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Abstract

This paper presents some new results on exogeneity in models with latent
variables. The concept of exogeneity is extended to the class of models
with latent variables, in which a subset of parameters and latent variables is
of interest. Exogeneity is discussed from the Bayesian point of view. We
propose sufficient weak and strong exogeneity conditions in the vector error
correction model (VECM) with stochastic volatility (SV) disturbances. Finally,
an empirical illustration based on the VECM-SV model for the daily growth
rates of two main official Polish exchange rates: USD/PLN and EUR/PLN,
as well as EUR/USD from the international Forex market is presented. The
exogeneity of the EUR/USD rate is examined. The strong exogeneity hypothesis
of the EUR/USD rate is not rejected by the data.
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1 Introduction
In most econometric models some of variables are treated as if they were not
random, i.e. the marginal process of these variables is not specified. When such
a reduction of the model is admissible (there is no loss of relevant information), these
conditioning variables are called "exogenous". As pointed out by Florens, Mouchart,
Rolin (1990) "a variable is not exogenous by itself but is exogenous in a particular
inference problem". The econometric concepts of exogeneity have been illuminated
and formalized in the literature by Engle, Hendry, Richard (1983), Ericsson, Hendry,
Mizon (1998), Hendry and Richard (1982, 1983). De Luna and Johansson (2006)
proposed a new concept of exogeneity called Kullback-Leibler exogeneity. Recently,
Rault (2011) defined "long-run strong-exogeneity" which also may be seen as a new
concept of exogeneity (it only emerges in a VAR-ECM model and it is distinct from
a known strong exogeneity). The Bayesian concepts of exogeneity were developed by
Florens and Mouchart (see, for example, Florens and Mouchart, 1977, 1980, 1982,
Florens, Mouchart, Rolin 1990, Mouchart, Russo, Wunsch 2007) , and Osiewalski
and Steel (1996). However, the underlying assumption of these analyses is that
the researcher is interested in a subset of model parameters, explicitly defined as
parameters of interest. A problem arises once the researcher takes interest not only
in a subset of model parameters, but also in some latent variables, which possess a
specific meaning to him. The immediate two questions which arise are: first, can we
infer about some parameters and latent variables basing on the conditional model
alone (without loss of relevant information)? and second, can the dimensionality of
the model with latent variables be reduced? These questions concern the exogeneity
problem in models with unobservable variables. In this paper the concepts of
exogeneity are then extended to the class of models with latent variables, in which a
subset of parameters and latent variables is of interest (if we wish to infer about the
parameters only, the latent variables can be integrated out and the Bayesian concepts
of exogeneity in terms of the distribution of observable variables can be applied).
Exogeneity is discussed from the Bayesian point of view. As an extension of our
previous research (see Pajor 2008, 2010), some new results on exogeneity in models
with latent variables are presented. We propose sufficient weak and strong exogeneity
conditions in the vector error correction model (VECM) disturbances of which follow
stochastic volatility (SV) processes. In this paper we use the terminology and notation
developed in the non-causality and exogeneity literature, most notably in the works of
Florens and Mouchart (1985) and Osiewalski and Steel (1996). Similarly as in these
papers, we introduce a Bayesian initial cut, a Bayesian sequential cut, and the concept
of non-causality in a model with latent variables. All definitions are formulated in
terms of density functions. The symbol p(·) is generically used for densities.
The paper is organized in the following manner. In Section 2 the basic framework
and the Bayesian econometric model are set. In Section 3 several types of a Bayesian
cut are defined. In Section 4 the concept of exogeneity in models with latent variables
is introduced. The concept of exogeneity in the Bayesian VECM-SV model with
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a known cointegrating vector is elaborated on in Section 5. Finally, in Section 6 an
empirical illustration using daily data of the main official Polish exchange rates is
provided.

2 Bayesian econometric model
Let the triple (Ω, I, P ) be a probability space, where Ω is a set, I is a σ-field of subsets
of Ω, and P is a probability measure on I. Usually Ω = Rn and I = B (Rn), with the
latter symbol denoting the Borel σ-field of Rn. As in Florens, Mouchart, Rolin (1990),
we start from a statistical experiment defined as {(Ω, I), P θ : θ ∈ Θ}, where (Ω, I) is
a measurable space (the sample space) and {P θ : θ ∈ Θ} is a family of probability
measures on the sample space indexed by a vector of parameters, θ, belonging to the
parameter space Θ. A Bayesian experiment is defined by the following probability
space: {(Θ × Ω, IΘvI),Π}, where (Θ, IΘ) is the parameter space with a probability
measure µ, (Ω, I) is the sample space, and Π = µ ⊗ P θ is a probability measure on
the product space (Θ× Ω, IΘvI) defined as follows:

Π(E,X) =
∫
E

P θ(X)µ(dθ), E ∈ IΘ, X ∈ I.

Let {yt} be a stochastic process defined on {(Ω, I), P θ, θ ∈ Θ}, with values in Rn.
We assume that yt is an observable random vector at time t and that we possess
observations on yt for t = 1, . . . , T . Let {ht} be an unobservable stochastic process
defined on {(Rn,B(Rn)), P θ, θ ∈ Θ}, with values in Rm. For the sake of simplicity
we assume the same parameter space Θ. In other words, the dimensionality of Θ is
extended to include all parameters.
Further, let Y st denote the n × t − s + 1 matrix Y st = [ys . . . yt], conformably Hs

t

denote the m × t − s + 1 matrix Hs
t = [hs . . . ht] for s ≤ t, and let Y0 and H0

represent the matrices of the initial conditions related to {yt} and {ht} processes,
respectively. Let us denote the history of the stochastic process {yt} up to time
(t − 1) by Yt−1 = [Y0 y1 y2 . . . yt−1], and the history of the stochastic process {ht}
by Ht−1 = [H0 h1 h2 . . . ht−1]. We assume that the process which generates the
observations is continuous with respect to some appropriate measures (for example
the Lebesgue measure), and it is characterized by the joint data density function:

p
(
Y 1
T |θ, Y0, H0

)
=
∫
H

p
(
Y 1
T , H

1
T |θ, Y0, H0

)
dH1

T , (1)

where p
(
Y 1
T , H

1
T |θ, Y0, H0

)
= p

(
Y 1
T |H1

T , θ, Y0, H0

)
p
(
H1
T |θ, Y0, H0

)
.

