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Abstract

This paper points out that the ARMA models followed by GARCH squares
are volatile and gives explicit and general forms of their dependent and volatile
innovations. The volatility function of the ARMA innovations is shown to be
the square of the corresponding GARCH volatility function. The prediction of
GARCH squares is facilitated by the ARMA structure and predictive intervals
are considered. Further, the developments suggest families of volatile ARMA
processes.
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1 Introduction

ARCH and GARCH time series models, following the ground-breaking work of Engle
(1982) and Bollerslev (1986), are widely used in econometrics and finance to model
volatile time series. Further, many papers with numerous developments and applica-
tions continue to be written. The basic models have conditional means of zero and
their principal role is to capture locally non-constant conditional variances; they are
often used in simulation and prediction of volatility. The present starting point goes
back to Bollerslev (1986) who reports the observation by Pantula and an anonymous
referee that the model structure of the squared-variable generated by a GARCH model
is of ARMA form with uncorrelated innovations. Bollerslev(1986) gave no further de-
velopment of this, although the idea has been subsequently mentioned many times in
the research literature, and in several books, e.g. Tsay (2002) p.87&93, Fan and Yao
(2003) p150 and Lai and Xing (2008) p.147. Also, variously noted in the literature
is that the innovations of the equivalent nonlinear ARMA model are uncorrelated
but dependent, and that the auto and partial autocorrelations of GARCH squares
can be calculated from linear ARMA equations. None, however, indicates that the
innovations of the nonlinear ARMA models are volatile themselves or gives explicitly
their nonlinear volatile structure, as done this in paper. Two further aspects of the
equivalence between GARCH and nonlinear ARMA models are explored. The first
is that GARCH squares can be predicted in a similar way to that of linear ARMA
variables, and the second is that the associated predictive intervals of the squares are
of variable width. Baillie and Bollerslev (1992) developed the prediction aspect in
a quite general econometric GARCH setting but did not explicitly focus on simple
models. As a further and fortuitous consequence, the volatility structure of GARCH
squares offers natural ways of extending linear ARMA models to include volatility.
The extended ARMA models are doubly autoregressive, in both linear and innovation
terms; their first-order case is somewhat similar to the DAR model of Ling (2004).
An early, and yet still very informative survey of GARCH modelling, is that by Bera
and Higgins (1993), and there are many others.

2 Squares from the ARCH(1) Model

The simplest ARCH(1) model in the variable Xt takes the form

Xt = σtεt, σt =
√

α0 + α1X2
t−1 (1)

where σ2
t is the volatility function, being the conditional variance of Xt, and {εt} is a

sequence of independent and identically distributed innovations with E(εt) = 0 and
var(εt) = 1.
Stationarity of (1) is required, and as a preliminary remark, the terminology ’full sta-
tionarity’ will be used to signify the combination of strict (distributional) stationarity
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and second order (covariance) stationarity in both Xt and X2
t .

For the model to be fully stationary, α0 > 0, 0 ≤ α1 < 1. In terms of the squared
variable X2

t , the ARCHs(1) model is

X2
t =

(
α0 + α1X

2
t−1

)
ε2
t . (2)

This is seen to be autoregressive but with multiplicative form. To recast it in additive
form, it is convenient, although not necessary, to use the centred squared variables

X̃2
t = X2

t − µX2 , ε̃t
2 = ε2

t − 1 (3)

where µX2 = E(X2) = α0
1−α1

. Then after simple rearrangement, (2) is seen to be
algebraicly equivalent to

X̃2
t = α1X̃

2
t−1 + Ẽt, Ẽt =

(
µX2 + α1X̃

2
t−1

)
ε̃2
t . (4)

Thus, the ARCHs(1) model can be expressed as an AR(1) model in centred-squared
variables with innovations Ẽt which are squares of the corresponding ARCH innova-
tions and hence are volatile. It is doubly autoregressive, both in mean and innovation
terms, and thus is similar to the doubly autoregressive DAR(1) model of Ling (2004),

Xt = φXt−1 + et, et =
(
κ0 + κ1X

2
t−1

) 1
2 εt. (5)

However, in this model the innovation involves a square-rooted term.
Although the innovations Ẽt in (4) are dependent, Ẽt, Ẽt−k for k ≥ 1 are not auto-
correlated, since µX2 +α1X̃

2
t−k is independent of ε̃2

t ; moreover Ẽt is uncorrelated with
X̃2

t−k terms. The latter is sufficient to yield the geometric autocorrelations of linear
AR(1) models and the cut-off property of its partial autocorrelations. In summary, it
can be said that ARCH(1) squares follow the volatile AR(1) model (4). This is the
result which is generalized in the rest of the paper, both in specificity and generality.

