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Abstract

In the study we introduce an extension to a stochastic volatility in mean
model (SV-M), allowing for discrete regime switches in the risk premium
parameter. The logic behind the idea is that neglecting a possibly regime-
changing nature of the relation between the current volatility (conditional
standard deviation) and asset return within an ordinary SV-M specification may
lead to spurious insignificance of the risk premium parameter (as being 'averaged
out’ over the regimes). Therefore, we allow the volatility-in-mean effect to
switch over different regimes according to a discrete homogeneous two-state
Markov chain. We treat the new specification within the Bayesian framework,
which allows to fully account for the uncertainty of model parameters, latent
conditional variances and hidden Markov chain state variables. Standard
Markov Chain Monte Carlo methods, including the Gibbs sampler and the
Metropolis-Hastings algorithm, are adapted to estimate the model and to
obtain predictive densities of selected quantities. Presented methodology is
applied to analyse series of the Warsaw Stock Exchange index (WIG) and its
sectoral subindices. Although rare, once spotted the switching in-mean effect
substantially enhances the model fit to the data, as measured by the value of
the marginal data density.
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1 Introduction

Although the idea of a compensation to a risk-averse investor for holding a risky asset
appears theoretically sound and intuitively appealing, extensive empirical research
has been unable to establish a convincing positive relationship between the expected
returns and volatility. Particularly, the abounding literature exploiting various
specifications of the ARCH-in-Mean (ARCH-M) structure of Engle, Lilien, Robins
(1987), has provided evidence of both a positive and a negative risk-return tradeoff;
see, for instance, Nelson (1991), Glosten, Jagannathan, Runkle (1993), Scruggs
(1998) and N’dri (2008) for more references. Such perplexing results have spurred
the researchers to investigate a GARCH-in-Mean (GARCH-M) model with the risk
premium parameter following a random walk in order to detect a possibly time-varying
pattern of the risk-return relationship; see Chou, Engle, Kane (1992), Fiszeder and
Kwiatkowski (2005a), (2005b). In the meantime, Backus and Gregory (1993) have
made an attempt to unravel the issue of the sign of the risk premium parameter within
some theoretical economic model and concluded that the theory does not guarantee
the relation between conditional mean of excess returns (the returns net of the risk-free
rate) and time-varying volatility to be either an increasing or even monotonic function
of the latter. In search of a more statistical premise of the risk premium Osiewalski
and Pipien (2000) and Pipieni and Osiewalski (2001) develop yet another GARCH-M
specification, in which the noise term in the observation equation is modelled with
a skewed t-distribution. Their structure is able to separate potentially two formal,
statistical sources of the in-mean effect: skewness of the conditional distribution and
the location of its mode. The empirical results, however, yet again provided evidence
of insignificant GARCH-in-Mean effect. Quite apart from the GARCH literature,
there has appeared a sole study in which a stochastic volatility (SV) counterpart of
the GARCH-M structure has been proposed, i.e. the SV-M model of Koopman and
Hol Uspensky (2002). Most probable reason for such a sizeable disproportion in the
attention paid to the two different model classes is that the estimation of the SV
structure is less straightforward, on account of the presence of a hidden volatility
process.

In the paper we revisit the volatility-in-mean effect, yet in search of its possibly
switching nature. We formulate a new stochastic volatility model, incorporating the
interdependence between the current volatility and stock market return, and allowing
for its discrete shifts over time. There is a simple line of reasoning behind our concept.
Namely, if the ’true’ risk premium features different states (regimes), then considering
an in-mean model with a constant risk premium parameter may lead to its spurious
insignificance. Negligence of the regime-changing pattern may lead to the results that
are somewhat ’averaged out’ over the regimes. Therefore, we suggest that the risk-
return parameter be subject to discrete switches, governed by a two-state, homogenous
and ergodic Markov process, much in the vein of the seminal work of Hamilton (1989).
The final product constitutes a Stochastic Volatility Markov Switching in Mean model,
or SV-MS-M in short.
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The main thrust of our work is to find out whether the risk-return interrelationship
may display switching pattern. Therefore, three SV specifications are under study:
a basic stochastic volatility model, a SV-M model similar to the one introduced by
Koopman and Hol Uspensky (2002), and, finally, a new regime-switching construction.
The latter, if the switching phenomenon is revealed, further serves to characterize
the discerned regimes. Lastly, the three structures are examined in respect of their
prediction abilities.

As regards the estimation of each model, we resort to the Bayesian inference rather
than the classical (i.e. non-Bayesian) approach. Although a maximum likelihood
treatment of the SV-MS-M model seems feasible (extending, for example, the
technique presented by Koopman and Hol Uspensky 2002, so as to account for the
presence of an underlying hidden Markov chain), the Bayesian methodology appears
more attractive on several counts. First and foremost, it does take the uncertainty
inherent to all the unknown quantities of the model into account. In the regime-
switching models (or, generally, the mixture models) the argument gains even more
weight (as aptly recognized and explicated by Gértner 2007) due to uncertainty
inherent to the mixture components indices. Secondly, Bayesian treatment of
the latent variables (the conditional volatilities and state variables) as additional
parameters is far more tractable than the way the classical approach copes with
them. Moreover, an appropriate choice of the prior distributions (so that they are
conjugate to their posterior conditional counterparts), enables us to employ standard
MCMC techniques, such as the Gibbs sampler and the Metropolis-Hastings algorithm,
to sample from the joint posterior and predictive distributions. Finally, the Bayesian
perspective provides a natural approach to model comparison in terms of the in-
sample fit, by means of the value of the marginal data density, evaluated for each
considered specification.

There have been several previous attempts to introduce hidden Markov process into
stochastic volatility structure. These, however, have always aimed at modelling
discrete changes solely in the log-volatility parameters, mostly the intercept, see
So, Lam, Li (1998), Smith (2000), Kalimipalli and Susmel (2001), Valls Pereira
(2004), Casarin (2003), Shibata and Watanabe (2005), Carvalho and Lopes (2006),
Kwiatkowski (2009a), (2009b). On the other hand, the present paper employs the
idea of the Markov switching mechanism in a different context, hence contributing to
the vein of combining the Markov process with SV structures.

The remainder of the paper is organized as follows. In the following section we
present the SV-MS-M model in more detail. The estimation procedure, Bayesian
forecasting and model comparison are discussed in Section [3| Presented methodology
is illustrated with an empirical study in Section [4 in which ten time series of daily
logarithmic rates of return are under consideration: returns on the Warsaw Stock
Exchange index (WIG) and its sectoral subindices. Finally, Section |5| concludes.
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2 Stochastic Volatility Markov Switching In Mean
model

Let the sequence {S;,t € Z}, with Z denoting the set of integers, constitute a two-
state ergodic Markov chain. Each discrete-valued random variable S; takes on value
of 1or 2,ie. S; € @={1,2}, and signifies the index of the ’current’ regime (i.e. the
one at time ¢t). The transition probabilities are defined as p;; = Pr(S; = j|Si—1 = 1)
with 4, 7 € ). Although it would be possible to introduce dependence of the transition
probabilities on some variables (the lagged modelled rates of return, for example), we
assume the chain to be homogenous.