The Bayesian model is characterized by the joint probability density function, which
can be written as the product of three densities:

p
(
Y 1
T , H

1
T , θ|M0

)
= p

(
Y 1
T |H1

T , θ,M0

)
p
(
H1
T |θ,M0

)
p (θ|M0) , (2)
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where p
(
Y 1
T |H1

T , θ,M0

)
is the conditional density of Y 1

T given H1
T and θ ∈ Θ,

p
(
H1
T |θ,M0

)
is the density of the latent variables conditional on θ, p (θ|M0) is the

prior density function, for the sake of simplicity the initial conditions M0 = [Y0H0]
are trivial (i.e. M0 is not random).

3 Bayesian cuts

Let us now focus on the concept of Bayesian initial and global cuts (similar to
Osiewalski and Steel, 1996). We partition yt into yt = (z′t, w

′
t)
′, zt ∈ Rq, wt ∈ Rp,

p + q = n, and Y st , Yt, Hs
t into Y st =

[
Zst
W s
t

]
, Yt =

[
Zt
Wt

]
, Hs

t =
[
Hs,z
t

Hs,w
t

]
,

respectively.

Definition 1 Let there exist some reparameterization (one-to-one transformation)
of θ in θ1 and θ2, as well as a partition of H1

t into H1,w
t and H1,z

t . Then the pair[(
θ1;H1,w

t ;W 1
t

)
,
(
θ2;H1,z

t ;Z1
t

)]
operates a Bayesian initial cut for a given sample

period {1, . . . , T} if and only if:

(i) p (θ|M0) = p (θ1|M0) p (θ2|M0) , (3)

(ii) ∀t∈{1,...,T} p
(
H1
t |θ,M0

)
= p

(
H1,w
t |θ1,M0

)
p
(
H1,z
t |θ2,M0

)
, (4)

(iii) ∀t∈{1,...,T} p
(
W 1
t |Z1

t , θ,H
1
t ,M0

)
= p

(
W 1
t |Z1

t , H
1,w
t , θ1,M0

)
, (5)

(iv) ∀t∈{1,...,T} p
(
Z1
t |H1

t , θ,M0

)
= p

(
Z1
t |H

1,z
t , θ2,M0

)
. (6)

Definition 2 The pair
[(
θ1;H1,w

t ;W 1
t

)
,
(
θ2;H1,z

t ;Z1
t

)]
operates a Bayesian global

cut if and only if
[(
θ1;H1,w

t ;W 1
t

)
,
(
θ2;H1,z

t ;Z1
t

)]
operates a Bayesian initial cut

for t = T .

The first condition of definition 1 says that vectors θ1 and θ2 are a prior independent.
The second one shows that the density p

(
H1
t |θ,M0

)
can be factorized into a product

such that one factor, p
(
H1,w
t |θ1,M0

)
, does not depend on θ2, and the other factor,

p
(
H1,z
t |θ2,M0

)
, does not depend on θ1. Note that both conditions (3) and (4) are

equivalent to a single condition:

∀t∈{1,...,T} p
(
H1
t , θ|M0

)
= p

(
H1,w
t , θ1|M0

)
p
(
H1,z
t , θ2|M0

)
.
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When we treat the latent variables as if they were additional parameters of the model,

we can say that
(
vec
(
H1,w
t

)′
, θ′1

)′
and

(
vec
(
H1,z
t

)′
, θ′2

)′
are a prior independent.

The last two conditions in definition 1 imply a factorization of the joint conditional
density:

p
(
W 1
t , Z

1
t |θ,H1

t ,M0

)
= p

(
W 1
t |Z1

t , H
1,w
t , θ1,M0

)
p
(
Z1
t |H

1,z
t , θ2,M0

)
.

The conditional distribution of W 1
t given Z1

t , θ, H1
t and M0 does not depend on H1,z

t

and θ2, whereas the conditional distribution of Z1
t given H1

t , θ, and M0 does not
depend on H1,w

t and θ1. Hence, no information about H1,w
t and θ1 can be derived

from the conditional distribution of Z1
t (the marginal model).

An immediate consequence of a Bayesian global cut is that vectors
(
vec
(
H1,w
T

)′
, θ′1

)′
and

(
vec
(
H1,z
T

)′
, θ′2

)′
are a posterior independent. The following theorem holds:

Theorem 3 If the pair
[(
θ1;H1,w

t ;W 1
t

)
,
(
θ2;H1,z

t ;Z1
t

)]
operates a Bayesian global

cut, then
(
vec
(
H1,w
T

)′
, θ′1

)′
and

(
vec
(
H1,z
T

)′
, θ′2

)′
are a posterior independent.

Note that in a Bayesian global cut, for inference on
(
vec
(
H1,w
T

)′
, θ′1

)′
(or any

function of
(
vec
(
H1,w
T

)′
, θ′1

)′
) we have to neither specify the marginal model with(

vec
(
H1,z
T

)′
, θ′2

)′
nor the prior distribution of

(
vec
(
H1,z
T

)′
, θ′2

)′
. The posterior

inference on any measurable function of
(
vec
(
H1,w
T

)′
, θ′1

)′
can be made on the basis

of the conditional model (defined by p
(
W 1
t |Z1

t , H
1,w
t , θ1,M0

)
and p

(
H1,w
t , θ1|M0

)
)

and the prior distribution of θ1. Note that in the initial cut
(
vec
(
H1,w
t

)′
, θ′1

)′
and

(
vec
(
H1,z
t

)′
, θ′2

)′
are a posterior independent for each t ∈ {1, . . . , T}, i.e.:(

vec
(
H1,w
t

)′
, θ′1

)′
⊥
(
vec
(
H1,z
t

)′
, θ′2

)′
|M0, Y

1
t , for t ∈ {1, . . . , T}.

Thus the Bayesian initial cut allows a complete separation of the inference on(
vec
(
H1,w
t

)′
, θ′1

)′
and

(
vec
(
H1,z
t

)′
, θ′2

)′
. As follows from theorem 3.5 in Florens

and Mouchart (1977) and implication 3.2.5 in Florens, Muchart, Rolin (1990), pp.
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101, in the Bayesian global cut we obtain that

p
(
Y 1
T , θ|M0

)
= p

(
W 1
T |Z1

t , θ1,M0

)
p (θ1|M0) p

(
Z1
T |θ2,M0

)
p (θ2|M0) . (7)

Thus the joint data density p
(
Y 1
T |θ,M0

)
can be factorized as in the classical approach:

p
(
Y 1
T |θ,M0

)
= p

(
W 1
T |Z1

t , θ1,M0

)
p
(
Z1
T |θ2,M0

)
. (8)

Now we consider the model from the point of view of sequential analysis, so we
sequentially factorize the joint data and latent variables density as:

p
(
Y 1
T , H

1
T |θ, Y0, H0

)
=

T∏
t=1

p (yt, ht|Yt−1, Ht−1, θ)

=
T∏
t=1

p (yt|ht, Yt−1, Ht−1, θ) p (ht|Yt−1, Ht−1, θ) .
(9)

Since a dynamic framework is under consideration here, it is natural to define Bayesian
one-shot and sequential cuts. The following definitions are adapted from Osiewalski
and Steel (1996) and Florens, Mouchart, Rolin (1990).