3 Squares from the ARCH(q) Model
The ARCHs(q) model is given by

X2
t = σ2

t ε2
t , σ2

t = α0 + α1X
2
t−1 + · · ·+ αqX

2
t−q (6)

and subject to the sufficient conditions for full stationarity

α0 > 0, α1 > 0, α2 > 0, . . . , αq > 0, α1 + α2 + · · ·+ αq < 1. (7)

Very similar development to that for the ARCHs(1) model in Section 2 leads to the
algebraicly equivalent volatile AR(q) model as

X̃2
t =

q∑

i=1

αiX̃
2
t−i + Ẽt, Ẽt =

(
µX2 +

q∑

i=1

αiX̃
2
t−i

)
ε̃2
t . (8)
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where µX2 = α0
1−α1−···−αq

. In summary, the ARCHs(q) centred-squares follow a
volatile AR(q) model with a volatility function similar to that of the innovations
of an ARCH(q) model, a weighted addition of the q past centred-squared values.

4 Squares from the GARCH(1,1) Model
The GARCH(1,1) model generalizes the ARCH(1) model by involving the previous
volatility as well as the previous squared value in its volatility function, and so its
GARCHs(1,1) form is

X2
t = σ2

t ε2
t , σ2

t = α0 + α1X
2
t−1 + β1σ

2
t−1. (9)

Sufficient conditions for full stationarity are

α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1. (10)

The GARCHs(1,1) model can be revealed to follow a volatile ARMA(1,1) model.
First write

X2
t = σ2

t ε2
t = σ2

t + σ2
t ε̃2

t = σ2
t + Ẽt, Ẽt = σ2

t ε̃2
t (11)

and define

X̃2
t = X2

t − µX2 , µX2 =
α0

1− α1 − β1
, σ̃2

t = σ2
t − µX2 . (12)

Then by substituting σ2
t = X̃2

t − Ẽt, σ2
t−1 = X̃2

t−1 − Ẽt−1 in σ2
t of the GARCHs(1,1)

model (9), there is algebraicly

X̃2
t = (α1 + β1) X̃2

t−1 + Ẽt − β1Ẽt−1, Ẽt = σ2
t ε̃2

t (13)

which indicates AR(1) linear terms and MA(1) innovation terms. By (12), the volatil-
ity function in (9) is

σ2
t = µX2 + α1X̃

2
t−1 + β1σ̃

2
t−1 = µX2 +

∞∑

i=1

α1β
i−1
1 X̃2

t−i, (14)

the latter equality by recursion, and so the innovations take the explicit form

Ẽt =

(
µX2 +

∞∑

i=1

α1β
i−1
1 X̃2

t−i

)
ε̃2

t . (15)

They are dependent but not autocorrelated and are uncorrelated with earlier X2
t

terms. Thus, the GARCHs(1,1) autocorrelations follow those of the corresponding
volatile ARMA(1,1) model. The volatility function in (15) is seen to be an exponential
smoothing of past centred-squared values.
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5 Squares from GARCH(q,r) Models
Extensions to higher orders show the general similarities between models for GARCH
squares and volatile ARMA models for squares. The GARCHs(q,r) model is

X2
t = σ2

t ε2
t , σ2

t = α0 +
q∑

i=1

αiX
2
t−i +

r∑

i=1

βiσ
2
t−i (16)

with sufficient conditions for full stationarity, Giraitis, Kokoszka, Leipus (2000),

α0 > 0, α1 ≥ 0, . . . , αq ≥ 0, β1 ≥ 0, . . . , βr ≥ 0,

q∑

i=1

αi +
r∑

i=1

βi < 1 (17)

and with
µX2 = E(X2

t ) =
α0

1−
q∑

i=1

αi −
r∑

i=1

βi

. (18)

A rather intractable necessary and sufficient condition for strict stationarity has been
given by Bougerol and Picard (1992).
By following the derivation in Section 4, the ARMA form of the GARCHs(q,r) model
in centred-squared variables becomes

