ġ = 0, (5)
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Figure 1: Omnidirectional planar robot with kinematics described by (4) – η1 and η3

denote longitudinal and lateral components of linear velocity, respectively, while η2 is
angular velocity

where A(g) = [−sinθ cosθ 0]⊤ ∈ R1×3 is a constraint matrix. Incorporating
this constraint to kinematics (4) implies that η3 ≡ 0. Then, assuming that u ∈
[u1 u2]

⊤ ∈ R2 denotes an input, and C = [I 0]⊤ ∈ R3×2, where I ∈ R2×2 is the
identity matrix, we obtain the unicycle-like kinematics defined as follows

ΣU : ġ = X(g)Cu. (6)

Equivalently, (6) can be naturally decomposed into the following subsystems
describing position and orientation kinematics

ṗ = Xp(θ)u1, (7)

θ̇ = u2, (8)

where Xp(θ) = [cosθ sinθ ]⊤. Since (6) is a differentially flat system with flat
output p, orientation variable θ can be explicitly computed based on trajectory
p(t) and its time derivative. Taking into account that the last column in A is zero
one can rewrite constraint (5) in terms of linear velocity ṗ as follows

Ap(θ)ṗ = 0, (9)

where Ap(θ) = [−sinθ cosθ ]⊤ ∈R1×2. One can easily check that (9) holds for

θ = atan2(ζ ẏ,ζ ẋ), (10)

where atan2(·, ·) stands for the two-argument inverse tangent and ζ ∈ {−1, 1} is
a parameter. Additionally, we can distinguish the singular case for which ṗ = 0
– then constraint (9) is trivially satisfied for any θ ∈ S1.
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A key property of control systems on Lie groups is related to a symme-
try of configuration and phase spaces. In the considered case this symmetry is
manifested in the form of coordinate transformations which preserves kinematic
equation. Accordingly, assuming that g̃ = g−1

d g denotes an error between point
gd = const ∈ G and g, it follows that kinematics ΣO and ΣU can be defined by:
˙̃g = X(g̃)η and ˙̃g = X(g̃)Cu, respectively. Further, we take advantage of this
property assuming without loss of generality that the desired point is attached at
the origin, namely gd = e. Moreover, in this paper Lie group G is employed in
order to design a motion controller investigated in section 5.

2.2. Prototype trajectory in R2

Consider the following continuous dynamics in R2

ξ̇ = Yν(ξ ), (11)

where ξ ∈R2 and Yν =Yνx

∂

∂x
+Yνy

∂

∂y
is a vector field with components Yνx

and

Yνy
being functions R2 → R.
Next, we assume that the following properties hold.

A1: Vector field Yν is smooth at least on open set R2 \{0}.

A2: For any ξ ∈ R2 there exists the following positive definite function

V = ξ⊤Pξ , (12)

a such that its time derivative satisfies

V̇ ¬−ξ⊤Qξ (13)

with P, Q ∈ R2×2 being positive definite and symmetric constant matrices.

A3: Derivative
∂Yν

∂ξ
can be bounded as follows

∀ξ ∈ R2,

∥∥∥∥
∂Yν

∂ξ

∥∥∥∥
F

< M, (14)

where ‖ · ‖F denotes the matrix Frobenius norm and M > 0 is a constant.

Additionally, we formulate the following optional assumption with respect to Yν :

A4: Let ϕYν (ξ0, t)= ξ (t) denote the flow of vector field Yν with initial condition
ξ0 = ξ (0) a such that the following relationship is satisfied:

∀ξ (0) ∈ R2 \{0}, lim
t→∞

ξ̇y(t)/ξ̇x(t) = 0. (15)
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From assumption A2 follows that system (11) is globally asymptotically sta-
ble at equilibrium ξ = 0. As a result of A4, trajectory ξy(t) converges to zero
faster than ξx(t). Thus, trajectory ξ (t) becomes tangent to XG-axis of the inertial
frame as time goes to infinity – cf. Fig. 2. Notice, that the similar property is
required in [12, 19] and [18].

Figure 2: Set of flows of vector field Yν which satisfies assumptions A1–A4

Vectors fields Yν satisfying conditions A1, A2 and A3 constitute a class of
compatible navigation vector fields on R2. When they also satisfy A4, we call
them nominal nonholonomic navigation vector fields.

3. Basic navigation algorithms

Let gν =
[
p⊤ν θν

]⊤
denote the configuration of omnidirectional kinematics (4)

with input η . We assume that a navigation algorithm is defined by a continuous
(or even smooth) feedback and governs trajectory gν which is a solution of the
following differential equation

ġν =Y (gν), (16)

where Y ∈ R3 denotes a vector field. Input η which defines instantaneous veloc-
ities in the local frame (cf. Fig. 1) can be computed as follows

η = X−1(gν)Y (gν). (17)

In this section we consider two propositions of navigation strategies in sequel.
The first one is based on a smooth feedback which produces arbitrarily trajec-
tory gν(t). The second strategy takes advantage of a non smooth nonholonomic
navigation for which phase constraint (5) is satisfied and trajectory gν(t) is ad-
missible for the unicycle kinematics.
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3.1. Holonomic navigator

