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DYNAMICS AND STABILITY OF A FLEXIBLE, SLENDER
CYLINDER FLEXIBLY RESTRAINED AT ONE END AND FREE AT

THE OTHER AND SUBJECTED TO AXIAL FLOW

In this paper, Lagrange’s equations along with the Ritz method are used to obtain
the equation of motion for a flexible, slender cylinder subjected to axial flow. The
cylinder is supported only by a translational and a rotational spring at the upstream
end, and at the free end, it is terminated by a tapering end-piece. The equation ofmotion
is solved numerically for a system in which the translational spring is infinitely stiff,
thus acting as a pin, while the stiffness of the rotational spring is generally non-zero.
The dynamics of such a system with the rotational spring of an average stiffness is
described briefly. Moreover, the effects of the length of the cylinder and the shape
of the end-piece on the critical flow velocities and the modal shapes of the unstable
modes are investigated.

1. Introduction

Since the study by Hawthorne [1] in the late 1950s on the dynamics of
the Dracone, a flexible sausage-like container towed behind a small vessel, the
dynamics and stability of flexible slender structures subjected to axial flow
have been studied extensively by applied mechanics researchers; some exam-
ples are the studies by Païdoussis [2–4] on the dynamics of flexible cylinders
in axial flow with various boundary conditions, the studies by Triantafyllou
and Chryssostomidis [5, 6] on the dynamics of a cantilevered beam and a
pinned-free string subjected to axial flow, and those by Dowling [7, 8] on the
dynamics of neutrally and negatively buoyant elements of a towed system; for
a comprehensive review of these studies, see [9].
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It is nowwell-known that a flexible cylinder (cantilevered or with both ends
supported) in axial flow, for sufficiently high flow velocities, may be subject
to static divergence (buckling) in its first mode and to oscillatory instabilities
(i.e. flutter) in higher flexural modes. A towed flexible cylinder, on the other
hand, is generally prone to both rigid-body and flexural instabilities, the former
occurring at relatively low towing speeds, while the latter develop at higher
towing speeds.

Some new theoretical/experimental developments have taken place in the
recent decade in connection with the study of the dynamics of flexible slender
structures in axial flow. For example, Modarres-Sadeghi et al. [10] developed a
nonlinear model for an extensible flexible cylinder subjected to axial flow and
analyzed the dynamics of such a system. In a paper by de Langre et al. [11], it
was shown that, contrary to previous predictions made via simplified models
(e.g. those presented in [6] and [7]), divergence and flutter may arise for thin,
very long cylinders, provided that the free downstream end of the cylinder
is well-streamlined. Rinaldi and Païdoussis [12] investigated the dynamics of
a free-clamped cylinder (i.e. flow is directed from the free end toward the
clamped one) in confined axial air-flow theoretically and experimentally.

Most recently, a nonlinear model was developed for the dynamics of towed
flexible cylinders [13]; the existence of rigid-body as well as flexural insta-
bilities was proved, in general qualitative agreement with experimental obser-
vations. In a two-part paper [14, 15], Kheiri et al. investigated the dynamics
of long pipelines towed underwater with a configuration used in deep ocean
storage of liquid CO2. It was found that, for long pipelines, both divergence and
flutter may arise in the course of motion, thus confirming the results obtained
by de Langre et al. [11]; it was also found that the onset of these instabilities is
weakly dependent on the length of the pipeline.

Moreover, Kheiri et al. [16] conducted a new set of experiments in a
water tunnel with flexible cylinders to illustrate the dynamical behaviour of
towed flexible cylinders and to test the recently developed nonlinear theory
[13]. The dynamics and stability of a pinned-free cylinder in axial flow were
investigated by Kheiri and Païdoussis [17]. It was shown that the system loses
stability by stationary yawing (i.e. a divergent non-oscillatory deviation from
the position of rest, with or without flexing) at essentially zero flow velocity,
provided that the free downstream end of the cylinder is not very blunt. At
higher flow velocities, static/dynamic instabilities in the first and higher modes
of the system may occur.