X̃2
t =

q∑

i=1

αiX̃
2
t−i +

r∑

i=1

βiX̃
2
t−i + Ẽt −

r∑

i=1

βiẼt−i (19)

where

Ẽt = σ2
t ε̃2

t , σ2
t = µX2 +

q∑

i=1

αiX̃
2
t−i +

r∑

i=1

βiσ̃
2
t−i. (20)

The model is made as explicit as possible by solving (20) using the backward-shift
operator B, which gives the result

σ2
t = µX2 + αq(B) (1− βr(B))−1

X̃2
t−1, αq(B) ≡

q∑

i=1

αiB
i−1, βr(B) =

r∑

i=1

βiB
i.

(21)
The autoregressive order in (19) is seen to be q∨r = max(q, r) and the moving average
order to be r. Thus, the ARMA (q ∨ r,r) form of the GARCHs(q,r) model is

X̃2
t =

q∨r∑

i=1

(αi + βi) X̃2
t−i + Ẽt −

r∑

i=1

βiẼt−i (22)

where any α’s and β’s of incomplete pairs are taken to be zero, and

Ẽt =
{

µX2 + αq(B) (1− βr(B))−1
X̃2

t−1

}
ε̃2
t . (23)

As further specific illustrations, two cases of (22) and (23) are given next.
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(i) For the GARCH(2,1) model in squared variables, the GARCHs(2,1) model, is

X̃2
t = (α1 + β1) X̃2

t−1 + α2X̃
2
t−2 + Ẽt − β1Ẽt−1 (24)

Ẽt =

(
µX2 + α1X̃

2
t−1 + (α1β1 + α2)

∞∑

i=2

βi−2
1 X̃2

t−i

)
ε̃2
t (25)

where µX2 = α0
1−α1−α2−β1

. The innovation volatility function is seen to be a
now slightly modified exponential smoothing of past centred-squared values.

(ii) The GARCH(1,2) model in squared variables, denoted as the GARCHs(1,2)
model, is

X̃2
t = (α1 + β1) X̃2

t−1 + β2X̃
2
t−2 + Ẽt − β1Ẽt−1 − β2Ẽt−2. (26)

In this case, the innovation variables need the inverse roots r1, r2 of the 1−β2(B)
polynomial, and when real-valued,

Ẽt =



µX2 + α1

∞∑

i=1




i−1∑

j=0

ri−j−1
1 rj

2


 X̃2

t−i



 ε̃2

t , r1 + r2 = β1, r1r2 = −β2

(27)
where µX2 = α0

1−α1−β1−β2
; this is seen to be a smoothing of past centred-squared

values which can alternatively be expressed as the linear combination of two
exponential smoothings, of parameters r1 and r2.

6 Prediction of Volatility
Two relevant aspects of volatility prediction can be identified for GARCH models, that
of future conditional variances σ2

t+k|σ2
t , σ2

t−1, . . . , and less usually, that of squared-
variables X2

t+k|Xt, Xt−1, . . . ; the focus here will be on the latter, although for ARCH
models they are much related. The nonlinear ARMA model equivalents of GARCH
models will first be used to give predictions and prediction intervals of ARCH squared-
variables. The enabling point is that the ARMA model structure is convenient and
that although its innovations are dependent, they are uncorrelated. This is enough
for the standard approach to linear ARMA prediction, e.g. Tsay (2002, Section 2.6),
to be used as a starting point for predicting X2

t+k|Xt, Xt−1, . . . . Let

χ2
t+k|t = E

(
X̃2

t+k|X̃t, X̃t−1, . . .
)

(28)

be the predictor, with its associated predictive variance υ2
t (k) given by

υ2
t+k|t(k) = var

(
X̃2

t+k|X̃t, X̃t−1, . . .
)

. (29)
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Both quantities are thus based on the conditional distribution of X̃2
t+k|X̃t, X̃t−1, . . . .