In order to design a holonomic navigator we consider vector field Yν = Yh

for which assumptions A1, A2 and A3 hold. Moreover, we assume that Yh is a
smooth vector field on R2 (including the origin). In such a case one can easily
replicate prototype position trajectory ξ . Recalling (11) one has

ṗν =Yh(pν). (18)

From assumption A2 follows that there exists function

V = p⊤ν Ppν (19)

which is a Lyapunov function for system (18) with time derivative

V̇ = 2p⊤ν PYh(pν) ¬−p⊤ν Qpν ¬−λ‖pν‖2, (20)

where
λ = min{eig(Q)}. (21)

Hence, trajectory pν(t) converges to zero exponentially.
Notice that orientation θν does not affect closed-loop dynamics (18) which

makes it possible to control θν in an arbitrary way. In order to stabilize the ori-
entation, one can, for example, apply the following basic feedback

θ̇ν =−kθ θν (22)

which ensures that θν(t) tends to zero for any kθ > 0.

3.2. Nonholonomic navigator

Assume that trajectory gν(t) ∈ G computed by the navigation algorithm is
admissible for the unicycle-like kinematics, namely gν(t) satisfies the Pfaffian
constraint defined by (5).

We design position trajectory pν taking advantage of prototype trajectory ξ
which is a flow of nonholonomic vector field Yν =Ynh satisfying assumptions A1,
A2, A3 and A4. It is important to emphasise that the latter assumption is critical
for the discussed nonholonomic navigation. It implies that ξ (t) converges to the

origin in such a way that vector field Ynh becomes collinear with
∂

∂x
as time goes

to infinity (to be more precise, point ξ = 0 where Ynh vanishes is excluded from
the assumption).

As a result of constraint (9), one cannot straightforwardly assume that pν =
ξ is a feasible trajectory for any θν ∈ S1. According to (10), constraint (9) is
satisfied for ξ 6= 0 when θν = θnh, where

θnh = atan2(ζYnhy
,ζYnhx

) (23)

with Ynhx
, Ynhx

being components of vector field Ynh.
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In order to overcome this issue, we employ so-called nonholonomic projec-
tion which maps any bounded vector field on a feasible velocity, [11]. In the con-
sidered case we define a map R2 →Wp, where Wp := {w ∈ R2 : Ap(θν)w = 0}
denotes a set of feasible velocities for the given constraint. Recalling position
kinematics (7) the nonholonomic projection can be defined as follows

ṗν = H(θν)ξ̇ , (24)

where
H(θν) := Xp(θν)Xp(θν)

♯ ∈ R2×2 (25)

is the nonholonomic projection matrix, while

Xp(θν)
♯ := (Xp(θν)

⊤Xp(θν)
−1Xp(θν)

⊤

denotes the Moore-Penrose left pseudoinverse.
Using (11) with Yν = Ynh in (24) we obtain

ṗν = H(θν)Ynh(pν), (26)

Following (26) we propose the nonholonomic navigation feedback.

Proposition 1 (Nominal nonholonomic navigator) Trajectory gν(t) of dyna-
mic system defined by (26) and the following differential equation

θ̇ν :=−kθ θ̃ν + θ̇nh, (27)

with θ̃ = θν − θnh, kθ > 0 converges asymptotically to zero for any pν(0) 6= 0
and θν(0) ∈ S1.

Proof Consider function V given by (19). Taking time derivative of V gives
V̇ = 2p⊤ν PH(θν)Ynh(pν). Then adding and subtracting term 2p⊤ν PYnh(pν) in V̇
one has

V̇ = 2p⊤ν PYnh(pν)−2p⊤ν PYnh(pν)+2p⊤ν PH(θν)Ynh(pν)

= 2p⊤ν PYnh(pν)+2p⊤ν P(H(θν)− I)Ynh(pν). (28)

Following assumption A2 and relations (12)-(13) one can write that
d

dt
ξ⊤Pξ =

2ξ⊤PYnh(ξ ) ¬−ξ⊤Qξ . As a result, the following bound can be written

2p⊤ν PYnh(pν) ¬−p⊤ν Qpν . (29)

Using (29) in (28) yields

V̇ ¬−p⊤ν Qpν −2p⊤ν P(I −H(θν))Ynh(pν). (30)
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Computing H(θν) from (25) one has

I −H(θν) =

[
sin2 θν −sinθν cosθν

−sinθν cosθν cos2 θν

]
=

[
0 −sinθν

0 cosθν

]
R⊤(θν). (31)

Taking advantage of (23) and recalling definition of Xp one can show that
Ynh(pν) = ζ ‖Ynh(pν)‖Xp(θnh). Using this relation and formula (31) one can
write

(I −H(θν))Ynh(pν) = ζ ‖Ynh(pν)‖
[

0 −sinθν

0 cosθν

]
R⊤(θν)Xp(θnh)

= ζ ‖Ynh(pν)‖
[

sinθν

−cosθν

]
sin θ̃ν . (32)