Combining the switching mechanism presented above with a typical stochastic
volatility in-mean structure, we obtain the following definition of a two-state SV-
MS-M model.

Definition 1 A stochastic process {y:,t € Z} follows a two-state SV-MS-M process
if for each t € Z the following conditions hold:

Yt = 00 + 01Yt—1 + V5,9 (he) + €/ e, (1)
Inh; =p+@lnhs_1 + ong, (2)
€ ..
{( T]t ) 7t€Z} NZZN(z) (0(2><1)712)7 (3)
t

with g(hy) being some increasing function of the conditional variance, hy, and S
representing a two-state, homogenous and ergodic Markov process defined as above.

Equation , hereafter being referred to as the observation equation, defines a simple
first-order autoregression on y;, completed with an additional explanatory variable,
g(ht), and the innovation term e;v/h;. Taking and into consideration, the
innovations follow a basic stochastic volatility process, the very first foundations of
which have been laid by Clark (1973). As already mentioned, h; is a conditional
variance of y;, once conditioning is made with respect to a o-field generated by
the lagged w;’s, the current noise term 7; and the current state variable S, i.e.
Var (y¢|Fe—1,mt,S:) = hy, where F;_; is the past information about the process
{ys,t € Z} up to time t — 1 (formally being the smallest o-field generated by 7,
and g,.,r <t —1).

Specification formulated in Definition [1| is meant to model not only the dynamics
of the financial asset rates of return along with its time-varying volatility, but also
the risk-return relationship. Regressing contemporaneous returns on some increasing
function of conditional variance h; stays much in the spirit of Engle et al. (1987),
who introduced the ARCH-in-Mean (ARCH-M) model to capture time-varying term
structure premium. Note that the SV-MS-M structure encompasses the SV-in-Mean
model (once 1 = 72 = 7, although p;;’s are then unidentified) and the SV model
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(71 = 72 = v = 0), both of which are of interest in the empirical study.

As regards the choice of the function g(h;), three different forms are commonly
exploited in the literature: the logarithm or square root of h, or the conditional
variance itself; see Engle, Lilien, Robins (1987). In our work we restrict ourselves
to the second option, i.e. g(h¢{) = v/h;. The main reason behind such a choice is
existence of the following equivalent formulation of the observation equation:

Yo = 00+ 01yi—1+ Vs, Vhie + eev/he
&y =200+ 01+ (v, + e) Vi (4)

Sy =00+ 01yi—1 + &Vt

with § = 5, + . Since the disturbances {¢;,* € Z} are independent and Normally
distributed with zero mean and unit variance, it follows that

&Sy ~ iiN (v, 1) (5)

and
P (§el0) = mifn (&l 1) + mafnv (Eelye, 1) (6)

with fy (-|a,b) denoting density of the univariate Normal distribution with mean a
and variance b, and 7; being the ergodic probabilities of the chain {S;,t € Z}, defined
as

mi= Pr (S, = i) = o DemiAi (7)

2 —p11 —p22

fori=1,2.
According to —@, the SV-MS-M process can be represented as a simple stochastic
volatility process with no explicit relationship between contemporaneous return and
conditional variance, yet with the error term &; constituting a two-component Markov
mixture of conditionally Normal distributions with state-dependent mean v, and unit
variance.
We find it informative to study the moment structure of the random variable &. It
is straightforward to show the following:

E (&) = mm + mave2, (8)
Var (&) = 1+ m9} + mey3 — (mm + 1), 9)

E(& - E(&))° =13 (m — 373 + 2n}) + 3 (w2 — 373 + 2n3) (10)

+3mimay1y2 (M1 — m2) (1 — 72) -
Apart from a possibly non-zero mean (see formula ), the unconditional distribution
of the error term & may also display asymmetry, since the skewness coefficient based

on the third central moment presented in ([L0), i.e.

_EG-F &)’

R T

)
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is generally non-zero. On the other hand, as conditionally upon the current state &, is
Normally distributed (see (9)), the distribution of £; given S; reveals no asymmetry
at all. Finally, we note that

p (&]Si—1 = k,0) Es, (&S, Si—1 = k,0)
2
= Z Pr (St = Z'|St,1 = k79) p(§t|5t = ’L.,Stfl = k,@)
i=1
1P (&|Se = 1,0) + pro - p (&]S: = 2,6)
prrfn (&, 1) + prefn (e, 1),

which is similar to @ with the only difference residing in the 'weights’ of the mixture
(i.e. probabilities). It follows that conditionally upon the lagged regime, S;_1, the
distribution of & reveals a similar moment structure as the unconditional distribution

(see formulae (B)-(10)). Namely, we have:
E (§|Si—1 = i) = pirm1 + pia7e, (11)
Var (&|Si—1 = i) = 1+ pay? + piovs — pam + pizy2)” (12)
E [(ft — E(&|Si-1 = 1)) |Si-1 = Z] =3 (pin — 3p% + 2p%)
+73 (Pm —3ph + QP?Q) + 3pipiey1y2 (i1 — piz) (71— 72) -

Analogously, the distribution of & given S;_; may display asymmetry, for no longer
the skewness coefficient:

(13)

E((& - E(€lSi1)*15i1)
(Var (&]Si-1)"?

Sk‘ (gt‘St—l) =

has to be zero.

In view of the above it is legitimate to conclude that a regime-switching in-mean effect
in the SV-MS-M model is tantamount to discrete shifts in the mean of the error term
&, with the latter being a component of the stochastic volatility specification shown
in . Moreover, as 'flexible’ as a two-component Markov mixture may be in respect
of its (third-order) moment structure, it may be the case that apparent switches in
the risk premium parameter, 7, , could be indicative of an asymmetric distribution
of & and, thereby, a skewed conditional distribution of the observed variable, y;.
Therefore, what seems to merit further research is to compare two models in terms of
their in-sample fit: the SV-MS-M specification introduced in the paper, and a simple
SV structure with the observation equation presented in , yet with the error term
& following a skewed Normal or Student-f distribution, similarly as presented by
Osiewalski and Pipien (2000), and Pipient and Osiewalski (2001) in the GARCH-M
setting. However, the issue goes beyond the scope of the current study and will not
be addressed here. Bearing in mind the potential skewness of the disturbance term
& (both unconditionally and conditionally upon the lagged regime), in the empirical
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part we also report on the posterior results for the relevant skewness coefficients, i.e.
Sk (&) and Sk (&]S:;—1 =1). Additionally, some quantities typically considered for
Markov chains will be of interest, including the ergodic probabilities defined in ([7)),
and the expected durations of each state, calculated as Dur; = %; see Hamilton

1
(1989), p. 374.

3 Bayesian estimation and forecasting for the
SV-MS-M model

3.1 General remarks

In this section we provide a concise description of the estimation and forecasting
methodology applied in our study. Only the most general model, i.e. the SV-MS-M
structure, is considered here, since it also encompasses the two other specifications
under study, i.e. the SV and SV-M model. (For a detailed presentation of a Bayesian
treatment of the basic SV model we refer to Jacquier, Polson, Rossi (1994) and Pajor
(2003), although there are some differences between our prior structure and the one
assumed in the cited papers.) The only differences between the three models reside in
the observation equation (see Table , or, equivalently, in the distribution of &;. We
note that our specification of the SV-M model differs slightly from the one studied
by Koopman and Hol Uspensky (2002), who regress the returns on the conditional
variances rather than the standard deviations.