Definition 4 Let (θ′1, θ
′
2)′ be a reparameterization of θ. For a given t ∈ Z the

vector ht is partitioned into
(
hwt
′, hzt

′)′. The pair [(θ1;hwt ;wt) , (θ2;hzt ; zt)] operates a
Bayesian one-shot cut if and only if:

(i) p (θ|M0) = p (θ1|M0) p (θ2|M0) , (10)

(ii) p
(
ht|Y 1

t−1, Ht−1, θ,M0

)
= p

(
hwt |H

1,w
t−1, θ1,M0

)
p
(
hzt |H

1,z
t−1, θ2,M0

)
, (11)

(iii) p
(
wt|zt, H1

t , Y
1
t−1, θ,M0

)
= p

(
wt|zt, θ1, H

1,w
t , Y 1

t−1,M0

)
, (12)

(iv) p
(
zt|H1

t , Y
1
t−1, θ,M0

)
= p

(
zt|θ2, H

1,z
t , Y 1

t−1,M0

)
. (13)

Definition 5 Let (θ′1, θ
′
2)′ be a reparameterization of θ. For each t ∈ Z the vector ht is

partitioned into
(
hwt
′, hzt

′)′. The pair [(θ1;hwT ;wT ) , (θ2;hzT ; zT )] operates a Bayesian
sequential cut if and only if the pair [(θ1;hwt ;wt) , (θ2;hzt ; zt)] operates a Bayesian
one-shot cut for all t.

A Bayesian sequential cut implies a total separation of information about the
parameters and latent variables between the conditional and marginal models and
leads to posterior independence.

Theorem 6 If the pair [(θ1;hwt ;wt) , (θ2;hzt ; zt)] operates a Bayesian sequential cut,
then

(
hw1
′, . . . , hwT

′, θ′1
)′ and (hz1′, . . . , hzT ′, θ′2)′ are a posterior independent.
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Theorem 6 indicates that there is no need to use the full probability density function

p
(
Y 1
T , H

1
T |θ,M0

)
=

T∏
t=1

p (yt, ht|Yt−1, Ht−1, θ), or the joint prior density p (θ|M0) for

the purpose of inference on any function of
(
hw1
′, . . . , hwT

′, θ′1
)′. We can infer about(

hw1
′, . . . , hwT

′, θ′1
)′ basing only on the conditional model and on the prior distribution

of θ1. In other words, the posterior density of the parameters and latent variables
of interest derived from the conditional model "coincides with" the one derived from
the complete model. Obviously, the Bayesian sequential cut is not necessary for it.
Finally, we define the concept of non-causality (analogous to Granger noncausality,
see Granger 1969, Engle, Hendry, Richard 1983).

Definition 7 We say that wt does not cause zt given H
1,z
t and θ2 if and only if

p
(
zt|H1,z

t , Y 1
t−1, θ2,M0

)
= p

(
zt|H1,z

t , Z1
t−1, θ2,M0

)
. (14)

Note that when wt does not cause zt given H1,z
t and θ2, the density

p
(
zt|H1,z

t , Y 1
t−1, θ2,M0

)
does not depend on W 1

t−1. Thus the past of wt does not

influences the conditional distribution of zt given the past of zt, H
1,z
t and θ2. This

concept of non-causality is very similar to that proposed by Osiewalski and Steel
(1996). Here the conditioning is extended to selected latent variables (which in
Bayesian model can be treated as additional parameters).
Now we consider the relationship between initial and sequential cuts. It is interesting
to know the conditions under which an initial cut is also a sequential cut. We can
prove the following theorem, which shows that the Bayesian sequential cut and non-
causality imply the Bayesian initial cut.

Theorem 8 If

(1) the pair [(θ1;hwt ;wt) , (θ2;hzt ; zt)] operates a Bayesian sequential cut over the
sample period {1, . . . , T},

(2) ∀t∈{1,...,T} wt does not cause zt given H
1,z
t and θ2,

then there exists a Bayesian initial cut for the sample period {1, . . . , T}.

Theorem 8 shows the relationship between sequential and initial cuts. The Bayesian
sequential cut and non-causality, given H1,z

t and θ2, imply the Bayesian initial cut.
The basic idea of the proof is that the non-causality condition ensures that the
factorization of the data density implied by the Bayesian sequential cut coincides
with that from the initial cut.
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4 Exogeneity
Following the works of Engle, Hendry, Richard (1983), and Osiewalski and Steel (1996)
we use the term "weak exogeneity" for the concept that validates inference based solely
on the conditional model without taking the marginal model into consideration. In
other words, zt is weakly exogenous for the parameters and latent variables of interest,
if the inference based on the complete process {yt} is the same as the one based on
the conditional process {wt|zt}.

Definition 9 (weak exogeneity) We say that zt is weakly exogenous over the sample
period {1, . . . , T} for a measurable function of H1

T and θ (i.e. f
(
H1
T , θ
)
) if and only

if there exists a reparameterization of θ in θ1 and θ2, as well as a partition of H1
T

into H1,w
T and H1,z

T such that:

(i) a Bayesian one-shot cut is obtained for each t ∈ {1, . . . , T} (with (θ′1, θ
′
2)′ and(

hwt
′, hzt

′)′ ),
(ii) f

(
H1
T , θ
)

= f0

(
H1,w
T , θ1

)
.

Condition (i) gives the separation of information between the conditional and marginal
models, whereas condition (ii) ensures that we can infer about some function of the
parameters and latent variables from the conditional model only.
It is worth noticing that the Bayesian sequential cut (see definition 4) implies weak
exogeneity of zt for f0

(
H1,w
T , θ1

)
.

For predictive inference on wt given zt, weak exogeneity is not sufficient. For the
purpose of conditional forecasting we need to define predictive and strong exogeneity.