Substituting (32) in (30) gives

V̇ ¬−p⊤ν Qpν −2ζ ‖Ynh(pν)‖ p⊤ν P

[
sinθν

−cosθν

]
sin θ̃ν . (33)

The first term in (33) can be bounded as follows: −p⊤ν Qpν ¬ −λ‖pν‖2,
where λ is defined by (21). Referring to (29) it can be concluded that ex-
pression p⊤ν PYnh(pν) is quadratic in terms of pν . Consequently, relationship

2ζ ‖Ynh(pν)‖ p⊤ν P

[
sinθν

−cosθν

]
in (33) can be bounded as follows

2

∣∣∣∣ζ ‖Ynh(pν)‖ p⊤ν P

[
sinθν

−cosθν

]∣∣∣∣ ¬ α‖pν‖2, (34)

where α > λ is a constant. Following the given simplifications V̇ satisfies

V̇ ¬
(
−λ +α|sin θ̃ν |

)
‖pν‖2. (35)

Now we consider the closed-loop orientation dynamics. From (27) one can con-
clude that

θ̃ν(t) = θ̃ν(0)exp(−kθ t). (36)

As a result, sin θ̃ν converges to zero which implies that perturbation term in (33)
given by α|sin θ̃ν | is bounded and decays exponentially. Hence, there exists time
instant τ > 0 such that

∀t > τ, λ > α|sin θ̃ν(t)|. (37)
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Consequently, at t > τ derivative V̇ becomes negative and V converges to zero.
Then, based on definition of V one can prove that

lim
t→∞

pν(t) = 0. (38)

Taking into account (38), (26) and recalling that Ynh is bounded for bounded pν ,
one has limt→∞ ṗν(t) = 0. Recalling assumption A4, relation (15) and (23) one
concludes that

lim
t→∞

θnh(t) = 0 or lim
t→∞

θnh(t) = π . (39)

In order to ensure that limt→∞ θnh(t) = 0 one has to select ζ in (23) such that
f or t > T,ζ ẋν > 0, where T > 0 is some constant. Following (36) it can be
shown that

lim
t→∞

θν(t) = 0. (40)

To complete the proof, we need to confirm that derivative ġν is bounded. Re-
calling (26) and taking into account that pν ∈ L∞ it can be found that ṗν ∈ L∞.
Investigating boundedness of θ̇ν from (27) one can see that θ̃ν ∈ L∞. Taking
advantage of result (91) provided in the Appendix, time derivative θ̇nh can be
computed as follows

θ̇nh =
Y⊤

nh

‖Ynh‖2 JẎnh. (41)

Noticing that Ẏnh =
∂Ynh

∂ pν
Ynh one obtains

θ̇nh =
Y⊤

nh

‖Ynh‖
J

∂Ynh

∂ pν

Ynh

‖Ynh‖
. (42)

Since ∂Ynh

∂ pν
and Ynh/‖Ynh‖ are bounded one concludes that θ̇nh ∈ L∞. More pre-

cisely, recalling (14) and noticing that ‖J‖F =
√

2 function θ̇nh can be bounded
as

|θ̇nh| ¬
√

2M. (43)

3.3. Sensitivity analysis

Now we assume that a navigation vector field is computed when the con-
figuration is not known perfectly. However, in order to simplify analysis, we
consider the case when only position coordinates are affected by bounded distur-
bances while orientation θν can be measured precisely. This simplification can
be further justified taking into account that predominant undesirable effects in
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the discussed nonholonomic navigation algorithm comes from a noise added to
position variables.

To be more precise, we define output p∗ν ∈ R2 which describes the measured
position of the robot

p∗ν = pν +δp, (44)

where δp ∈R2 is a bounded disturbance such that ‖δp‖< ρ , where ρ > 0. Next,
we investigate how navigation vector field Yν is perturbed and introduce the fol-
lowing approximation

Yν(p∗ν) = Yν(pν)+∆Y , (45)

where ∆Y =
∂Yν

∂ pν
δp+O(δ 2

p) denotes perturbation of navigating vector field. Ad-

ditionally, referring to assumption A3 the following bound can be established

∀pν ∈ R2, ‖δp‖< ρ ,∃m > 0,‖∆Y‖ ¬ m. (46)

Next, we study how the given uncertainty affects the holonomic navigation
algorithm. Defining perturbed version of dynamics (18) and substituting (45)
with Yν = Yh we have

ṗν = Yh(p∗ν) =Yν(pν)+∆Y . (47)

Recalling stability analysis outlined in subsection 3.1, using the same definition
of V and taking into account (46), for perturbed system (47) one obtains

V̇ ¬−λ‖pν‖2 +2‖∆Y‖‖pν‖ ¬−λ‖pν‖2 +2m‖pν‖. (48)

Since V̇ < 0 when ‖pν‖>
2m

λ
one easily concludes that

lim
t→∞

‖pν(t)‖¬
2
λ

m. (49)

Further, we discuss the stability of the closed-loop system taking into account
the nonholonomic navigator proposed in section 3.2. Referring to (47) and using
perturbed vector field one obtains