Table 1: Mean and volatility equation specifications for the analysed models

Model ‘ Observation equation ‘ Log-volatility equation
My: SV Yyt =00 + 01yt—1 + etV he
Msy: SV-M Yyt = 6o + O1yt—1 + YV ht + etV he Inht =p+@lng, | +one
M3: SV-MS-M | y = do + d1ye—1 + 75, VR + vV

We establish the notation first. Let y= (y1,92,...,yr) € Y CR” denote
the vector of T observations on the modelled logarithmic rates of return,
h = (hi,hs,...,hp) € HC Ri - the vector of the latent conditional variances, and
S =(51,5,,...,57) € QT - the vector of the hidden Markov chain state variables.
The Markov switching risk premium parameter, v, , is parameterized as

Vs, =N +7I(S; =2),

with 73 € R, 7 < 0 and I(-) denoting the indicator function taking on the value of one
if the condition in the parentheses is satisfied, and zero otherwise. Consequently, the
in-mean effect in the second regime is lower than the one in the first state. Although
it is 77 and -, that are of interest, we consider the estimation in terms of v; and 7,
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noting that the posterior density of 7, is induced by the two latter Parameters of
the SV-MS-M model are arrayed in 6 = (5 Y1, T, P11, P22, 8,0 ) € 0 c R?, where
§ = (60,61) and B = (u, ). Note that 6, 3 and ¢ are common to all three models
under consideration (see Table [L).

Inference on all the unknown quantities of the model is based on the joint posterior
distribution of w = (¢, 1/, 8") € Q= © x H x QT represented by its density

p(0,h, Sly) < p(yl6,h,S)p(S|0)p(h|0)p(0) (14)
where

T

P16, h,S) o plyo)p (416, 1, S) = H (w410 + 61911 + 7, Vs e ), (15)
T

p(S10) o< p(So)p (S16) = p(So) [ [ p (SelSi-1,60) = p(So) Hpst s (16)

p (816) x pa)p (416) = pih) [T (-fov (il 9lner.0 )), (1)
t:l

p(0) = p(8)p(11)p(T)p(p11)p(P22)(B)p(0?).- (18)

In our work we assume that the initial values in and , i.e. yo and hg, are
fixed and equal to the first presample value of the modelled series and 1, respectively.
Therefore, the analysis is conducted conditionally upon these initial conditions, with it
being suppressed in the notation henceforth. For the state of the switching mechanism
at time ¢ = 0, i.e. Sy, one could specify some arbitrary discrete-valued distribution,
characterized by either its own parameters subject to statistical inference themselves,
or the ergodic probabilities of the underlying Markov chain (should Sy be Bernoulli-
distributed with the success probability equal to either of the ergodic probabilities
presented in formula ) However, the first solution would require introduction
of additional parameters, whereas the second option would lead to less tractable
conditional posterior densities, utilized in the sampling algorithm. Therefore, for
simplicity, we assume that Pr(Sp=1) = Pr(Sy=2) = 0.5. We have some belief that
the posterior results are robust to the choice of a particular way Sy is treated.

3.2 Prior structure

According to mutual prior independence of the parameters is assumed. It also
applies to the individual elements of vector § = (8y,d1) and 8 = (u, )", for both of
which the following truncated bivariate Normal distributions with zero correlations
are specified:

p(8) < £ (6]do, Cy ) T (|81] < 1), do = Ogacny, Co = 0.01 - Iy, (19)
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p(B) o< £ (Blbo, A" ) T (|l < 1), bo = Oz, Ao = 0.01- I, (20)

where I,, stands for a (n x n)-sized identity matrix and f](\,m) - the density of the
m-~variate Normal distribution. Truncations of the parameter space, made by the
inequality restrictions in and , are meant to guarantee non-explosiveness of
the SV-MS-M process (or its second-order stationarity once the limiting case of t — oo
is considered). However, we stress that beyond a basic intuition no formal argument
underpins these restrictions. That is, we cannot be sure if the non-explosiveness
restrictions that hold separately for the first-order autoregression in the observation
equation and the one defining the log-volatility process, once imposed jointly for the
SV-MS-M structure, constitute either a sufficient or necessary regularity condition.
The issue merits further investigation.

To complete the prior structure we specify distributions for o2 and the model-specific
parameters, i.e. p11, p22, 71 and 7, as follows:

p(0?) = fic (o®|v1,1n) , 11 = 1.5, vy =4, (21)
p (pii) = fB (piilai, bi), a; =b;=1,i=1,2, (22)
p(m,7) f](\?) (1,70, Ag 1) I(7 < 0), Ao = 0251, Ag = Io, (23)

with frg and fp denoting densities of the Inverse-Gamma and Beta distribution,
respectively. The density in is parameterized so that E(0?) = 0.5 (Var(c?)
does not exist), and the precision ¢=2 is a Gamma-distributed random variable
with E(072) = 6 and Var(c~2) = 24. As informative as these may appear, the
prior information on o2 (and, equally, on o~ 2) is largely dominated by the data
(comparing the moments of the prior and the posterior distribution; see Table(7)). For
the transition probabilities p;; the Uniform distribution is specified, as a special case
of the Beta family. We note that the truncated bivariate standard Normal in
induces a prior for v = y; + 7 with the mean:

Bly2) = E(1) = —26(0) ~ —0.798,

and the variance:
Var(ys) = 2 [1 ) (¢(0))2] ~ 1.363,

where ¢(z) = fn (2]0,1).

Densities — are shared across all three model specifications, i.e. the SV, SV-M
and SV-MS-M model. In the case of the risk premium parameter within the SV-M
structure, i.e. -, a standard Normal prior is assumed. The prior structure exposed
in — is intended to represent our vague beliefs as of the model parameters.
However little diffuse the standard Normal distributions for v, and 7 may appear
(see expression ), they reflect our prior conviction as of the magnitude of the
volatility-in-mean effect.
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3.3 Sampling algorithm

To estimate the considered models we resort to common MCMC techniques, including
the Gibbs sampler and the Metropolis-Hastings algorithm, although an additional
procedure is required to handle the latent Markov state variables, Sy’s, t =1,2,...,T.
Generating a pseudo-random sample from the joint posterior can be divided
into three major steps, in which the three: the parameters, 6, conditional variances,
h.’s, and state variables, S;’s, are sampled from their full conditional posterior
distributions. Specifying conjugate priors, as the ones in —, is very conducive
to sampling each component of 6 from its conditional posterior, since the latter belongs
to the same distribution family as its prior counterpart. Below, the full conditional

posteriors for the components of 6 are presented.