Definition 10 (predictive exogeneity) We say that zt is predictively exogenous over
the forecasting period {T+1, . . . , T+s} if and only if there exists a reparameterization
of θ in θ1 and θ2, as well as a partition of H1

T+s into H1,w
T+s and H1,z

T+s such that:

(i) p
(
H1
T , θ|Y 1

T ,M0

)
= p

(
H1,w
T , θ1|Y 1

T ,M0

)
p
(
H1,z
T , θ2|Y 1

T ,M0

)
,

(ii) p
(
HT+1
T+s |H1

T , θ, Y
1
T ,M0

)
=

p
(
HT+1,w
T+s |H

1,w
T , θ1, Y

1
T ,M0

)
p
(
HT+1,z
T+s |H

1,z
T , θ2, Y

1
T ,M0

)
,

(iii) p
(
WT+1
T+s |Z

T+1
T+s , H

T+1
T+s , H

1
T , θ, Y

1
T ,M0

)
=

p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
,

(iv) p
(
ZT+1
T+s |H

T+1
T+s , H

1
T , θ, Y

1
T ,M0

)
= p

(
ZT+1
T+s |H

T+1,z
T+s , H1,z

T , θ2, Y
1
T ,M0

)
.
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Treating Y 1
T and M0 as initial conditions for prediction, we can say that vectors(

vec
(
H1,w
T

)′
, θ′1

)′
and

(
vec
(
H1,z
T

)′
, θ′2

)′
are a prior independent. The second

condition says that the predictive distribution of HT+1
T+s is factorized into a product

such that the predictive distribution of HT+1,w
T+s does not depend on θ2 and H1,z

T ,

whereas the predictive distribution of HT+1,z
T+s does not depend on θ1 and H1,w

T . The
last two conditions in definition 10 imply a factorization of the joint predictive density
for WT+1

T+s and ZT+1
T+s :

p
(
WT+1
T+s , Z

T+1
T+s |H

T+1
T+s , H

1
T , θ, Y

1
T ,M0

)
=

p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
×

×p
(
ZT+1
T+s |H

T+1,z
T+s , H1,z

T , θ2, Y
1
T ,M0

)
.

Predictive exogeneity permits conditional Bayesian forecasting of WT+1
T+s and HT+1,w

T+s

from the conditional model only, and treating ZT+1
T+s as if it were fixed (without loss

of information). We have:

p
(
Y T+1
T+s , H

T+1
T+s |Y 1

T ,M0

)
=∫

Θ×H

[
p
(
WT+1
T+s |Z

T+1
T+s , H

T+1
T+s , H

1
T , θ, Y

1
T ,M0

)
× p

(
ZT+1
T+s |H

T+1
T+s , H

1
T , θ, Y

1
T ,M0

)
×

×p
(
HT+1
T+s |H1

T , θ, Y
1
T ,M0

)
× p

(
H1
T , θ|Y 1

T ,M0

)]
dθ dH1

T .

Under predictive exogeneity:

p
(
Y T+1
T+s , H

T+1
T+s |Y 1

T ,M0

)
=∫

Θ×H

[
p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
×

×p
(
ZT+1
T+s |H

T+1,z
T+s , H1,z

T , θ2, Y
1
T ,M0

)
×

×p
(
HT+1,w
T+s |H

1,w
T , θ1, Y

1
T ,M0

)
× p

(
HT+1,z
T+s |H

1,z
T , θ2, Y

1
T ,M0

)
×

×p
(
H1,w
T , θ1|Y 1

T ,M0

)
× p

(
H1,z
T , θ2|Y 1

T ,M0

)]
dθ dH1

T ,

thus
p
(
Y T+1
T+s , H

T+1
T+s |Y 1

T ,M0

)
=∫

Θ×H

[
p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
×

×p
(
HT+1,w
T+s |H

1,w
T , θ1, Y

1
T ,M0

)
× p

(
H1,w
T , θ1|Y 1

T ,M0

)
×

× p
(
ZT+1
T+s , H

T+1,z
T+s , H1,z

T , θ2|Y 1
T ,M0

)]
dθ dH1

T ,
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consequently

p
(
Y T+1
T+s , H

T+1
T+s |Y 1

T ,M0

)
=∫

Θ×H

[
p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
×

× p
(
HT+1,w
T+s |H

1,w
T , θ1, Y

1
T ,M0

)
× p

(
H1,w
T , θ1|Y 1

T ,M0

)]
dθ dH1,w

T ×

×p
(
ZT+1
T+s , H

T+1,z
T+s |Y 1

T ,M0

)
and

p
(
WT+1
T+s , H

T+1,w
T+s |Z

T+1
T+s , H

T+1,z
T+s , Y 1

T ,M0

)
=

p
(
Y T+1
T+s , H

T+1
T+s |Y

1
T ,M0

)
p
(
ZT+1
T+s , H

T+1,z
T+s |Y

1
T ,M0

) =

∫
Θ×H

[
p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
×

× p
(
HT+1,w
T+s |H

1,w
T , θ1, Y

1
T ,M0

)
× p

(
H1,w
T |θ1, Y

1
T ,M0

)]
dθ1 dH

1,w
T .

Finally, we obtain

p
(
WT+1
T+s , H

T+1,w
T+s |Z

T+1
T+s , Y

1
T ,M0

)
= p

(
WT+1
T+s , H

T+1,w
T+s |Z

T+1
T+s , H

T+1,z
T+s , Y 1

T ,M0

)
=∫

Θ×H

[
p
(
WT+1
T+s |Z

T+1
T+s , H

T+1,w
T+s , H1,w

T , θ1, Y
1
T ,M0

)
×

× p
(
HT+1,w
T+s |H

1,w
T , θ1, Y

1
T ,M0

)
× p

(
H1,w
T |θ1, Y

1
T ,M0

)]
dθ1 dH

1,w
T .

That is, the full predictive density p
(
Y T+1
T+s , H

T+1
T+s |Y 1

T ,M0

)
is not necessary for

forecasting ZT+1
T+s . Forecasts of Z

T+1
T+s and HT+1,z

T+s can be constructed from the

marginal model for ZT+1
T+s and HT+1,z

T+s and then forecasts of WT+1
T+s and HT+1,w

T+s can
be obtained from the conditional model (without loss of relevant sample information).

Definition 11 (strong exogeneity) We say that zt is strongly exogenous over the
sample period {1, . . . , T} for f

(
H1
T , θ
)
and for prediction over {T + 1, . . . , T + s}

if and only if

(i) zt is weakly exogenous over the sample period {1, . . . , T} for f
(
H1
T , θ
)
,

(ii) zt is predictively exogenous over the forecasting period {T + 1, . . . , T + s}.

It is well known that in the classical approach strong exogeneity requires both
weak exogeneity and Granger non–causality (see Engle . 1983). Similarly, but not
identically, is in the Bayesian approach. We can prove the following theorem:
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Theorem 12 If

(i) ∀t∈{1,...,T+s} the pair [(θ1;hwt ;wt) , (θ2;hzt ; zt)] operates a Bayesian one-shot cut,

(ii) ∀t∈{1,...,T+s} wt does not cause zt given H
1,z
t and θ2,

then zt is strongly exogenous over the period {1, . . . , T} for f0

(
H1,w
T , θ1

)
and for

prediction over {T + 1, . . . , T + s}.