ṗν = H(θν)Ynh(p∗ν) = H(θν)(Ynh(pν)+∆Y ). (50)

Making the similar stability analysis as in proof 3.2 with V = p⊤ν Ppν , computing
V̇ and substituting (50) yields (cf. (30))

V̇ = 2p⊤ν PYnh(θν)+2p⊤ν P(H(θν)− I)Ynh(θν)+2p⊤ν PH(θν)∆Y . (51)
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Applying mathematical manipulations discussed in proof 3.2, using (34), defin-
ing

∀θν ∈ S1, ∃β > ‖PH(θν)‖F (52)

and taking into account (46) one can rewrite (51) as follows

V̇ ¬ (−λ +α|sin(θν −θnh))‖pν‖2 +2βm‖pν‖ (53)

It can be easily noticed that (53) is composed of (33) and additive term 2βm‖pν‖.
However, in the considered case variable θnh is not well determined. Recalling
definition (23) it is important to emphasise that θnh is computed for Ynh evaluated
at pν which is not known accurately. In order to overcome this difficulty one can
expect that θnh can be approximated by

θ∗
nh = atan2(ζYnhy

,ζYnhx
)|p∗ν . (54)

We consider this issue more thoroughly. Similarly to (45), we assume that

Yν(p∗ν) =Yν(pν)+ γ∆Y , (55)

where γ ∈ R and ∆Y ∈ R2 is some non-zero perturbation. Then we approximate
θ∗

nh as follows

θ∗
nh = θnh +

∂θ∗
nh

∂γ

∣∣∣∣
γ=0

γ +O(γ2). (56)

Taking into account result (94) presented in the Appendix, it can be concluded

that for Yν(pν) derivative
∂θ∗

nh

∂γ

∣∣∣∣
γ=0

becomes unbounded. Hence, one can notice

that distance |θ∗
nh −θnh| grows significantly when components of nominal navi-

gating vector field are close to zero. As a result disturbance added to pν affects
orientation control significantly.

In the considered case control feedback (27) can be rewritten as follows

θ̇ν :=−kθ (θν −θ∗
nh)+ θ̇∗

nh. (57)

Since terms denoted by ∗ in (57) are computed based on Yν(p∗ν), they are
bounded – cf. result given by (42). In spite of that, the sensitivity of determi-
nation of θ∗

nh increases rapidly when pν is in a vicinity of the origin where norm
‖Ynh(pν)‖ is small. As a consequence, an equilibrium point for dynamics (57)
cannot be determined and the given system is unstable for additive disturbance
δp in a neighbourhood of zero.
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4. Smooth robust navigation algorithm

4.1. Proposition of the algorithm

In order to cope with the singularity of nonhonolonic navigation which leads
to extremely high sensitivity to disturbances at neighbourhood of pν = 0, we
propose a new smooth hybrid structure.

Here, we take advantage of vector fields Yh and Ynh which belong to the same
class of navigation vector fields and satisfy conditions A1, A2 and A3 for the
same proposition of V . A basic idea of a robust feedback used for the navigation
purpose comes from the selection of navigation strategies which work efficiently
in the defined domains of the configuration (task) space. Taking into account
the weakness of nonholonomic navigation in a vicinity of the desired point, it is
preferred to employ a smooth feedback in the prescribed neighbourhood. Con-
versely, when a navigating vector field is well conditioned (for example when the
robot is far away from the desired point), it is reasonably to apply nonholonomic
navigation in order to improve dynamic response of the closed-loop system and
to decrease control effort (the motion in directions determined by Lie brackets
in short-time period can be avoided). To guarantee the smoothness of a navi-
gation strategy, we exclude non-smooth switching strategies proposed in some
papers. Instead of a hard switching function we consider the following smooth
(not analytical) bump-like function

σc,r(d) =





(
1+ exp

4r(d− c)

(d− c+ r)(d − c− r)

)−1

for d ∈ (c− r,c+ r)

0 for d ¬ c− r

1 for d ­ c+ r

, (58)

where c ∈R and r ∈R+ are parameters which determine boundaries of transition
range (c− r,c+ r) – cf. also Fig. 3.

Figure 3: Interpretation of the smooth switching function defined by (58)
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Proposition 2 (Smooth robust navigation algorithm) Assume that the posi-
tion trajectory is governed by the following equation

ṗν = σcp,rp
(V (pν))H(θν)Ynh(pν)+(1−σcp,rp

(V (pν)))Yh(pν), (59)

while orientation dynamics satisfies

θ̇ν =−kθ (θν −θd) (60)

with kθ > Kθ being positive gain and

θd := σcθ ,rθ (V )θnh. (61)

Parameters of switching function cp,rp,cθ ,rθ satisfy (cf. Fig. 4):

cp − rp > cθ − rθ > 0. (62)

Then, for large enough Kθ trajectory gν(t) globally and asymptotically con-
verges to zero.