In this paper, a theoretical model is presented for the dynamics of a flexible,
slender cylinder flexibly supported (i.e. spring-supported) at its upstream end
and free downstream. It is, in fact, of fundamental importance to study the
change in dynamical behaviour of the system as the stiffness of the support



DYNAMICS OF A FLEXIBLE CYLINDER FLEXIBLY RESTRAINED AT ONE END AND FREE . . . 381

is varied. This is also important from practical point of view, as in real-world
cases, there is almost no perfect clamped or pinned end boundary conditions.
Here, the primary focus is on the study of the dynamics of a pinned-free flexible
cylinder, additionally supported at the pinned end by a rotational spring.

2. Theory

2.1. Definitions and preliminaries

See Fig. 1 which shows a flexible cylinder of length L and cross-sectional
area A (i.e., A = πD2/4, where D is the cylinder diameter). The cylinder is
supported at one end by a translational and a rotational spring, the stiffnesses
of which are, respectively, k0 and c0, and is free at the other. At the free end,
the cylinder is fitted with a rigid tapering end-piece of length ` (` � L). The
body is immersed in an incompressible fluid of density ρ flowing with uniform
velocity U parallel to the x-axis, which coincides with the position of rest of
the body. Except for the tapering end-piece, the body is of constant mass per
unit length m and flexural rigidity EI.

It is fairly reasonable to assume that the axial strain in the centreline of the
cylinder shown in Fig. 1 is negligible, i.e. the inextensibility condition.1 It is
further assumed that the body is neutrally buoyant (i.e. the average density of
the body is close to ρ), thus the forces due to gravity and buoyancy do not come
into play, and the motions are considered to take place within the (x, y)-plane,
which for the sake of simplicity is assumed to be horizontal.

For non-conservative continuous systems such as the one in Fig. 1, the
equation of motion is commonly obtained using the extended Hamilton’s prin-
ciple. The equation of motion in the form of a partial differential equation is
then discretized using, for example, Galerkin’s method (see, e.g., [13, 18]).
However, as noted in [19], a more versatile method to obtain the discretized
equations is using the Lagrange equations. More precisely, in this method,
an approximate solution is considered based on the Ritz method; with this
solution, the expressions of energy of the system and virtual work are approx-
imated (i.e. discretized), and by substituting them in the Lagrange equations,
the discretized equations of motion are obtained.

The Lagrange equations can be written as

d
dt

(
∂T

∂q̇i

)
−
∂T

∂qi
+
∂V

∂qi
= Qi, i = 1, · · · , N, (1)

1In other words, the distance between two arbitrary points on the centreline remains constant
before and after deformation.
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Fig. 1. A flexible cylinder subjected to axial flow of uniform velocity U and supported only at the
upstream end by a translational and a rotational spring, the stiffnesses of which are represented,

respectively, by k0 and c0.

where T and V are the kinetic and potential energies of the system, respec-
tively; qi and Qi are the generalized coordinates and forces, respectively; also,
t is time and N number of degrees of freedom.

The approximate solution based on the Ritz method for the problem in
hand may be written as

y(s, t) =
N∑
j=1

φ j (s)qj (t), (2)

where y is the displacement of the cylinder in the transverse direction and s the
curvilinear coordinate along the cylinder centreline; also, φ j (s) are suitable
basis functions or assumed modes (here, we use the free-free Euler-Bernoulli
beam eigenfunctions as basis functions; see [13] for the expressions of these
eigenfunctions).

2.2. Kinetic and potential energies of the system

For an element δs of the cylinder, the kinetic and potential energies,
represented by Tc andVc, respectively, may be written as

Tc =
1
2

L∫
0

m
[ (
∂x
∂t

)2
+

(
∂y

∂t

)2 ]
ds, Vc =

1
2

L∫
0

EI κ̄2 ds, (3)

where κ̄ is the curvature of the neutral axis of the cylinder.2 Here, the potential
energy includes only the strain energy due to cylinder bending. Also, it is
recalled that x and y are the coordinates of the element in a system associated
with the deformed body.