1. p (67 71?T|0—(6,v1,‘r)ah75, y) X ](\;1) (63 ’7177—'9*5(;;1) I(|61| < 1)1(7_ < 0)7

where
C 0
G, = Go+M'M, g. =G, (Gogo + M'u), Gy = 0 (2x2)
O@2x2) Ao
1 1 1 Y1
Vvhi Vha VhT Vhi
Yo Y1 Yyr—1 Y2
M = Vhi Vhs Vhr u= Vit
1 1 1 :
I(S1=2) I(5;=2) I(Sr =2) LN

2. p(Bl9-p.h,S,y) < [ (Blbe, o2A7Y) I(|] < 0),

where

/
0

b, = A (0% Aobg + W'Inh), A, = 0*Ag+ W'W, Inh = (Inhy,Inhs,...,Inhy),

and
;L 1 1 1 _
Inhy Inhy -+ Inhp_q |’
3. p(02|9,gz,h,5’,y) x fra (U2|ui‘,V§‘),
where
T -1
« T . 1 2
V1:§+V1, vy = V+O.5Z(lnht—,u—<plnht1)] :
2 =1
4. p(pn|6—p“ah757y) X fB (p”|a;",bf), 1= 1a27
YT ukasz Kwiatkowski 68
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where
al = a1 +ni1, b} =bi+ni2, a; =az+n2, by =by+no,
and
T
Nni; = ZI(St,1 = ’L)I(St = ])
t=2

Sampling the latent variables comprising h and S is more demanding and requires
introduction of two additional steps within the Gibbs chain, both of which are
presented below in some detail.

Sampling conditional variances

As noted by Jacquier, Polson, Rossi (1994) and Pajor (2003) in the case of a basic
SV model, drawing each conditional variance hy, t = 1,2,...,T, according to its non-
typical conditional posterior, can be managed with the use of the Metropolis-Hastings
(M-H) algorithm. Their approach is easily adapted in our setting.

In the SV-MS-M model we obtain the following expression for the kernel of the
conditional posterior of hy:

p (he|lh—¢,S,0,y) = p (hlhi—1, hey1, S, 6,y)
0<P(Z/t|yt71,hnSt79)p(ht|ht7179)p(ht+1|ht,9)
t—MMg— h¢ 2 24
(y Tsy \/7) exp {_ (Inhy—p—plnhy_1)? } . ( )

- 1 _
= nrs XP 2hy 257

(Inhii1—p—plnh;)?

where h_; denotes the vector h without its ¢-th covariate, and m; = dg — d19¢—1.
For t = T the third exponential factor in disappears. The M-H step requires
specifying an ancillary density, according to which candidate values of ht are generated
within each cycle and then accepted with an appropriate probability; see Jacquier,
Polson, Rossi (1994), Pajor 2003. We notice that under 74 = 72 = 0 the density
in collapses to the one obtained for a basic SV structure, in the case of which
Jacquier, Polson, Rossi (1994) and Pajor (2003) use an Inverse-Gamma proposal
density (with the only difference between the cited works being that the former
authors assume m; = 0, whereas the latter extends the observations to follow a first
order autoregression, i.e. m; = dg — d1y:—1). The result also holds for the SV-M
structure, in the case of which the conditional posterior of h; assumes the form of
with the restriction 73 = o = 7. Consequently, in each of the three model
specifications to generate candidate draws for h; the very same Inverse-Gamma
density of Pajor (2003) is utilized. Since the acceptance rate fluctuates between
80% and 85%, we infer that the approach proves efficient in our applications.
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Sampling state variables

As regards generating the state variables, S;’s, the multi-move sampler of Carter
and Kohn (1994) and Chib (1996) is suitably applied. Although the method has
been developed for models without a stochastic volatility component and in different
contexts, it can easily be adapted to our framework as the conditional variances may
be perceived as additional, yet given (at this stage) parameters. The procedure hinges
on the following factorization of the conditional posterior distribution of S:

1
p(Sly,h,0) =p(Srly,h,0) II »p (St|ya S(t+1:T)a h,(‘)) o8
g (25)
OCp(ST|y7ha0) H [p (Stly(l;t)7h7e)p(St-Q-l‘St,e)} )

t=T—1
where generally =(p..n) = (Tm, Tmi1,-.-,2n), 1 <m < n < T, with the convention
applying to both y and S. Following Chib (1996), in derivation of the second line in
we utilized the fact that

P (Sely, Sces1:1y5 1 0) o< (Selycieys s 0) p (Yes1:1)s St 1:1) W1t St b, )
xXp (St\y(m), h, ‘9) P (Se41]S:,0) -
D (Yee41:1)s Sce2:1) Y (1:8)> St> Sev1, b, 0)
xXp (St‘y(l:t)a h7 9) p (St+1|St7 0) 9
noting that the mass function p (S;11|S:,6) = ps,,s,,, is independent of y and h and
the term P (y(t+1:T)7 S(t+2:T) |y(1:t)a St7 St+1, h, 9) is independent of St+1.
Analogous to a general state-space model, Carter and Kohn (1994) and Chib (1996)
construct a discrete filter for the evaluation of p(St|y(1:t),h, 0). Desired samples

from p (S|y, h, 8) are generated using the forward-filtering-backward-sampling scheme,
consisting of the following steps (see Chib 1996).

1. Forward-filtering step

(a) Prediction step: Determination of p (S¢|y1.4—1),h,0), t =1,2,...,T.
Assume that p(St,l\y(l:t_l),h, 0) is already available (starting with
p(Sg) for ¢t = 1). By the law of total probability we obtain:

2
P (Selye—1), h,GFkZ p (SelSe—1 =k, y1:0-1),0) - p (Se—1 = kly1—1), b, 0)
-1

2
:Z p(St|St—1 = ka 9) P (St—l = k'y(l:tflﬁ ha 9) -
k=1

(b) Update step: Determination of p (S;|y(1.1),h.0), t =1,2,...,T.
By Bayes theorem we have:
p (ytv St|y(1:t—1)7 h7 9)
p (yh St = l‘y(lztfl)a h/70) +p (yta St = 2|y(1:t71), ha 9) ’

p (St|y(l:t)7 hu 9) =
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where

p (il/t» St\y(l:t—1)7 h, 9) =D (yt|y(l:t—1)a St, h, 9) p (St|y(1:t—1)7 h, 9) )

and
P (yt|y(1:t—1)7 St, hﬁ) =fN (yt|50 +01Yt—1 + s, \/}Th ht) .

2. Backward-sampling step
Once the mass functions p (St\y(l:t),h,ﬁ) are calculated (through a recursive
run of the prediction and update steps):

(a) Sample St from p (Sr|y, h,0).
(b) Sample S; from

p (St|y(1:t)7 h, 9) P (St411St,0)
p (St+1|y(1:t),h79) ’

p (St|y7 S(t41:17)5 hs 9) -

fort =T —1,T —2,...,1, where p (Se1|y(1:1), h,0) and p (Se|yc.4), b, 6)
are obtained from the prediction and update step, respectively.