Figure 4: Interpretation of the switching between holonomic and nonholonomic naviga-
tion stages

Proof Taking advantage of function (19), computing its time derivative and us-
ing (59) one obtains

V̇ = 2p⊤ν Pṗν = 2p⊤ν P
(
σcp,rp

(V )H(θν)Ynh(pν)+(1−σcp,rp
(V ))Yh(pν)

)
. (63)

Adding and subtracting σcp,rp
(V )Ynh(pν) in (63) yields

V̇ =2p⊤ν P
(
−σcp,rp

(V )(I −H(θν))Ynh(pν)

+σcp,rp
(V )Ynh(pν)+(1−σcp,rp

(V ))Yh(pν)
)

=2p⊤ν P
(
σcp,rp

(V )Ynh(pν)+(1−σcp,rp
(V ))Yh(pν)

)

− 2σcp,rp
(V )p⊤ν P(I −H(θν))Ynh(pν). (64)
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Taking advantage of assumption A2 and recalling the compatibility of both nav-
igation vector fields one has

V̇ ¬−p⊤ν Qpν −2σcp,rp
(V )p⊤ν P(I −H(θν))Ynh(pν). (65)

Next, comparing (63) and (30) one obtains

V̇ ¬
(
−λ +ασcp,rp

(V )|sin(θν −θnh|
)
‖pν‖2. (66)

Taking into account values of switching function σcp,rp
one can rewrite (66) as

follows

V̇ ¬





(
−λ +ασcp,rp

(V )|sin θ̃ν |
)
‖pν‖2 for cp − rp <V < cp + rp

(
−λ +α|sin θ̃ν |

)
‖pν‖2 for V ­ cp + rp

−λ‖pν‖2 for V ¬ cp − rp

. (67)

From (67) one can notice that for V > cp − rp, namely when nonholonomic
navigating vector field is considered, a suitable control of orientation θν is
critical. To be more precise, in the given range of V , variable θν should fol-
low trajectory θnh(t). Referring to (61) and condition (62) it can be concluded
that for V > cp − rp, θd = θν and control feedback (60) becomes equivalent to
θ̇ν =−kθ (θν −θnh). Then, one can consider the following closed-loop system

˙̃
θ ν =−kθ θ̃ν + θ̇nh. (68)

Since θ̇nh satisfies (43), it implies that trajectory θ̃ν is bounded as follows

lim
t→∞

|θ̃ν(t)|¬ ǫθ =

√
2M

kθ

. (69)

It is clear that upper bound ǫθ can be adjusted by making gain kθ large enough.
As a result term α|sin θ̃ν | can be attenuated until V̇ < 0 – cf. (67). Consequently,
there exists finite time instant τ > 0 when value of V becomes below cp − rp.
Then, holonomic vector field Yh ensures that pν = 0 is the asymptotically stable
equilibrium point. Moreover, for V < cθ −rθ , θd = 0, cf. (61), and orientation θν

is governed by: θ̇ν =−kθ θν . As a consequence, θν tends to zero exponentially.

Remark 1 In (60) feedforward term θ̇d is neglected – cf. (27). This is due to the
fact that derivative of θnh can lead to higher sensitivity of the proposed strat-

egy to the measurement noise. In order to decrease orientation error θ̃ν to an
acceptable range, it is required to select gain kθ > Kθ large enough.
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4.2. Particular selection of navigation vector fields

The selection of navigation vector fields can be made based on assumptions
formulated in section 2.2. Now we consider an exemplary choice of such vector
fields.

Firstly, the holonomic vector field is proposed as follows

Yh(ξ ) = kνAhξ (70)

with
Ah :=−diag{1, βν} ∈ R2×2 (71)

being a Hurwitz matrix for any kν and βν > 0. Since vector field Yh is linear, it
trivially satisfies assumptions A1–A3.

Secondly, based on formula (70) the following nonholonomic navigation vec-
tor field is defined

Ynh(ξ ) =Yh(ξ )− kνκν [|ξy| 0]⊤ =−kν Anh(ξ )ξ , (72)

where

Anh(ξ ) =

[
1 −κνsgn(ξy)

0 βν

]
(73)

with κν being a constant parameter. This vector field satisfies assumptions A1 (it
is smooth on a restricted domain) and A3 (its derivative is bounded). Moreover,
assumption A2 is also satisfied, since one can select V (ξ ) := ξ⊤ξ as a Lyapunov
function candidate with time derivative given by

V̇ =−ξ⊤Qξ . (74)

where

Q = kν

(
Anh(ξ )

⊤+Anh(ξ )
)
= kν

[
2 −κν sgn(ξy)

−κνsgn(ξy) 2βν

]
. (75)

One can easily prove that Q ≻ 0 for κ2
ν < 4βν and

λ = kν

(
βν +1−2

√
(βν −1)2 +κ2

ν

)
. (76)

In order to check if assumption A4 holds, we look for a solution of differential
equation ξ̇ =−Anh(ξ ) and obtain the following result

ξx(t) =





(
ξx0 −κνsgn(ξy0)t

)
e−t , for βν = 1

(
ξx0 −

κνsgn(ξy0)

1−βν
ξy0

)
e−t +

κνsgn(ξy0)

1−βν
ξy0e−βν t , for βν 6= 1

(77)
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and
ξy(t) = ξy0e−βν t , (78)

while ξx0 = ξx(0) and ξy0 = ξy(0) denote initial conditions. Computing ξ̇x and
ξ̇y from (77) and (78), respectively it can be proved that assumption A4 defined
by formula (15) is satisfied for βν ­ 1.