2For a beam with inextensible axis, it can be shown that κ̄ = (∂2y/∂s2)/
(
1 − (∂y/∂s)2)1/2.
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Similarly, the kinetic and potential energies of the end-piece are written as

Tep =
1
2

L+`∫
L

ρepA(s)
[ (
∂x
∂t

)2
+

(
∂y

∂t

)2 ]
ds, Vep = 0, (4)

where ρep is the mass density of the end-piece, which is assumed to be equal
to that of the cylinder; A(s) is the local cross-sectional area; Vep is zero in
absence of gravity forces, and because the end-piece is considered rigid.

It should be noted that for the end-piece, unlike the cylinder, D(s) and
A(s) are not constant. Also, it is assumed that the end-piece is sufficiently
short, so that y and its derivatives may be considered constant over its length.

The potential energy associated with the end-springs,Vsp, is

Vsp =
1
2

k0y
2 |s=0 +

1
2

c0

(
∂y

∂s

)2
|s=0. (5)

Thus, expressions of the kinetic and potential energies of the system (i.e. the
total kinetic and potential energies) in discretized form may be written as

T =

N∑
k=1

N∑
j=1

[1
2

mLδk j +
1
2

mseφk (L)φ j (L)
]
q̇k q̇j, (6)

V =

N∑
k=1

N∑
j=1

[1
2

(EI)Lλ4
j δk j +

1
2

k0φk (0)φ j (0) +
1
2

c0φ
′
k (0)φ′j (0)

]
qkqj, (7)

inwhich the prime stands for ∂( )/∂s, and the overdot denotes a time derivative;

also, the orthonormality of the eigenfunctions, i.e.
∫ L

0
φkφ jds = Lδk j , δk j

being Kronecker’s delta, and the fact that φ′′′′j = λ4
jφ j , λ j being the jth

eigenvalue of the free-free beam, have been utilized; moreover,

se =
1
A

L+`∫
L

A(s) ds.

From equations (6) and (7), one can write

∂T

∂q̇i
=

N∑
j=1

[
mLδi j + mseφi (L)φ j (L)

]
q̇j,

∂T

∂qi
= 0, (8)

∂V

∂qi
=

N∑
j=1

[
(EI)Lλ4

j δi j + k0φi (0)φ j (0) + c0φ
′
i (0)φ′j (0)

]
qj . (9)
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2.3. Virtual work and generalized forces

The virtual work δWc due to the fluid-dynamic forces acting on the
cylinder may be written as (see Fig. 2a)

δWc =

L∫
0

{[
FL cos θ + (FA + FN ) sin θ

]
δx +

+
[
FL sin θ − (FA + FN ) cos θ

]
δy

}
ds, (10)

where FL and FN are the viscous forces per unit length in the longitudinal and
normal direction, respectively; FA is the inviscid hydrodynamic force per unit
length; θ is the angle between the centreline of the deformed cylinder and the
x-axis; also, δx and δy are the virtual displacements in the x- and y-direction,
respectively.

ds
FLds

(FA + FN)ds

x

y

  
θ

(a)

y

x

ds

(FA + FN)ds

FLds
FTD

θ

(b)

Fig. 2. a) An infinitesimal element ds of the cylinder showing the external forces acting on it; b) The
external forces acting on the tapering end-piece

The viscous forces FL and FN are obtained using expressions proposed
by Taylor [20] for ‘rough cylinders’, where the roughness is considered as a
number of long projections pointing equally in all directions; these expressions
are

FL =
1
2
ρDU2Cf cos i, FN =

1
2
ρDU2(Cf sin i + CDp sin2 i), (11)

where Cf and CDp are the coefficients associated with frictional and form
drag, respectively; i is the angle of incidence, which is defined as the angle
between the relative fluid-body velocity and the axis of the cylinder (i.e. i =
= tan−1(∂y/∂x) + tan−1[(∂y/∂t)/U], where (∂x/∂t) has been ignored).