3.4 Model comparison

Since it is three different models that are under consideration, their comparison in
terms of the in-sample fit is of particular interest. Within the Bayesian methodology
one needs to calculate the value of the marginal data density (sometimes called
'marginal likelihood’) for each model:

p(y|My) = /P(w(z),y|Mz) dw(y = /p(y|w(l)»Ml)p(W(l)|Ml) dwqy,  (26)
Q Q

where M; denotes the I-th (I = 1,2, 3) model, all the parameters and latent variables
of which are arrayed in wqy € ;. The dim(£;)-tuple integral in is numerically
evaluated via the technique of Newton and Raftery (1994), according to the formula:

—1
M+N

~ 1 1
)= |~ S —————
N Srp (ylwglq)),Mz)
where M is the number of the burnt-in passes, N - the number of drawings
from the joint posterior, ¢ - the index of a single pass of the sampling procedure
(¢=1,2,...,M,.... M+ N —1,M + N), and wéf)) - the outcome on w(;) from the
g-th cycle. The method is straightforward and despite its immanent numerical

(27)
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instability, it proved satisfactory in our applications.
A pairwise comparison of different model structures is carried out by means of Bayes
factors, which are calculated as:

P (y|My)

BFy = (28)

p(y|My)
where the quantities on the right-hand side are estimated with (27). Under equal
prior odds, i.e. p(M;) = %, of each model, BF},; equals the posterior odds ratio of

M, against M;.

3.5 Forecasting

Bayesian forecasting requires construction of a joint predictive distribution of future
observations and, in the case of their presence, variables comprising the hidden
processes. Considering the SV-MS-M model, let us presume we are interested in

inference on the future rates of return, yr = (yr41,yr+2,.-- ,yT+K)/ , conditional
variances, hy = (hT+17hT+2,...,hT+K)', and states of the mechanism governing
regime changes, S; = (S741,S742,--.,571k), with K being the maximal forecast

horizon. Then, the density of the joint predictive distribution is given by the formula:

p (s b Sely) = / p s b, S1ly,w) p(wly) do, (29)
Q

A pseudo-random sample from is obtained quite easily due to a straightforward
factorization of the conditional predictive density on the right-hand side of (29):

p(ys, by, Srly,w) =
T+K
IT /v (weldo + 6rye—1 + s, Ve, he) v (Inhelp + @ Inhy 1, 02) p(Se|Si—1,0),
t=T+1
(30)

where p (S¢]S:-1,0) = ps,_,.s,- Once a sample {(y}q), h}q), S](cq)) q=M+1,..., N}

from is generated, inference on any measurable function of (y¢, h¢, Sy), such as
future asset prices and conditional standard deviations, is easily made.

4 Empirical study

We analyse ten series of daily logarithmic rates of return, calculated as

yr = 100 ln( = ), where z; denotes the asset closing price at time ¢t = 1,2,...,T.

Tt—1
Following the studies of Fiszeder and Kwiatkowski (2005) and Pipieri (2007), who
found that analysing the excess rates of return as opposed to ’crude’ returns bears
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little impact on the results, we consider the series {y;,t = 1,2,...,T} rather than the
one of excess returns.

The main objective of this study is to examine the Warsaw Stock Exchange index
(WIG) along with its sectoral subindices in search of a possibly regime-switching risk
premium effect. To this end, three models are estimated for each series: the basic
SV, SV-M and SV-MS-M model (see Table . Whether a particular series displays
either a constant or regime-changing in-mean effect amounts to formal Bayesian model
comparison. Hence, once the datasets are given a brief account of, we proceed with
the results on the in-sample performance of the competing structures.

4.1 Data sets

Table [2| contains a detailed list of the series under consideration, whereas in Table
basic descriptive statistics are reported. Due to different sample sizes to some of the
series we refer as the short series and to the others as the long series (see Table [2)).

Table 2: Descriptive statistics of the analysed time series of the daily log-returns

(Sub)Index Sample time range Sample size, Series
Full name ‘ Abbrev. name Since ‘ To T description
WIG-chemicals WIG-chem Sep. 25, 2008 234
WIG-developers WIG-dev Jun. 21, 2007 551 .
short series
WIG-oil&gas WIG-oil Jan. 04, 2006 917
WIG-media WIG-med Jan. 05, 2005 1168
WIG WIG
- Sep. 01, 2009
WIG-banking WIG-bank
WIG-construction | WIG-cons .
Jan. 07, 1998 2922 long series
WIG-IT WIG-IT
WIG-food WIG-food
WIG-telecom WIG-tel

Different sample path lengths across the WIG subindices result from the differences
in the commencement dates of their publication. The sample size of the WIG
series has been tailored to other long series. Note that in each case the sample
period includes the current global financial crisis, which is a deliberate attempt to
examine performance of the models in the presence of market turbulences, especially
in forecasting terms.

4.2 General results

In Table[d we present the number of the burnt-in sampling passes, the total number of
which rises in line with the complexity of the model. The cycles are followed by 500000
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Table 3: List of the analysed time series

Index Min ‘ Max ‘ Mean ‘ Std. dev. | Skewness | Kurtosis
WIG-chem | -9.157 8.542 | -0.045 2.597 -0.354 4.135
WIG-dev -11.725 | 11.030 | -0.147 2.718 -0.160 5.015
WIG-oil -9.351 9.846 -0.057 2.190 -0.035 4.437
WIG-med -10.738 6.687 0.012 1.725 -0.453 5.723
WIG -9.974 7.893 0.032 1.550 -0.279 5.930
WIG-bank -14.436 8.880 0.050 1.866 -0.133 7.062
WIG-cons -9.930 8.203 0.038 1.633 -0.193 5.865
WIG-IT -11.070 9.351 -0.003 2.125 -0.001 5.463
WIG-food -9.828 9.429 0.020 1.484 -0.324 8.053
WIG-tel -10.399 9.351 -0.007 2.222 0.036 4.586

draws from the joint posterior in each case. Convergence of the MCMC procedure
has been monitored by means of the ergodic averages and standard deviations, much
in the vein of Bauwens and Lubrano (1998) and Pajor (2003). Visual inspection of
the CUMSUM plots (not presented in the paper) implies that in the case of the
SV-MS-M models convergence is attained after about 250000 to 500000 burnt-in
passes (depending on the series). For the simpler structures, i.e. SV and SV-M,
the sampler converges to the joint posterior markedly faster (although for the media,
banking and construction subindices estimation of the SV-M model still required
relatively more transient passes; see Table .

Table 4: Number of the burnt-in cycles generated for the modelled time series

Index burnt-in cycles
SV (M) | SV-M (M) [ SV-MS-M (Ms)
WIG-chem | 100,000 400,000 1,000,000
WIG-dev 100,000 400,000 1,000,000
WIG-oil 100,000 400,000 1,000,000
WIG-med | 100,000 | 1,000,000 1,500,000
WIG 100,000 500,000 1,500,000
WIG-bank | 100,000 | 1,000,000 1,000,000
WIG-cons | 200,000 | 1,000,000 1,500,000
WIG-IT 100,000 400,000 1,500,000
WIG-food | 100,000 600,000 1,500,000
WIG-tel 100,000 400,000 1,000,000

We begin with the results on model comparison. Relevant quantities, including
decimal logarithms of the marginal data density values and Bayes factors (against the
SV specification), are displayed in Table[5| Apparently, for each modelled time series
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our Markov switching model outperforms the two other structures in terms of the in-
sample fit. However, taking the numerical instability of the Newton and Raftery
procedure into account, only for the WIG-oil&gas, WIG-banking and WIG-food
indices the differences in the marginal likelihoods may be perceived meaningful. For
these series the logs of Bayes factors calculated for the SV-MS-M model against the
SV specification amounted to 7.09, 30.22 and 11.26, respectively. The results imply
that the SV-MS-M model fits the three datasets better than the SV structure by
about as much as 7, 30 and 11 orders of magnitude. For the two long series the
discrepancies in data fit between the SV-M and the regime-switching model are even
larger (since the previous appears a less adequate model in both cases), whereas in
the case of the WIG-oil&gas index the SV-MS-M model surpasses the constant-risk-
premium specification only marginally (i.e. within the margins of a numerical error
of the Newton and Raftery estimator).