5. Control algorithm

The navigation strategy proposed in section 4 determines instantaneous ve-
locity ġν which does not satisfies nonholonomics constraint (5) in some vicinity
of the desired point. Therefore this trajectory cannot be followed directly by a
unicycle-like robot. In order to cope with this issue, it is necessary to convert
infeasible movements into manoeuvres which can be executed by the controlled
nonholonomic robot.

Since the proposed navigation algorithm is based on the smooth feedback,
it is expected that a local motion controller should also ensure the smoothness
property. Here, we take advantage of the transverse functions approach in or-
der to design a motion controller which make it possible to approximate any
bounded trajectory in the configuration space. In such a case the trajectory gν(t)
computed for the omnidirectional kinematics becomes virtually coupled with
trajectory g(t) of the controlled nonholonomic robot.

Let fT : S1 → G denote a smooth and bounded function which satisfies

∀α ∈ S1, rankW (α) = 3 (79)

while W (α) :=

[
X( fT )C

∂ fT

∂α

]
∈ R3×3 and ‖ fT‖ ¬ δ . For unicycle kinemat-

ics (6) transversality condition (79) is satisfied, for example, by the following
function

fT (α) := [ε1 sinα ε3 sin2α ε2 cosα]
⊤
, (80)

where ε3 = ∏3
i=1 εi, with εi being bounded positive coefficients. Assuming that

ε1 > 0, ε2 ∈ (0,π) and ε3 ∈
(
0, 1

2

)
one can show that the full rank condition of

matrix W (α) is satisfied (in [20] a more general case is discussed). To design the

controller, derivative
∂ fT

∂α
is computed in basis X( fT ) as follows, [15]:

AT (α) := X( fT )
−1 ∂ fT

∂α
∈ R3. (81)
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Next, we assume that a difference between gν and configuration of the con-
trolled robot, g, is determined by function fT as

fT = g−1
ν g. (82)

Equivalently, one can write that gν = g f−1
T . Taking time derivative of gν one

obtains the following dynamics

ġν = X(gν)AdX( fT )C(α)u, (83)

where
u := [u⊤ α̇]⊤ ∈ R3, (84)

C(α) := [C − AT (α)] ∈ R3×3, while AdX(h) := X(e)−1 Ad(h)X(e), and

Ad(h) :=
d

dσ
(hσh−1)|σ=e, h ∈ G defines the adjoint operator which describes

the action of group G on its own algebra g.
As a result of transversality condition, C is the invertible matrix and dynamics

(83) can be fully decoupled by applying the following dynamic feedback

u =C
−1
(α)AdX( f−1

T )η, (85)

where η is the input computed by the navigation algorithm according to formula
(17).

The presented controller gives possibility to track any bounded trajectory gν

with an arbitrarily accuracy dependent on the selection of parameters of trans-
verse function fT . Similarly, one can state that system (6) is decoupled approxi-
mately.

The structure of the proposed control system is depicted in Fig. 5. It can be
seen that the navigation algorithm computes velocity η based on (17) taking into
account configuration gν of the virtual omnidirectional robot. This configuration
is determined for current configuration g of the unicycle-like robot. Signal η is
then mapped on feasible control input u.

Investigating properties of algorithm (85) one can analyse how particular
components of η are transformed to inputs u1, u2. Assuming that AT ∈ R3 is
composed of two terms AT1 ∈ R2 and AT2 ∈ R, taking into account the structure
of matrix C, and computing inverse of C one can rewrite (85) as follows

u =
[
I −AT1A−1

T2

]
AdX( f−1

T )η. (86)

Next, in order to simplify considerations, it is assumed that norm ‖ fT‖ is small
enough such that AdX( f−1

T ) can be approximated by the identity matrix (notice
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Figure 5: Diagram of the proposed control system

that from definition of Ad one has: Ad(e) = I). Consequently, one can consider
the following approximation

u ≈
[

η1
η2

]
−AT1A−1

T2
η3. (87)

From (87) follows that input η3 is multiplied by term AT1A−1
T2

, which can be ad-
justed by a proper selection of transverse function parameters. Referring to [20]

one can prove that AT1A−1
T2

is bounded as follows: ‖AT1A−1
T2

‖ ¬ L

min{ε1,ε2}
,

where L > 0 is some constant. Accordingly, one can expect that η3 is ampli-
fied significantly for small ε1 and ε2. Taking into account this aspect, infeasible
velocity η3 for the unicycle kinematics should be restricted during holonomic
navigation. Otherwise the control algorithm (85) can produce high-magnitude
inputs u1 and u2, which might be too restrictive in many applications.

6. Simulation and experimental results

6.1. Simulations

In order to verify the proposed concept of robust navigation, simulations in
Matlab/Simulink environment were conducted. It was assumed that the measure-
ment of configuration are corrupted by the uniform noise with amplitude equals
to 0.02 m (position) and 0.05 rad (orientation).