For small i, equation (11) may be linearized as (refer to [9])

FL =
1
2
ρDU2CT, FN =

1
2
ρDUCN

(
∂y

∂t
+U

∂y

∂x

)
+

1
2
ρDCD

∂y

∂t
, (12)
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where it is assumed that the friction drag coefficients in the longitudinal and
normal directions are not necessarily equal; they are represented by CT and
CN , respectively. The second term in FN represents the linearized form drag.

The inviscid hydrodynamic force FA is obtained using slender-body theory
(refer to [21] for details)

FA = (
∂

∂t
+U

∂

∂s
)[M (s)V (s, t)]. (13)

where V (s, t) = (∂y/∂t) + U (∂y/∂s) is the relative lateral velocity between
the cylinder and flow, and M (s) = ρA(s) is the ‘virtual’ or ‘added’ mass of
the fluid per unit length.

Similarly, the virtual work associated with the fluid-related forces acting
on the end-piece is written as (see Fig. 2b)

δWep =

L+`∫
L

{[
FL cos θ + ( f FA + FN ) sin θ

]
δx +

+
[
FL sin θ − ( f FA + FN ) cos θ

]
δy

}
ds +

+ (FTD cos θ)δx + (FTD sin θ)δy, (14)

in which all quantities, except for D(s) and A(s), are evaluated at s = L, i.e.
δx = δx |s=L , θ = θ |s=L etc. Thus, the expressions for FL , FN and FA over
the end-piece can easily be obtained from equations (12) and (13); they can
alternatively be obtained as in [18].

As seen from equation (14), the inviscid hydrodynamic force per unit
length over the end-piece is f FA, where f accounts for departures from ideal
inviscid hydrodynamic theory (slender-body theory) over the end-piece (see
[9]); the parameter f is normally between 0 and 1: for a perfectly streamlined
end-piece, f → 1, whereas for a perfectly blunt end-piece, f → 0.

In equation (14), FTD is the form drag over the end-piece in the longitudinal
direction. This force in its linear form may be expressed as

FTD =
1
2
ρD2U2CTD, (15)

where CTD is the form-drag coefficient for the end-piece, which in dimension-
less form is usually linked to f , as discussed in [13].

To simplify equations (10) and (14), onemay use the following relationship
between virtual displacements δx and δy (refer to [22]):

δx = y′0δy0 − y′δy +

s∫
0

y′′δy ds, (16)
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where the subscript 0 signifies the quantity concerned at s = 0.
Thus, using equations (2) and (16), δWc and δWep are rewritten as

δWc =

N∑
i=1

N∑
j=1

[1
2
ρDU2CT Lφi (0)φ′j (0)qj − MLδi j q̈j − 2MUbi j q̇j +

−
MU2

L
ci jqj −

1
2
ρDUCN Lδi j q̇j −

1
2
ρDU2CNbi jqj +

−
1
2
ρDCDLδi j q̇j +

1
2
ρDU2CT ci jqj −

1
2
ρDU2CT di jqj

]
δqi, (17)

and

δWep =

N∑
i=1

N∑
j=1

[1
2
ρDU2CT s̄eφi (0)φ′j (0)qj +

1
2
ρDU2CT

s̄e
L

ci jqj +

−
1
2
ρDUCN s̄eφi (L)φ j (L)q̇j −

1
2
ρDU2CN s̄eφi (L)φ′j (L)qj +

−
1
2
ρDCD s̄eφi (L)φ j (L)q̇j − f Mseφi (L)φ j (L)q̈j +

− f MseUφi (L)φ′j (L)q̇j + f MUφi (L)φ j (L)q̇j +

+ f MU2φi (L)φ′j (L)qj +
1
2
ρD2U2CTDφi (0)φ′j (0)qj +

+
1
2
ρD2U2CTD

1
L

ci jqj

]
δqi, (18)

respectively, in which bi j =
∫ L

0
φiφ

′
jds, ci j = L

∫ L

0
φiφ

′′
j ds and di j =

=

∫ L

0
sφiφ′′j ds; also, s̄e = (1/D)