If there exists a Bayesian sequential cut and non-causality given H1,z
t and

θ2 for t ∈ {1, . . . , T + s}, we can write p
(
ZT+1
T+s , H

T+1,z
T+s |H

1,z
T , θ2, Y

1
T ,M0

)
=

= p
(
ZT+1
T+s , H

T+1,z
T+s |Z1

T , H
1,z
T , θ2,M0

)
.

Furthermore, we have:

p
(
H1,z
T , θ2|Y 1

T ,M0

)
∝ p (θ2|M0)

T∏
t=1

p
(
zt|H1,z

t , Z1
t−1, θ2,M0

)
p
(
hzt |H

1,z
t , θ2,M0

)
,

thus
p
(
H1,z
T , θ2|Y 1

T ,M0

)
= p

(
H1,z
t , θ2|Z1

T ,M0

)
,

and, consequently,

p
(
ZT+1
T+s , H

T+1,z
T+s |Y 1

T ,M0

)
=∫

Θ×Hz

[
p
(
ZT+1
T+s , H

T+1,z
T+s |Z1

T , H
1,z
T , θ2,M0

)
p
(
H1,z
T , θ2|Z1

T ,M0

)]
dθ2 dH

1,z
T .

It follows that the marginal model suffices (without a loss of information) for predictive
inference on zt and hzt . On the other hand, strong exogeneity of zt permits to forecast
wt and H

T+1,w
T+s from the conditional model, given the forecast of zt from the marginal

model.

5 Exogeneity in the VECM-SV model
Let us consider a simple vector autoregressive (VAR) model with multivariate
stochastic volatility, which can be written in the vector error correction mechanism
(VECM) form. The VECM form for the 3× 1 vector time series process ut is:

yt − δ = R (yt−1 − δ) + αβ′ut−1 + ξt, t = 1, 2, . . . , T (15)

where yt = ∆ut = ut − ut−1, R is a 3 × 3 matrix of the autoregressive coefficients.
It is assumed that ut is integrated of order one (thus yt ∼ I(0)) and there exists
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one cointegrating relation (r = 1) with known cointegrating vector β, so that
β′ut−1 = ECMt−1 is the error correction mechanism. More specifically:

 y1,t

y2,t

y3,t

−
 δ1
δ2
δ3

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 y1,t−1

y2,t−1

y3,t−1

−
 δ1
δ2
δ3

+

+

 α1

α2

α3

ECMt−1 +

 ξ1
ξ2
ξ3

 , t = 1, . . . , T.

The 3 × 1 vector of errors, ξt, follows a trivariat SV process. We assume that
conditionally on the latent variable vector, ht, and the parameter vector, θ, ξt follows a
trivariate Gaussian distribution with mean vector 0[3×1] and covariance matrix Σt, i.e.
ξt|ht, θ ∼ N

(
0[3×1],Σt

)
, t = 1, . . . , T . We employ the specification of the conditional

covariance matrix as in Tsay (2002). Thus, the Cholesky decomposition is used:

Σt = LtGtL
′
t, (16)

where Lt is a lower triangular matrix with unitary diagonal elements, and Gt is a
diagonal matrix with positive diagonal elements:

Lt =

 1 0 0
q21,t 1 0
q31,t q32,t 1

 , Gt =

 q11,t 0 0
0 q22,t 0
0 0 q33,t

 .
Hence, we have

Σt =

 q11,t q11,tq21,t q11,tq31,t

q11,tq21,t q11,tq
2
21,t + q22,t q11,tq21,tq31,t + q22,tq32,t

q11,tq31,t q11,tq21,tq31,t + q22,tq32,t q11,tq
2
31,t + q22,tq

2
32,t + q33,t

 , (17)

where {qij,t}, and {ln qjj,t} (i, j = 1, 2, 3, i > j), as in the univariate SV, are standard
univariate autoregressive processes of order one, namely:

ln qjj,t − γjj = φjj (ln qjj,t−1 − γjj) + σjjηjj,t, j = 1, 2, 3,

qij,t − γij = φij (qij,t−1 − γij) + σijηij,t, i > j,

ηt = (η11,t, η22,t, η33,t, η21,t, η31,t, η32,t)
′
, {ηt} ∼ iiN6

(
0[6×1], I6

)
, t ∈ {1, . . . , T},

ht = (q11,t, q22,t, q33,t, q21,t, q31,t, q32,t)
′
.

Note that positive definiteness of Σt is achieved by modelling ln qjj,t instead of qjj,t
(Σt is positive defined if qjj,t > 0 for j = 1, 2, 3). If |φij | < 1 (i, j = 1, 2, 3; i ≥ j)

A. Pajor
CEJEME 3: 49-73 (2011)

60



A Bayesian Analysis of Exogeneity . . .

then {ln qjj,t} and {qij,t} are covariance stationary and their marginal distributions
are Normal with mean γij and variance σ2

ij/
(
1− φ2

ij

)
. It can easily be shown that if

the absolute values of φij are less than one, the SV process is a white noise (see Pajor
2005a).
Thus, the conditional distribution of yt (given the past of the process Yt−1, the
parameters and the latent variable vector, ht) is a trivariate Normal with mean vector
µt = δ +R (yt−1 + δ) + αECMt−1 and covariance matrix Σt:

(y1,t, y2,t, y3,t)
′ |δ, α,R, ht, Yt−1 ∼ N3 (µt,Σt) .

We can partition yt and Σt, conformably, into:

yt =
[
zt
wt

]
andΣt =

[
Σ11,t Σ12,t

Σ21,t Σ22,t

]
, (18)

where zt is a scalar: zt = y1,t, and wt has two elements: wt = (y2,t, y3,t)
′ . After

partitioning, Equation (15) becomes:[
zt
wt

]
=

[
δ1
δ−1

]
+
[
R11 R12

R21 R22

]([
zt−1

wt−1

]
−
[

δ1
δ−1

])
+

+
[

α1

α−1

]
ECMt−1 +

[
ε1,t

ε2,t

]
,

(19)

where δ−1 = (δ2, δ3), α−1 = (α2, α3), ε2,t = (ξ2,t, ξ3,t). The VECM form in (19) can
be reparameterized as the conditional and marginal distributions in (12) and (13):

zt − δ1 = R11 (zt−1 − δ1) +R12 (wt−1 − δ−1) + α1ECMt−1 + ε1,t (20)

wt − δ−1 = (R22 −DtR12) (wt−1 − δ−1) + (R21 −DtR11) (zt−1 − δ1) +
+ (α−1 −Dtα1)ECMt−1 +Dt (zt − δ1) + (ε2,t −Dtε1,t) ,

(21)

where [
ε1,t

ε2,t −Dtε1,t

]
|ht ∼ N3

(
0,
[

Σ11,t 0
0 Σ22.1,t

])
,

Σ22.1,t = Σ22,t − Σ21,tΣ−1
11,tΣ12,t,

Dt = Σ21,tΣ−1
11,t =

[
q21,t

q31,t

]
, Σ11,t = [q11,t] , Σ22,t =

[
q22,t q22,tq32,t

q22,tq32,t q33,t + q22,tq
2
32,t

]
.