Vector fields Yh and Ynh are defined by (70) and (72), respectively with kν = 1,
βν = 1.2, κν =±1 and kθ = 4.
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Simulations S1 and S2 are restricted to the navigation algorithm presented in
section 3.2. The initial condition is selected as gν(0) = [0 5 0]⊤. In S1 only the
nonholonomic mode is employed while in S2 the smooth switching between two
types on navigation methods is used with parameters cp = 0.5, rp = 0.2, cθ = 0.2
and rθ = 0.1.

Comparing the time response of the closed-loop system (Figs. 6a, b and 7a,
b), one can confirm the lack of robustness when the pure nonholonomic nav-
igation feedback is used. Standard deviations of input signals η1 (longitudinal
velocity) and η2 (angular velocities) computed in time range t ∈ (10,20] s are
given as follows: ση1 ≈ 0.012 m/s, ση2 ≈ 6.25 rad/s for S1 and ση1 ≈ 0.011 m/s,
ση2 ≈ 0.11 rad/s for S2. Following these data, one can conclude that the hybrid
navigation algorithm provides much higher level of robustness to an additive
measurement noise in a neighbourhood of the desired point. Analysing Fig. 7c
it can be observed that function V decreases almost from the initial time instant
(additional effects introduced by the simulated noise are neglected here). Error
θ̃ν , which describes a measure of the trajectory compatibility with phase con-
straint (5), tends to zero. In Fig. 7d the transient phase between nonholonomic
and holonomic navigation is illustrated. From time plot of V it can be seen that
the navigation strategy is changed continuously without chattering effect.

(a) Configuration: xν (�), yν (�) [m], θν (� in
[rad])

(b) Velocity: η1 (�) [m/s], η2 (�) [rad/s]

Figure 6: Results of simulation S1

In simulations S3 and S4 the navigation structure with decoupling con-
troller is investigated. Parameters of the transverse function are chosen as fol-
low: ε1 = 0.2, ε2 = 0.15 and ε3 = 0.25. Simulations were conducted for various
initial conditions. In S3 switching functions σcp,rp

and σcθ ,rθ are parametrized in
the same way as in simulations S1 and S2. In S4 the phase transition is strongly
increased by assuming the following set of parameters: cp = 5, rp = 2.5, cθ = 2
and rθ = 1. In Fig. 8 position trajectories p are presented. Based on these results,
it can be noticed that for simulation S3 trajectories converge to the switching set
in such a way that no significant violation of nonholonomic constraint is required
by the holonomic navigator near the origin. This is due to property of the nom-
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(a) Configuration: xν (�), yν (�) [m], θν (� in
[rad])

(b) Velocity: η1 (�) [m/s], η2 (�) [rad/s]

(c) Auxiliary errors: V (�) and θ̃ν (�) [rad] (d) Transient phase: V (�) and switching function
σcp,rp

(�)

Figure 7: Results of simulation S2

(a) Simulation S3 (b) Simulation S4

Figure 8: Paths obtained in simulations S3 ans S4 for the selected initial conditions – the
switching area is marked by two circles
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inal nonholonomic vector field (cf. assumption A4) for which integral curves
are tangent to XG-axis of the inertial frame at the origin. Conversely, when the
transient area is increased similarly as in simulation S4, the discussed effect is
less visible. In such a case the trajectories are not yet directed toward the desired
point when the holonomic navigation algorithm becomes predominant. As a re-
sult, in a vicinity of the origin the navigator can produce infeasible trajectory gν

which has to be approximated by the unicycle.
In Figs. 9 and 10 exemplary time plots obtained in simulations S3 and S4,

respectively, for initial condition g(0) = [0 5 0]⊤ are depicted. The steady-state
error basically comes from the selected parameters of the transverse function and
is bounded as follows: |x|< 0.2 m, |y|< 0.0075 m and |θ |< 0.15 rad. Standard
deviations of input signals u1 and u2 are: σu1 ≈ 0.19 m/s, σu2 ≈ 0.11 rad/s. From
Fig. 10 it can be seen that during transient phase trajectory gν becomes highly
infeasible (cf. approximated formula (87)). Such a trajectory has to be approx-
imated in oscillatory way that increases energy effort considerably. However,
frequency of these oscillations can easily limited by a proper scaling of η . This
method was applied during experimental research.

(a) Configuration of the robot: x (�), y (�) [m],
θ (� [rad])

(b) Control inputs: u1 (�) [m/s], u2 (�) [rad/s]

Figure 9: Results of simulation S3

(a) Configuration of the robot: x (�), y (�) [m],
θ (� [rad])

(b) Control inputs: u1 (�) [m/s], u2 (�) [rad/s]

Figure 10: Results of simulation S4
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6.2. Experimental verification

In order to verify properties of the motion controller with the proposed
navigation method, experimental work was conducted using a laboratory two-
wheeled robot MTracker [8]. The algorithm was implemented in Matlab and the
controller was connected to the robot taking advantage of a software driver writ-
ten in C++. Frequency of the control loop was equal to 50 Hz. The robot was
localized using the odometry.