Table 5: Decimal logarithms of the marginal likelihoods and Bayes factors, and ranks
of the models

Index SV (M) SV-M (Mz) SV-MS-M (M3)
log[p(y|M:)] | Rank || log[p(y| M>)] | log(BFa1) | Rank || log[p(y| Ms)] [ log (B Fs1) | Rank
WIG-chem -236.26 3 -236.01 0.24 2 -235.64 0.61 1
WIG-dev -552.75 2 -553.14 -0.39 3 -551.92 0.83 1
WIG-oil -856.35 3 -850.71 5.64 2 -849.25 7.09 1
WIG-med -951.76 2 -951.97 -0.21 3 -951.33 0.43 1
WIG -2171.11 2 -2173.02 -1.91 3 -2170.56 0.55 1
WIG-bank -2363.20 2 -2365.87 -2.68 3 -2332.98 30.22 1
‘WIG-cons -2219.26 2 -2225.00 -5.74 3 -2219.16 0.10 1
WIG-IT -2532.25 3 -2528.66 3.59 2 -2525.95 6.30 1
WIG-food -1976.34 2 -1977.90 -1.56 3 -1965.08 11.26 1
WIG-tel -2665.73 2 -2667.20 -1.46 3 -2662.59 3.14 1

We notice that the results for the oil and gas industry index (unlike the ones for the
two other series in question) do not reflect themselves in the characteristics of the
marginal posterior distributions of the model-specific parameters (see Table @) Just
like for any of the short series, the posterior means of the transition probabilities p;;
are located close to 0.5, with the posterior distributions of p;; additionally displaying a
relatively large dispersion. What is more, although in some cases the posterior means
of the regime-switching risk premium parameters, i.e. 7; and 72, seem to differ from
zero, the posteriors of these quantities are, again, much dispersed. In view of the
above, the hypothesis of a regime-switching in-mean effect seems to be overturned
by the data. However, we highlight the fact, that the above results correspond to
the marginal rather than joint distributions of the model-specific parameters. It
may be the case, that as long as the marginal results for the oil and gas sector do
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not qualitatively differ from the ones obtained for other short series, it is the joint
presence of the model-specific parameters that contributes to the superior fit of the
SV-MS-M model to the WIG-oil&gas data.

Table 6: Posterior means (and standard deviations) of the model-specific parameters

M M
sV SV-MS-M (Ms) sV SV-MS-M (Ms)
Index | (Ma2) Index | (M)
Yy P11 ‘ Y1 ‘ P22 ‘ Y2 Y P11 ‘ Y1 ‘ P22 ‘ Y2

WIG- | -0.256 | 0.546 | 0.045 | 0.543 | -0.663 ||WIG-| 0.005 | 0.253 | 1.333 | 0.884 |-0.276
chem | (0.273) | (0.278) | (0.378) | (0.270) | (0.467) || bank |(0.056) | (0.072) | (0.218) | (0.043) | (0.091)
WIG-| -0.014 | 0.588 | 0.330 | 0.602 | -0.360 ||WIG-| 0.020 | 0.777 | 0.237 | 0.704 | -0.321
dev |(0.167) [(0.289) | (0.296) | (0.289) | (0.289) || cons | (0.058) | (0.278) | (0.222) | (0.285) | (0.328)
WIG-| -0.101 | 0.437 | 0.212 | 0.573 | -0.313 || WIG-|-0.110 | 0.798 | 0.052 | 0.371 |-1.291
oil  |(0.131) [(0.268) | (0.340) | (0.284) | (0.240) || T |(0.052) | (0.287) | (0.232) | (0.242) | (0.906)
WIG-|-0.172 | 0.588 | 0.015 | 0.435 | -0.548 ||WIG-|-0.061 | 0.844 | 0.432 | 0.902 |-0.309
med | (0.127) [(0.291) | (0.213) | (0.284) | (0.450) || food | (0.043) [ (0.101) | (0.228) | (0.177) | (0.288)
-0.127 | 0.605 | 0.090 | 0.461 | -0.584 ||WIG-|-0.065 | 0.444 | 0.469 | 0.580 | -0.535
(0.057) | (0.304) | (0.245) | (0.272) | (0.558) ||-tel | (0.059) | (0.247) | (0.332) | (0.228) | (0.507)

WIG

The above remarks, concerning the posterior means and dispersion, also hold for
most of the long series, with two exceptions, however: the banking and the food
sectors. For these two datasets clear dominance of the SV-MS-M model in respect
of the in-sample fit is corroborated by the posterior characteristics of the SV-MS-M
parameters (see Table @ For the banking sector, the first regime, however scarcely
persistent (since F (p11]y, M3) = 0.25), corresponds with a relatively large positive
and significant risk premium (as we obtained E (v1|y, M3) ~ 1.33 and the posterior
standard deviation D (v1|y, M3) =~ 0.22). The second regime is related to a weak
negative effect, for we have E (y2]y, M3) ~ —0.28 and D (y2|y, M3) ~ 0.09. In the
case of the WIG-food data both regimes are fairly persistent, yet the state-dependent
in-mean effects are markedly weaker (see Table @ Note that the results remain in
accordance with our primary line of reasoning outlined at the beginning. Namely, as
long as there is no sign of a constant (i.e. not regime-switching) risk premium per se
(posterior means of v being close to zero), both indices reveal its switching pattern.
As regards posterior inferences on the constant in-mean effect, in eight out of ten
analysed series the posterior mean of 7 is negative. Nevertheless, owing to a relatively
large dispersion featured by the posterior distribution of v, the effect is hardly
significant in all the cases. For the other two assets, i.e. the WIG-banking and
WIG-construction indices, although F (v|y, Ms) is positive, hardly can it be perceived
significant; see Table

Since only for the banking and food industry indices the posterior inference seem to
indicate switches in the risk-return relationship, it is just these two datasets with the
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results for which we are concerned in the remainder of this section.

4.3 Results for the WIG-banking and WIG-food indices

In Figures [Ta] and [Ib] we present the prior and posterior densities of the transition
probabilities and Markov switching in-mean parameters for the banking and food
indices. Marginal posterior densities for the WIG-food index are of less regular shapes
than the ones obtained for the banking sector. Specifically, parameters related to the
first regime, i.e. p1; and 7, feature evident humps, whereas the ones corresponding
to the other state - heavy left tails. Nevertheless, a clear distinction between the
priors and posteriors in both cases of the analysed series implies that the data bears
strong information on the switching nature of the risk premium.