The parameters and latent variables of the conditional model (21) are(
vec

(
H1,w
T

)′
, θ′1

)′
=

(
(R21 −D1R11)′ , . . . , (R21 −DTR11)′ ,

vec (R22 −D1R12)′ , . . . , vec (R22 −DTR12)′ ,
(α−1 −D1α1)′ , . . . , (α−1 −DTα1)′ , D′1, . . . , D

′
T ,

vec (Σ22.1,1)′ , . . . , vec (Σ22.1,T )′ , δ1, δ′−1, θ
h,w
1

′)′
,
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and those of the marginal model (20) are(
vec

(
H1,z
T

)′
, θ′2

)′
=
(

Σ11,1, . . . ,Σ11,T , δ1, δ
′
−1, R11, R12, α1, θ

h,z
2

′)′
,

where θh,wt and θh,zt are vectors of parameters in the equations for h1,w
t and h1,z

t ,
respectively.
It must be noticed that the conditional and marginal models contain two completely
separate sets of latent variables. Thus, under some additional assumptions, we can
make efficient inference about the parameters and latent variables in the conditional
model, and the marginal model can be neglected due to no information loss.

Lemma 13 If

(i) R11 = 0, R12 = 0, α1 = 0, δ1 = 0,

(ii)
(
δ−1, R

′
21, vec (R22)′ , α′−1, θ

h,w
1

′)′
and θh,z1 are a priori independent,

or

(i) δ1 = 0, ∀t∈{1,...,T} Dt = 0,

(ii)
(
δ′−1, R

′
21, vec (R22)′ , α′−1, θ

h,w
1

′)′
and

(
R11, R12, α1, θ

h,z
2

′)′
are a priori

independent,

then zt is weakly exogenous for f0

(
H1,w
T , θ1

)
.

The latent variables in the conditional process do not appear in the marginal process
for zt. Furthermore, the latent variables characterizing the marginal (H1,z

T ) and
the conditional (H1,w

T ) processes are variation free. The prior independence of the

parameters θ1 and θ2 ensures that
(
vec(H1,w

T )′, θ′1
)′

and
(
vec(H1,z

T )′, θ′2
)′

are a priori
independent. Thus, assumptions (i) and (ii) in lemma 13 are sufficient for the Bayesian

sequential cut and, consequently, for weak exogeneity of zt for
(
vec(H1,w

T )′, θ′1
)′
.

Conditions (i) and (ii) in lemma 13 are sufficient but not necessary for weak
exogeneity. In lemma 13 we present an alternative set of sufficient conditions

that guarantee weak exogeneity of zt for
(
vec(H1,w

T )′, θ′1
)′ (

θ1, H
1,w
T

)
: Dt = 0

(Dt 6= 0 implying contemporaneous conditional correlation between wt and zt),

t = 1, . . . , T , δ1 = 0, and the prior independence of
(
δ′−1, R

′
21, vec (R22)′ , α′−1, θ

h,w
1

′)′
and

(
R11, R12, α1, θ

h,z
1

′)′
. It is worth stressing that the Bayesian concept of weak

exogeneity requires the prior independence between θ1 and θ2, which in the VECM-SV
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model implies the prior independence of
(
vec(H1,w

T )′, θ′1
)′

and
(
vec(H1,z

T )′, θ′2
)′
,

and naturally leads to the posterior independence of
(
vec(H1,w

T )′, θ′1
)′

and(
vec(H1,z

T )′, θ′2
)′
.

Once conditions (i) and (ii) in lemma 13 are satisfied, the conditional model of wt
given zt assumes the form:[

y2,t

y3,t

]
−
[
δ2
δ3

]
=

[
r22 r23

r32 r33

]([
y2,t−1

y3,t−1

]
−
[
δ2
δ3

])
+
[
q21,t

q31,t

]
y1,t+

+
[
β2

β3

]
y1,t−1 +

[
α2

α3

]
ECMt−1 +

[
ξ2,t
ξ3,t

]
,

(22)
where (ξ2,t, ξ3,t)′ is the bivariate SV process, t = 1, 2, . . . , T .
When conditions (iii) and (iv) in lemma 13 hold, Equations (20) and (21) can be
written as:

zt = R11zt−1 +R12 (wt−1 − δ−1) + α1ECMt−1 + ε1,t, (23)

wt − δ−1 = R22 (wt−1 − δ−1) +R21zt−1 + α−1ECMt−1 + ε2,t, (24)

Note that conditions (i) and (ii) in lemma 13 remain the same for strong exogeneity of

zt for
(
vec(H1,w

T )′, θ′1
)′
. However, conditions (iii) and (iv) are not sufficient for strong

exogeneity of zt for
(
vec(H1,w

T )′, θ′1
)′
. To ensure it, we must assume, in addition, that

α1 = 0 and R12 = 0.

Lemma 14 If

(i) δ1 = 0, ∀t∈{1,...,T+s} Dt = 0,

(ii) α1 = 0, R12 = 0,

(iii)
(
δ′−1, R

′
21, vec (R22)′ , α′−1, θ

h,w
1

′)′
and

(
R11, θ

h,z
2

′)′
are a priori independent,

then zt is strongly exogenous over the period {1, . . . , T} for f0

(
H1,w
T , θ1

)
and for

prediction over {T + 1, . . . , T + s}.