∫ L+`

L

D(s)ds.3

From equations (17) and (18), and considering the fact that δWc+δWep =
N∑
i=1

Qiδqi, the expression of generalized forces Qi becomes:

3We have also used the fact that x ' s, as it is assumed that the centreline of the cylinder is
inextensible, and only linear terms are retained in the derivations.
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Qi =

N∑
j=1

{
−

[
MLδi j + f Mseφi (L)φ j (L)

]
q̈j −

[
2MUbi j +

1
2
ρDUCN Lδi j +

+
1
2
ρDCDLδi j +

1
2
ρDUCN s̄eφi (L)φ j (L) +

1
2
ρDCD s̄eφi (L)φ j (L) +

+ f MseUφi (L)φ′j (L) − f MUφi (L)φ j (L)
]
q̇j −

[1
2
ρDU2CNbi j +

−
1
2
ρDU2CT

s̄e
L

ci j −
1
2
ρDU2CT (ci j − di j ) −

1
2
ρD2U2CTD

1
L

ci j +

+
MU2

L
ci j−

1
2
ρDU2CT (L+ s̄e)φi (0)φ′j (0)−

1
2
ρD2U2CTDφi (0)φ′j (0) +

− f MU2φi (L)φ′j (L) +
1
2
ρDU2CN s̄eφi (L)φ′j (L)

]
qj

}
. (19)

2.4. The equation of motion

By substituting equations (8), (9) and (19) into equation (1), the discretized
equations of motion yield:

N∑
j=1

{ [
(m + M)Lδi j + (m + f M)seφi (L)φ j (L)

]
q̈j +

[
2MUbi j +

+
1
2
ρDUCN Lδi j +

1
2
ρDCDLδi j +

1
2
ρDUCN s̄eφi (L)φ j (L) +

+
1
2
ρDCD s̄eφi (L)φ j (L) + f MseUφi (L)φ′j (L) − f MUφi (L)φ j (L)

]
q̇j +

+

[
(EI)Lλ4

j δi j + k0φi (0)φ j (0) + c0φ
′
i (0)φ′j (0) +

1
2
ρDU2CNbi j +

−
1
2
ρDU2CT

s̄e
L

ci j −
1
2
ρDU2CT (ci j − di j ) −

1
2
ρD2U2CTD

1
L

ci j +

+
MU2

L
ci j −

1
2
ρDU2CT (L + s̄e)φi (0)φ′j (0) +

−
1
2
ρD2U2CTDφi (0)φ′j (0) − f MU2φi (L)φ′j (L) +

+
1
2
ρDU2CN s̄eφi (L)φ′j (L)

]
qj

}
= 0, (i = 1 · · · N ). (20)
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The equations of motion may be rendered dimensionless through the use of

ξ =
s
L
, η =

y

L
, τ =

( EI
M + m

)1/2 t
L2 , (21)

where the dimensionless transverse displacement η is written as η(ξ, τ) =

=

N∑
j=1

ϕ j (ξ)qj (τ), in which ϕ j (ξ) ≡ φ j (s).

The ith dimensionless equation of motion is

N∑
j=1

{ [
δi j + [1 + ( f − 1) β]χeϕi (1)φ j (1)