To limit magnitude of control inputs, navigation velocity η was scaled using
the following formula

ηs =
1
s

η, (88)

where s = max

{
1,

η1

η1
,

η2

η2
,

η3

η3

}
and ηi (i = 1,2,3) denotes maximum magni-

tude of the corresponding component ηi. In experiments the following bounds
were selected: η1 = 0.4, η2 = 1.0 and η3 = 0.03.

The measurement uncertainties came from the odometry as well as from
the additive uniform noise with the amplitude equal to 0.002 m (position)
and 0.005 rad (orientation). The parameters of the navigation algorithm was
set as follows: kν = 1, βν = 1.2 and κν = 1.8. The transverse function was
parametrized by: ε1 = 0.1, ε2 = 0.15 and ε3 = 0.25.

In experiment E1 only nonholonomic navigation strategy was considered
with initial condition g(0) = [0 1 0]⊤. The results presented in Fig. 11 confirm
that the algorithm is not stable at the desired point – the orientation variable does
not converge to an equilibrium point.

(a) Position coordinates: x (�), y (�) in [m]. (b) Orientation θ [rad].

Figure 11: Results of experiment E1 – the control system with the nonholonomic navi-
gator

For the comparison purpose, the pure holonomic navigation was verified in
experiment E2. As indicated from Fig. 12 one can notice that the convergent rate
is decreased considerably. This is due to significant limitations imposed on η3.
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(a) Position coordinates: x (�), y (�) in [m]. (b) Orientation θ [rad].

Figure 12: Results of experiment E2 – the control system with the holonomic navigator

In this case vector field Yh determines strong infeasible direction in the phase
space. As a result, the motion controller employs oscillatory inputs in order to
approximate this direction.

In experiment E3 the proposed smooth navigation strategy was employed
with the following parameters of switching functions: cp = 0.2, rp = 0.075, cθ =
0.1 and rθ = 0.025. From Fig. 13 one can conclude that the last strategy gives
the best results, namely it ensures short regulation time, provides no oscillatory

(a) Position coordinates: x (�), y (�) in [m]. (b) Orientation θ [rad].

(c) Control inputs: u1 (�) [m/s] , u2 (�) [rad/s]. (d) Functions V (�) and σp (�)

Figure 13: Results of experiment E3 – the control system with the smooth robust navi-
gator
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response of the closed-loop system and guarantees sufficient level of robustness
to disturbances.

Additionally, in Fig. 14 paths obtained in the experiments can be compared.

(a) Experiment E1 (b) Experiment E2 (c) Experiment E3

Figure 14: Robot paths obtained in experiments E1, E2 and E3

7. Conclusions

The control algorithm discussed in this paper consists of the smooth naviga-
tion feedback (locally imposing holonomic strategy) and decoupling controller
taking advantage of transverse functions. The proposed control structure is dedi-
cated to robots with unicycle-like kinematics. The algorithm is formally analysed
in details and the stability proof of the closed-loop dynamics taking into account
the controller robustness to unmodeled disturbances is discussed.

Additionally, it is worth mentioning that the proposed navigation technique
can be applied also for the trajectory tracking, especially when reference veloci-
ties become slow. In such a case the uniform control strategy based on transverse
functions provides a quite natural way to ensure stability around a fixed point or
time-varying trajectory.

The author also believes that the presented approach can be efficiently ex-
tended to more complicated kinematics (including, for example, car-like kine-
matics – cf. preliminary results in [22]) for which a simple decomposition of
position and orientation control cannot be accomplished directly.
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In order to improve stabilization accuracy it also possible to apply another
class of transverse functions which allows one to conditionally obtain the asymp-
totic stability – cf. [17, 21].

A. Appendix

A.1. Derivative of an angle

Let µ1 and µ2 be real-valued C1 class functions. Define

ϕ = atan2(µ2,µ1) ∈ S1. (89)

Derivative
d

ds
ϕ , where s ∈ R is independent parameter can be computed as fol-

lows
d

ds
ϕ =

1

µ2
1 +µ2

2

(
µ1

dµ2

ds
−µ2

dµ1

ds

)
. (90)

Defining µ := [µ1 µ2]
⊤ and J :=

[
0 1
−1 0

]
Eq. (91) can be rewritten as

d

ds
ϕ =

µ⊤

‖µ‖2 J
d

ds
µ. (91)

A.2. Sensitivity of angle variable

Consider constants µ1 and µ2 ∈R and independent variable γ ∈R. Redefine
ϕ from (89) as follows

ϕ = atan2(µ2 + γµ2,µ1 + γµ1) ∈ S1 (92)

and compute the following derivative

∂ϕ

∂γ
=

µ2 (µ1 + γµ1)−µ1 (µ2 + γµ2)

(µ1 + γµ1)
2 +(µ2 + γµ2)

2 . (93)

Alternatively, assuming that µ = [µ1 µ2]
⊤ and recalling (91) one can obtain

∂ϕ

∂γ
=

(µ + γµ)⊤

‖µ + γµ‖2 Jµ . (94)
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