Table 7: Posterior means (and standard deviations) of the common parameters

WIG-banking WIG-food
Parameter SV SV-M |SV-MS-M SV SV-M |SV-MS-M
(M1) | (Mz) (Ms) (M) | (Mz) (Ms)
5 0.055 | 0.050 | 0.154 0.051 | 0.101 | 0.117
(0.026) | (0.076) | (0.086) ||(0.017){(0.040)| (0.054)
5 0.087 | 0.087 0.062 0.072 | 0.071 0.015
(0.019) | (0.019) | (0.024) ||(0.020)(0.020)| (0.032)
0.020 | 0.020 0.014 0.010 | 0.010 0.006
. (0.006) | (0.006) | (0.005) ||(0.006)](0.006)| (0.007)
0.977 | 0.976 0.978 0.956 | 0.956 0.955
4 (0.006) | (0.006) | (0.006) ||(0.009)|(0.009)| (0.010)
) 0.033 | 0.033 | 0.031 0.102 | 0.101 | 0.104
7 (0.007) [ (0.007)| (0.006) ||(0.019)|(0.019)| (0.020)
Ly 31.641|31.415 | 33.807 || 10.137 [10.255 | 10.001
7 (6.720) | (6.623) | (6.875) || (1.914)|(1.956)| (1.976)

Since it is the time-varying volatility that underlies all the models under consideration,
it is interesting whether the posterior results indicate any differences across the
three specifications in terms of the volatility pattern and parameters. As regards
posterior characteristics of the marginal densities of the volatility parameters, they
seem robust to the model specification (see Table , perhaps with an exception of
the intercept, p, whose posterior mean is marginally lower in the switching model.
We note, however, that extending a basic stochastic volatility structure to the SV-M
and SV-MS-M models may exert some influence on the common conditional mean
parameters. Regarding the switching specification, for both of the analysed series we
observe a rise in the posterior mean of the intercept and a drop in the one of the
autoregression coefficient. Intuitively speaking, the latter could stem from the
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Figure 1la: Prior and posterior densities (dashed and solid lines, respectively) of the

model-specific parameters in the SV-MS-M model: WIG-banking
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Figure 1b: Prior and posterior densities (dashed and solid lines, respectively) of the
model-specific parameters in the SV-MS-M model: WIG-food
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inclusion of a hidden Markov chain that may capture a ’part’ of the autocorrelation
in the observable process, resulting in a lower posterior mean of the autoregression
coefficient. The aforesaid robustness of the volatility parameters to the

Figure 2: Posterior averages of the conditional standard deviations across the models
- results for the WIG-banking index

Log-retumns on the WIG-food index
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specification of the observation equation, reflects itself in almost identical patterns
(across the models) of the posterior averages of the latent conditional standard
deviations (see Figures[2and [3). Nonetheless, the ones obtained in the SV-MS-M
model estimated for the banking sector are marginally, yet systematically lower than
the ones in the two other specifications.

We proceed with the inference on the regimes. In view of the apparent differences
between the prior and posterior densities of the ergodic probabilities, 7;, and expected
durations, Dur;,i = 1,2 (see Figure {4, it is clear that the data bears significant
information on the underlying Markov process (although the priors, especially for
durations, seem fairly informative). The results for the banking sector, however, may
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Figure 3: Posterior averages of the conditional standard deviations across the models
- results for the WIG-food index
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appear not much appealing. Since E (Dury|y, M3) ~ 1.35 and E (Durs|y, M3) ~ 9.85
(see Table [8) we gather that the state of a strong positive risk premium holds, on
average, merely for one session day, whereas the other one (of a negative effect) - for
ten days. The results are closely related to the in-sample pattern of the probabilities
Pr(S; = 1]y, M3), which are evaluated at each data point ¢ = 1,2, ..., T, according to
the formulae:

1 M+N
Pr(si= 1y, Mo)~ - > 1 (st =1), (31)
q=M+1

and which may be perceived as ’smoothed’ probabilities of the first regime;
see Figure ] The probabilities in question are very close to the probabilities of a
positive in-mean effect, i.e. Pr(’yst > 0|y7M3) ,t = 1,2,...,T, which stems from
the fact, that probabilities Pr(y; < 0|y, M3) and Pr(y, > 0|y, M3) are negligible; see
Figure [Ta] and Figure
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We observe that positive risk premium is a very elusive and short-lived phenomenon
in the banking industry. Usually, the first regime could be assigned only to single
observations, which may question the very notion of a 'regime’ as a period of some
longer duration. Additionally, for the most part of the sample it is hard to distinguish
between periods of a positive and negative in-mean effect (see the bottom plot in
Figure . Due to the intense variability displayed by the switching mechanism,
hardly can we think of any economic reasons behind its behaviour, especially in
terms of the events that might have triggered the occurrences of a positive risk
premium. Heuristically, one could think of an apparent influence of the foreign stock
and currency markets on the Polish banking sector. However, no specific economic
interrelations could be pointed as yet. On the other hand, we have found a statistical
explanation for a somewhat erratic behaviour of the process governing the regime
shifts. As noted in Section [2] our SV-MS-M specification may be represented as a
simple stochastic volatility model with two-component Markov mixture errors, &;’s,
whose distributions: unconditional and conditional upon the lagged state, may feature
asymmetry. Therefore, posterior inference is made on the skewness coefficients,
including Sk (&) = Sk and Sk (&|S;—1 = i) = Sk;, i = 1,2 (see Table[9|and Figure[T7).
In the case of the WIG-banking series, a strong evidence of a positive skewness is
found, with regard to both the unconditional and S;_1-conditional distribution of &;.
Despite the fact that the priors of Sk and Sk; (implied by the prior structure presented
in Section are markedly concentrated around zero and feature heavy tails (and
thus appearing quite informative; see Figure , the data shifts the probability mass
to the right, resulting in the skewness coefficients’ posterior densities tightened around
0.2. It seems that our regime-switching model captures and implies conditional
skewness of the modelled log-returns rather than discrete changes in the risk-return
relationship themselves. Hence, we deem it worthwhile to compare in terms of the
data fit two specifications: the SV-MS-M model and a basic SV structure with the
error term following the skewed Normal or Student-¢ distribution. We shall address
the issue elsewhere.

Table 8: Posterior means (and standard deviations) of the ergodic probabilities and
expected durations

IndeX\Quantity‘ ™ ‘ Durq ‘ o ‘ Durs

0.133 1.353 0.867 9.850
(0.045) | (0.136) | (0.045) | (3.788)

0.310 | 12.971 | 0.690 | 31.399
(0.186) | (47.311) | (0.186) | (32.345)

WIG-banking

WIG-food
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Y

Figure 4: Prior and posterior densities (dashed and solid lines, respectively) of the

ergodic probabilities and expected durations
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Figure 5: Posterior probabilities of the first regime and averages of the in-mean effect
- results for the WIG-banking index

5 Log-returns on the WIG-banking index
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Note: By ’Pr{in-mean(t) > Oly}’ we denote Pr(’Yst > O|y).