It must be emphasized that these strong exogeneity conditions are only sufficient,
and not necessary. It also seems that they are rather restrictive. In practice, the
conditions for exogeneity should be tested. Unfortunately, tests of weak or strong
exogeneity hypothesis require the joint model to be specified.
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6 An empirical illustration

For an empirical illustration, let us consider two average daily main Polish official
exchange rates: the zloty (PLN) values of the US dollar, and the zloty (PLN)
values of the euro, over the period from January 3, 2005 to September 30, 2011
(downloaded from the website of the National Bank of Poland). The dataset of
the daily logarithmic growth rates (expressed in percentage points), consists of 1662
observations (for each series). The first observation is used to construct initial
conditions, thus T = 1661. It is well known that the Polish official exchange rates are
linked to the exchange rates of the international Forex market. Thus, while building
time-series models for the two Polish exchange rates (EUR/PLN (x2,t) and USD/PLN
(x3,t)), we introduce some extra variable from the international Forex market – the
euro value of the US dollar, EUR/USD (x1,t, downloaded from http://stooq.com.).
The relationship: (EUR/PLN)/(USD/PLN) ≈ EUR/USD is introduced by assuming
that this relation (in log terms) is a cointegration equation in the sense of Engle
and Granger (1987). This yields the cointegrating vector (1,−1,−1) and the long-
run (equilibrium) relationship lnx2,t − lnx3,t = lnx1,t. The assumption that lnx1,t,
lnx2,t and lnx3,t are cointegrated has been checked informally using the Phillips and
Perron test applied to the series ECMt = 100 (lnx2,t − lnx3,t − lnx1,t). The Phillips
and Perron statistic (−39.96) supports covariance stationarity.
The vector of growth rates, yt = (y1,t, y2,t, y3,t) , where yj,t = 100 (lnxj,t − lnxj,t−1)
(j = 1, 2, 3), is modelled within the VECM framework defined in (15):

yt − δ = R (yt−1 − δ) + αECMt−1 + ξt, t = 1, . . . , T,

where {ξt} is the trivariate SV process, and T denotes the number of the observations
used in the estimation. Note that in this model, the EUR/USD exchange rate is
treated as an endogenous variable and is modelled jointly with the remaining variables.
An alternative method of introducing any variables that would be related to the
international Forex market is proposed by Osiewalski and Pipień (2004). However,
they consider MGARCH structures with no latent processes, and also they assume
exogeneity of the EUR/USD exchange rate without testing it.
To obtain the Bayesian model we need to specify a prior distribution of the parameters.
For all elements of δ, α and R we assume the multivariate standard Normal prior
N15(0, I), truncated by the restriction that all eigenvalues ofR lie inside the unit circle.
For the remaining parameters we assume the following prior distributions (see Pajor
2006): (γij , φij)

′ ∼ N2(0, 102 · I) · I(−1,1)(φij), σ−2
ij ∼ G(1, 0.005), ln qii,0 ∼ N1(0, 102)

for i, j ∈ {1, 2, 3} and i ≥ j; qij,0 ∼ N1(0, 102) for i, j ∈ {1, 2, 3}, i > j, whereNn(a,B)
denotes the n-variate Normal distribution with mean vector a and covariance matrix
B, G(a, b) denotes the Gamma distribution with shape parameter a and precision
parameter b, the mean being a

b , and I(−1,1)(·) is the indicator function of the interval
(−1, 1). The prior distributions used are relatively non-informative.
The data are plotted in Figure 1, 2 and 3. It can be seen from the graphs that the
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growth rates seem to be centered around zero, with time-varying volatility and the
presence of outliers. The daily exchange rates are more volatile in the period of the
financial crisis 2008-2009. However, the volatility of the official exchange rates of
the National Bank of Poland is higher than that of the EUR/USD exchange rates.
Summary statistics for the time series are shown in Table 1. The arithmetic means
of the growth rates of the official Polish exchange rates are positive, but the standard
deviations are relatively high. We see that the kurtosis (much larger than 3) suggests
that distributions of the growth series are leptokurtic. As expected, the EUR/PLN
and USD/PLN exchange rates are positively correlated.
All presented results were obtained with the use of the Metropolis and Hastings
algorithm within the Gibbs sampler using 106 iterations after 5 · 104 burn-in Gibbs
steps (see Gamerman 1997, Tsay 2002 and Pajor 2005a, 2007 for details). The
Bayes factors were calculated using the Newton and Raftery method (see Newton
and Raftery, 1994). Although the harmonic mean estimator is sensitive to outliers
with small likelihood values, it is stable enough to provide a rough approximation of
the Bayes factor of the contrasting hypotheses.

Table 1: Summary statistics of yi,t

USD/PLN EUR/PLN EUR/USD
mean 0.0047 0.0050 -0.0001

std dev. 0.0280 0.0182 0.0166
skewness 0.4802 0.2530 0.1858
kurtosis 7.6101 8.8404 6.1284

minimum -6.7485 -4.5895 -3.0031
maximum 6.2677 4.1467 4.6208

correlations
USD/PLN 1 0.7502 -0.4431
EUR/PLN 1 -0.1641
EUR/USD 1

Table 2 reports the posterior means and standard deviations (in parentheses) of all
parameters of the VECM-SV model. The main posterior characteristics of matrix
R indicate that the daily growth rates of EUR/PLN (y2,t) and USD/PLN (y3,t)
significantly depend on the past of the daily growth rates of EUR/USD (y1,t−1). In
other words, the main Polish exchange rates are affected by the past movements of
the Forex market. Obviously, the Forex market is insignificantly affected by the past
movement of the Polish market.
The posterior means of αi (i = 1, 2, 3) are equal to −0.090, −0.355 and 0.611,
respectively. The signs of the posterior means of αi, for i = 2, 3, are correct with
interpretation in terms of the error correction mechanism. The posterior standard
deviations of α1, α2 and α3 are equal to 0.054, 0.044 and 0.057, respectively.
These results indicate that the equilibrium correction error ECMt−1 "significantly"
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influences only on (y2,t, y3,t)
′.

Figure 1: Daily growth rates of USD/PLN (January 3, 2005 – September 30, 2011)
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Figure 2: Daily growth rates of EUR/PLN (January 3, 2005 – September 30, 2011)
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Figure 3: Daily growth rates of EUR/USD (January 3, 2005 – September 30, 2011)
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Table 2: The posterior means and standard deviations (in parentheses) of the
parameters of the trivariate VECM-SV model

δ1 δ2 δ3 r11 r12 r13 r21 r22 r23 r31
0.0172 -0.0213 -0.0410 -0.0938 -0.0288 -0.0195 -0.3031 -0.0602 0.0323 -0.3043

(0.0127) (0.012) (0.016) (0.049) (0.0396) (0.0294) (0.0375) (0.0286) (0.0206) (0.0491)

r32 r33 γ11 φ11 σ2
11 γ22 φ22 σ2

22 γ33 φ33

-0.0427 0.0299 -0.5204 0.9969 0.0046 -1.2239 0.9910 0.0238 -1.4775 0.9966
(0.0381) (0.0277) (3.1028) (0.0027) (0.0015) (1.5352) (0.0049) (0.0067) (3.7415) (0.0032)