]
q̈j +

[
2uβ1/2bi j +

1
2
εcNuβ1/2δi j +

+
1
2
εcβ1/2δi j +

1
2
εcNuβ1/2 χ̄eϕi (1)ϕ j (1) +

1
2
εcβ1/2 χ̄eϕi (1)φ j (1) +

+ f β1/2uχeϕi (1)ϕ′j (1) − f β1/2uφi (1)φ j (1)
]
q̇j +

[
λ̃4
j δi j +

+ κ0ϕi (0)ϕ j (0) + κ∗0ϕ
′
i (0)ϕ′j (0) +

1
2
εcNu2bi j −

1
2
εcTu2 χ̄eci j +

−
1
2
εcTu2(ci j − di j ) −

1
2

cbu2ci j + u2ci j −
1
2
εcTu2(1 + χ̄e)ϕi (0)ϕ′j (0) +

−
1
2

u2cbϕi (0)ϕ′j (0) − f u2ϕi (1)ϕ′j (1) +

+
1
2
εcNu2 χ̄eϕi (1)ϕ′j (1)

]
qj

}
= 0, (22)

where from now on (˙) = ∂( )/∂τ and ( )′ = ∂( )/∂ξ; also, δi j =
∫ 1

0
ϕiϕ jdξ,

bi j =
∫ 1

0
ϕiϕ

′
jdξ, ci j =

∫ 1

0
ϕiϕ

′′
j dξ, di j =

∫ 1

0
ξϕiϕ

′′
j and λ̃ j = λ jL.

The following dimensionless system parameters have also arisen:

u = (
M
EI

)1/2UL, β =
M

M + m
, ε =

L
D
, cN =

4
π

CN,

cT =
4
π

CT, cb =
4
π

CTD, c =
4
π

(
M
EI

)1/2LCD, (23)

χe =
se
L
, χ̄e =

s̄e
L
, κ0 =

k0L3

EI
, κ∗0 =

c0L
EI

.

The above integrals for determining bi j , ci j and di j may either be computed
numerically or found analytically.
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3. Analysis

By letting q̇ = u, where q = [q1 q2 · · · qN ]T, equation (22) is reduced to
first-order or state-space form which is then transformed from the time domain
to the frequency domain by assuming a harmonic solution (i.e., {u q}T =
= {ū q̄}Teiωτ). Generally complex values ofω (ω ≡ Re(ω)+ iIm(ω)) are then
obtained via an eigenvalue-problem solver, and their evolution with a system
parameter, e.g. the dimensionless flow velocity u, is plotted in an Argand
diagram. In the Argand diagram, the abscissa and the ordinate correspond
to the real and imaginary parts of ω, (Re(ω) and Im(ω)), respectively. It
is noted that Re(ω) corresponds to the dimensionless oscillation frequency,
whileIm(ω) is related to damping, i.e. the damping ratio is ζ = Im(ω)/Re(ω).
Thus, Im(ω) > 0 indicates stability, while Im(ω) < 0 means instability; more
specifically, instability materializes by the crossing ofω locus from the positive
to the negative half-plane in the Argand diagram.

It is fairly easy to show that the translational spring will act as a pin if
κ0 → ∞; in fact, letting, for example, κ0 = 1010 in the numerical solution
may reasonably simulate a pinned end. As mentioned previously, the focus in
this paper is on the study of the dynamics of a pinned-free flexible cylinder,
additionally supported at the pinned (upstream) end by a rotational spring of
stiffness κ∗0. It is interesting to see how the dynamical behaviour of the system
changes as κ∗0 is varied.

The dynamics of a typical pinned-free cylinder, additionally supported at
the pinned end by a rotational spring of stiffness κ∗0 = 1 and fitted at the free end
with a fairly well streamlined end-piece ( f = 0.7) is illustrated in Fig. 3 (see
the caption for parameters). More specifically, this figure shows the evolution
of the lowest three complex frequencies of the system as the dimensionless
flow velocity u is varied. As seen from the figure, all modes are stable at low
flow velocities. For sufficiently high flow velocities, the frequency of the first
and second modes successively become purely imaginary, bifurcating on the
Im(ω)-axis. The arrows just off theIm(ω)-axis identify the points belonging to
the loci of these modes evolving on the Im(ω)-axis. The frequency associated
with one branch of each of these two modes eventually vanishes altogether,
indicating the onset of static divergence (buckling).