After calculation of these quantities, the ±2 standard deviation prediction intervals
are available as functions of past values and thus not of constant width.
A brief indicative illustration is given for the ARCHs(1) model via its volatile AR(1)
counterpart. First iterate the t+k case of the volatile AR(1) equation (4) in the usual
way, to obtain

X̃2
t+k = αk

1X̃2
t + αk−1

1 Ẽt+1 + αk−2
1 Ẽt+2 + · · ·+ α1Ẽt+k−1 + Ẽt+k,

Ẽt =
(
µX2 + α1X̃

2
t−1

)
ε̃2

t = αk
1X̃2

t + αk−1
1

(
µX2 + α1X̃

2
t

)
ε̃2

t+1+

αk−2
1

(
µX2 + α1X̃

2
t+1

)
ε̃2

t+2 + · · ·+ α1

(
µX2 + α1X̃

2
t+k−2

)
ε̃2

t+k−1+(
µX2 + α1X̃

2
t+k−1

)
ε̃2

t+k.

(30)

Next take expectations of (30) conditional on Xt, Xt−1, . . . , noting that the future
ARCH(1) innovations ε̃2

t+1, . . . , ε̃2
t+k still have zero means, and so giving the linear

AR(1) k-period predictor

χ2
t+k|t = E

(
X̃2

t+k|X̃t, X̃t−1, . . .
)

= αk
1X̃2

t . (31)

The associated predictive variance υ2
t+k|t is less straightforward except for the one-

period horizon for which

υ2
t+1|t =

(
µX2 + α1X̃

2
t

)
var

(
ε̃2
t+1

)
. (32)

This result shows that the width of the prediction interval is a function of X̃2
t which

is available at the prediction origin. Continuing with the two-period predictor, taking
the conditional variance of (30) with k = 2 gives

υ2
t+2|t = α2

1

(
µX2 + α1X̃

2
t

)
var

(
ε̃2

t+1

)
+ E|Xt

(
µX2 + α1X̃

2
t+1

)2

var
(
ε̃2

t+2

)
(33)

where the expectation, conditional on Xt, is tractable but not neat. This result ex-
tends with further terms to any prediction horizon and suggests that the prediction
interval should eventually be of constant width, although still be a function of Xt.
However, from a practical financial point of view, these two short horizon cases may
be the most important.
It is interesting to note, as pointed out by Bera and Higgins (1993) in the econometric
context of using GARCH models for error assumptions in linear models, that predic-
tion intervals need not monotonically increase in width as the horizon increases. Their
behaviour will depend on the behaviour of the series up to the prediction origin; such
a result is plausible from comparing (32) and (33).
Continuing to the widely used GARCH(1,1) case, considered valuable for its flexibility
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and parsimony, a similar prediction approach may be used. For the equation basis of
the one-period predictor, from (11) in the t + 1 case and using (14), there is

X2
t+1 = σ2

t+1 + σ2
t+1ε̃

2
t+1 (34)

and thus

X̃2
t+1 =

∞∑

i=1

α1β
i−1
1 X̃2

t−i+1 +

(
µX2 +

∞∑

i=1

α1β
i−1
1 X̃2

t−i+1

)
ε̃2
t+1 (35)

in terms of past X̃t’s. The required results then follow as

χ2
t+1|t = E

(
X̃2

t+1|X̃t, X̃t−1, . . .
)

=
∞∑

i=1

α1β
i−1
1 X̃2

t−i+1 (36)

and

υ2
t+1|t = var

(
X̃2

t+1|X̃t, X̃t−1, . . .
)

=

(
µX2 +

∞∑

i=1

α1β
i−1
1 X̃2

t−i+1

)2

var
(
ε̃2
t+1

)
. (37)

The predictor is noted as an exponential smooth of all past X̃t’s, intuitively appealing
and still practical given a sufficient history at the prediction origin.

7 Mean and Volatility Models
The ARMA volatility structure of the squares in GARCH models suggests that this
volatility structure can be introduced into linear ARMA models. Such models then
have a predictive ability based on their linear autocorrelation and a predictive un-
certainty calibrated by GARCH volatility. Thus a general family of volatile ARMA
models according to the GARCH link could be

Xt = φ0 +
p∑

i=1

φiXt−i + Et −
q∑

i=1

ψiEt−i, Et =

(
α0 +

r∑

i=1

αi|Xt−i|
)

εt. (38)

Another mean and volatility general model is given by extending the first-order
DAR(1) model of Ling (2004) as

Xt = φ0 +
p∑

i=1

φiXt−i + Et −
q∑

i=1

ψiEt−i, Et =

(
α0 +

r∑

i=1

αiX
2
t−i

) 1
2

εt. (39)

The two models differ somewhat in their volatility structures. Both are open for
further investigation.
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