σ2
33 γ21 φ21 σ2

21 γ31 φ31 σ2
31 γ32 φ32 σ2

32

0.0127 -0.0302 -0.1935 0.0171 -0.3525 -0.0784 0.0174 1.0592 0.2656 0.0138
(0.0048) (0.0201) (0.2229) (0.0073) (0.0244) (0.2535) (0.0105) (0.0177) (0.4336) (0.009)

ln q11,0 ln q22,0 ln q33,0 q21,0 q31,0 q32,0 α1 α2 α3

-1.1368 -0.9270 -2.6033 4.5891 -3.0127 0.9122 -0.0902 -0.3550 0.6112
(0.321) (0.4668) (0.482) (7.7703) (8.6023) (4.5254) (0.0539) (0.0436) (0.0569)

Figure 4: Histograms of the posterior distributions for αi, i = 1, 2, 3
p (α1|y) p (α2|y) p (α3|y)
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The posterior mean and standard deviation of γ31 indicate that matrix Dt (more
precisely, q31,t) is significantly different from 0. The formal Bayesian testing (not
presented here) would lead to rejection of the null hypothesis that Dt = 0 for
t = 1, 2, . . . , T .
Table 3 reports the posterior means and standard deviations (in parentheses) of the
parameters of the conditional model (22). The main conclusions remain the same.

Suppose that some function of
(
vec(H1,w

T )′, θ′1
)′

is of interest. To test the sufficient
conditions (presented in lemma 13, i-ii) for the strong exogeneity of the EUR/USD
exchange rate we use the Lindley type test (based on the highest posterior density
region, see Box and Tiao, 1973, Osiewalski and Steel, 1993) and the Bayes factor
(BF, in favor of the model with exogeneity of the EUR/USD exchange rate). We
set the null and alternative hypotheses as: H0: θ0 = 0 and H1: θ0 6= 0, where
θ0 is the k × 1 vector (θ0 = (δ1, α1, r11, r12, r13)′, k = 5). Then, a posterior, the
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Table 3: The posterior means and standard deviations (in parentheses) of the
parameters of the conditional bivariate VECM-SV model

δ1 δ2 r11 r12 r21 r22 γ22 φ22 σ2
22

-0.0156 -0.0296 -0.0618 0.0315 -0.0524 0.0227 -1.2258 0.9910 0.0236
(0.0111) (0.0132) (0.0287) (0.0207) (0.0359) (0.026) (1.5365) (0.0049) (0.0068)

γ33 φ33 σ2
33 γ32 φ32 σ2

32 γ21 φ21 σ2
21

-1.4818 0.9966 0.0125 1.0591 0.2581 0.0145 -0.0305 -0.1886 0.0171
(3.7611) (0.0032) (0.0048) (0.0319) (0.4296) (0.0092) (0.0196) (0.2347) (0.0073)

γ31 φ31 σ2
31 α2 α3 β2 β3 ln g22,0 ln g33,0

-0.3526 -0.0951 0.0174 -0.3581 0.5802 -0.3071 -0.3368 -0.8795 -2.5421
(0.0238) (0.2577) (0.0104) (0.0438) (0.054) (0.0377) (0.0464) (0.4621) (0.4893)

q32,0 q21,0 q31,0

0.8413 2.8599 -3.0597
(4.5066) (7.4889) (8.3435)

quadratic form: F (θ0) = [θ0 − E (θ0|y)]′ V −1 (θ0|y) [θ0 − E (θ0|y)], where E (θ0|y)
and V (θ0|y) are respectively the vector of posterior means of θ0 and the posterior
covariance matrix (in the notation we omit the initial conditions), is approximately
(T → ∞) χ2 distributed with k degrees of freedom. We obtain F (0) = 8.943, and
p (F (θ0) > F (0)|y) ≈ 0.11. Thus, the sufficient conditions of the strong exogeneity
are not rejected by the data (see Figure 5). Also, the decimal logarithm of the
Bayes factor in favor of the hypothesis that θ0 = 0 (equal to 4.92) provides the same
conclusion.
A different result is obtained when we examine whether θ01 = 0, where
θ01 = (δ1, r11, r12, r13, γ21, φ21, σ21, γ31, φ31, σ31)′ (see conditions (iii) and (iv) in
lemma 13). For the Lindley type test F (0) = 34.372, that is p (F (θ01) > F (0)|y) ≈
≈ 0.00016. The decimal logarithm of the Bayes factor in favor of the hypothesis that
θ01 = 0 is equal to −172.59. Thus the formal Bayesian testing leads to rejection of
the restriction θ01 = 0.
It is worth mentioning that the test result of the hypothesis that θ0 = 0 depends on the
source of data (the euro values of the US dollar). For example, when we use the data
downloaded from www.federalreserve.gov/releases/, the sufficient conditions of
the exogeneity are rejected by the data: F (0) = 17.913, and p (F (θ0) > F (0)|y) ≈
≈ 0.0031. It is very important to stress that this test result does not exclude the
possibility of exogeneity.
For our data the inference about the conditional correlation coefficients and individual
volatility of each time series (measured by the conditional standard deviation) is very
similar in the full (complete) model (15) and in the conditional model (22). The
time plots of conditional correlation between the growth of rates of USD/PLN and
EUR/PLN (for each t = 1, 2, . . . , T ; T = 1661) are presented in Figure 6, where the
upper line represents the posterior mean plus the standard deviation, and the lower
one - the posterior mean minus the standard deviation. It can be seen from the graph
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Figure 5: Histogram of the posterior distribution for F (θ0). The black square
represents F (0)
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Figure 6: Conditional correlation coefficients between daily growth rates of USD/PLN
and EUR/PLN (posterior mean ± standard deviation)
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that these models lead to very similar inferences about the dynamics of the conditional
correlations between the growth of rates of the USD/PLN and EUR/PLN. The models
clearly exhibit volatility clustering phenomenon and produce volatility peaks at the
same time (see Figure 7 and 8). These results are consistent with the test result for
exogeneity of the EUR/USD exchange rate.
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Figure 7: Posterior means of the conditional standard deviations for USD/PLN
(posterior mean ± standard deviation)
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Figure 8: Posterior means of the conditional standard deviations for EUR/PLN
(posterior mean ± standard deviation)
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7 Conclusions

In the present paper the concept of exogeneity in models with latent variables is
presented. The Bayesian exogeneity concept as defined here validates the use of the
conditional model (as a reduction of the complete model) for inference about the
parameters of interest and some latent variables. For the purpose of conditional
forecasting we define predictive and strong exogeneity. The theory is applied to
the VECM-SV model for the main official Polish exchange rates: USD/PLN and
EUR/PLN, with the EUR/USD exchange rates from the international Forex market.
The sufficient conditions of strong exogeneity of the EUR/USD exchange rates are
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not rejected by the data. The same main posterior inferences in the case of the joint
(complete) model and in the conditional model alone, confirm the results of formal
Bayesian hypothesis testing.
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