The results for the food industry index are distinct. As indicated by the posterior
means of the transition probabilities: E (p11|y, M3) = 0.84 and F (pa2ly, M3) =~ 0.9
(see Table @, both regimes are fairly persistent. Although posterior averages of the
expected durations are higher than the ones obtained for the WIG-banking series,
huge posterior dispersion featured by the posteriors of Dury and Dury, as well as
irregularities in their densities’ shape (possibly resulting from the data clashing with
quite informative priors) preclude a precise inference on the lasting of the regimes
(see Table [§] and Figure @ Incidentally, we note that as large as the posterior
standard deviation of Dur; may appear (being equal to 47.311), it is sensitive to
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Figure 6: Posterior probabilities of the first regime and averages of the in-mean effect
- results for the WIG-food index
Log-returns on the WIG-food index
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Table 9: Posterior means (and standard deviations) of the skewness coefficients of the
error term &; in the SV-MS-M model

Index \ Quantity | Sk [ Ski | Sk
0230 | 0.206 | 0.220
WIG-banking
(0.059) | (0.071) | (0.056)
0.100 | -0.109 | 0.069
WIG-food
(0.122) | (0.093) | (0.104)

single, rare and close-to-unit MCMC realizations of the relevant transition probability,

P11-

85

For example, if the two largest elements of the pseudo-random sample from
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p(p11ly, M3), being equal to 0.99995 and 0.99994, were to be discarded, then the
posterior standard deviation of Dur; would drop to 29.849 (with E (Dur1|y, M3) ~
12.898 being only slightly modified as compared with its current, full sample value of
12.971; see Table . However, the issue does not concern the posterior of the other
state’s duration, as the MCMC chain does not venture into similar regions of the
parameter space along the pso coordinate.

Similarly as in the case of the banking index, probabilities of a positive risk premium
are very close to the ones corresponding with the first regime (see Figure @, much due
to the same reason as before. Owing to a greater persistence of the underlying Markov
chain, the latter reveals a more regular pattern as compared with the WIG-banking
series, although still for the most part of the sample classifying the observations into
the two regimes entails much uncertainty. Nevertheless, short episodes of a positive in-
mean effect, lasting for a dozen of session days or so, may be discerned. As regards the
inference on the skewness coefficients, Sk and Sk;, their posterior densities are closely
tightened near zero (see Figure [7] and Table E[), which indicates an almost symmetric
distribution of the error term & (both the unconditional and S;_1-conditional one),
and, hence, a symmetry of the conditional distribution of the data.

Table 10: Predictive probabilities of the first regime, Pr(Sri = 1|y, M3)

Forecast horizon
Index
1 [ 2 [ 3 [ a5 [ 6 | 7] 8 | 9 |10
WIG-banking |0.1204 | 0.1308 {0.1332|0.1331 (0.1334|0.1330{0.1329| 0.1327 |0.1333|0.1332
WIG-food 0.1838|0.2138|0.2356 | 0.2496 | 0.2609 | 0.2699 | 0.2768 | 0.28217 | 0.2862 | 0.2902

Lastly, we report on the forecasting performance of the considered models. For both
series we build joint predictive distributions of future logarithmic rates of return, yr,
and asset prices, zk, over ten subsequent session days within the period September
2-15,2009 (k=1,2,...,K =10). Also, predictive probabilities of the first regime,
i.e. Pr(Styr = 1|y, M3), are of interest. In Figures and @predictive quantiles of the
future log-returns and asset prices are plotted. It seems that extending a simple SV
model to the ones featuring either a constant or regime-switching in-mean parameter,
makes little contribution to the prediction. With regard to both analysed time series,
visually, no significant differences can be spotted between the corresponding quantiles
obtained from different model structures. Additionally, and perhaps to one’s dismay,
we note that in each model the 0.9-prediction intervals (i.e. the ones bounded by
the 0.05- and 0.95-quantile) fail to encompass the very first realization of both the
price and the return (their observed values fall between the 0.01- and 0.02-quantile,
regardless of the model specification). Similarly, in the case of the food industry index
the fourth realized value of the log-return falls beyond the 0.95-quantile (the observed
value falls between the 0.96- and 0.97-quantile, regardless of the model specification).
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Figure 7: Prior and posterior densities (dashed and solid lines, respectively) of the

skewness coefficients of & in the SV-MS-M model
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Figure 8: Predictive quantiles of future log-returns and asset prices - results for the
WIG-banking index
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Note: In each plot the upper (bottom) dotted line represents 0.95-quantile (0.05-quantile), the
upper (bottom) dashed line - 0.75-quantile (0.25-quantile), the solid line - median; the observed
values’ trajectory is plotted with dot markers linked with a thin dashed line.
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Figure 9: Predictive quantiles of future log-returns and asset prices - results for the
WIG-food index
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With regard to both indices, we note that unlike the price quantiles, which tend

to diverge with the forecast horizon, dispersion of the marginal distributions of the
future returns changes little. In fact, it slightly decreases throughout the prediction
period. The latter - as counterintuitive as it may appear - can be attributed to a
relative drop in the asset price volatility noticed at the end of the sample period (see
Figures |2| and , which causes the volatility forecasts to indicate further decline in
the market uncertainty (see Figure .
As far as the predictive probabilities of the first regime are concerned, although we
note their relative rise with the forecast horizon, chances of a positive risk premium
remain quite low throughout (approximately 0.133 at the final prediction day for the
WIG-banking, and 0.290 for the WIG-food index; see Table .

Figure 10: Predictive means of the conditional standard deviations
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5 Concluding remarks

In the paper we proposed a new univariate stochastic volatility model incorporating
a relationship between contemporaneous rates of return and conditional volatility,
and, simultaneously, allowing for its possibly regime-changing pattern. The switching
mechanism is governed by a two-state homogenous and ergodic Markov chain. Along
with a simple SV and SV-in-Mean structures, the new specification is treated within
the Bayesian methodology, exploiting MCMC simulation methods to allow posterior
analysis of all the unknown quantities of the model.

Among ten analysed Polish stock market series of daily logarithmic growth rates, only
two show clear evidence of a switching volatility-in-mean effect: the WIG-banking and
WIG-food indices. For both of the series, the first regime corresponds with a positive
risk premium. In the case of the banking index the effect is markedly stronger,
although extremely short-lived. Contrary results with respect to the magnitude and
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duration of a positive risk premium have been obtained for the other index. In both
considered cases, however, the second state, which is related to a negative in-mean
effect, seems to prevail. Additionally, for the banking index indications of a positively
skewed conditional distribution of the returns have been detected and proposed as a
statistical explanation for the superior in-sample fit of the SV-MS-M model. In terms
of forecasting, all three models appear to perform comparably for both assets.

A possible reason for which the evidence of regime-switching risk premium among
the analysed series is fairly scarce may reside in the fact that the stock market
indices are some averages of individual stock prices. Thus, the effect, which could
be featured by only certain shares, may be subdued once the stock aggregates are
under consideration. It follows that investigating switches in the risk premium may
be more justifiable in the case of individual stock prices rather than market indices.
Apart from shifting attention from stock indices to single share prices, further research
should also address the issue of the number of the underlying Markov chain states
as well as Bayesian model comparison of the SV-MS-M model with a SV structure
featuring the skewed Normal or Student-¢ error term in the observation equation.
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