The first divergence occurs at u ' 1.2, in the first mode, followed at
u ' 7.7 by divergence in the second mode. But before the second-mode
divergence occurs, the negative branch of the first mode becomes positive at
3.9 < u < 4.0, and at a slightly higher u, this branch and the other positive
branch of the first-mode locus coalesce and leave the Im(ω)-axis; shortly
after, at u ' 4.4, the first-mode locus crosses from the positive to the negative
half-plane, where Re(ω) , 0, indicating the onset of first-mode flutter. Before
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Fig. 3. Argand diagram of the complex frequencies, ω, of the lowest three modes of a pinned-free
cylinder with a rotational spring of stiffness κ∗0 = 1 at the pinned end and a tapered free end

( f = 0.7) in axial flow, as a function of u; other parameters are: εcT = εcN = 0.5, cb = 1− f = 0.3,
χe = 0.00667, χ̄e = 0.00785 and c = 0.0. Arrows show the evolution of the first mode and two

headed arrows the evolution of the second mode.

this flutter occurs, the system experiences a short interval of stability (i.e.
3.9 < u < 4.4). Finally, third-mode flutter occurs at u ' 8.0.

3.1. The effect of εcf on the critical flow velocities and the modal shapes

Fig. 4 shows the variation of the critical flow velocities for static and
dynamic instabilities of a pinned-free cylinder, additionally supported at the
pinned end by a rotational spring of stiffness κ∗0, with different values of εcf
(εcf = εcT = εcN ) as a function of κ∗0. Two different values of εcf are
considered, which are εcf = 0.5 and εcf = 5.0. In reality this could be
achieved by having two cylinders of the same diameter and surface roughness
but of different lengths (i.e. L2/L1 = 10, where L1 and L2 correspond to the
cylinders with εcf = 0.5 and εcf = 5.0, respectively). It is noted that the
values of critical flow velocities in Fig. 4 have been normalized such that they
do not depend on L and D (i.e. u∗cr = ucr/ε∗, where ε∗ = (1/2)εcf ).

As seen from the figure, the cylinder with εcf = 0.5 (cylinder 1, for short)
becomes more stable as κ∗0 takes on large values, whereas it is less stable as κ

∗
0

takes on very small values. This is indeed very much expected since increasing
κ∗0 means a stronger upstream support, which delays instabilities, and vice
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Fig. 4. Variation of the critical flow velocities for static and dynamic instabilities of a pinned-free
cylinder (i.e. u∗cr = ucr/ε∗, where ε∗ = (1/2)εcf ), additionally supported at the pinned end by a
rotational spring of stiffness κ∗0, with different values of εcf = εcT = εcN as a function of κ∗0: —,

divergence; R, flutter. Other parameters are: f = 0.7, cb = 1 − f = 0.3, χe = 0.00667,
χ̄e = 0.00785 and c = 0.0.

versa. In contrast, u∗cr for the cylinder with εcf = 5.0 (cylinder 2, for short)
is independent of κ∗0. In other words, increasing the stiffness of the rotational
spring does not improve stability of cylinder 2. It is also seen that for very low
values of κ∗0, cylinder 1 loses stability earlier than cylinder 2, whereas for large
values of κ∗0, cylinder 2 becomes unstable first.

As also shown in Fig. 4, for cylinder 1, as κ∗0 takes on very small values
(i.e. the system approaches a pinned-free cylinder), u∗cr for the first instability
approaches zero. This, in fact, corresponds to a rigid-body instability, called
stationary yawing, which according to linear theory, manifests itself as a di-
vergent non-oscillatory deviation from the position of rest, with or without
flexing (for details refer to [9, Chapter 8]). This instability has been referred to
as ‘divergence’ in Fig. 4 for the sake of convenience.

Fig. 5 shows the modal shapes of the unstable modes of cylinders 1 and
2 for different values of κ∗0 (i.e. κ∗0 = 10−8, 1, 10 and 108). Subfigures (a)-
(d) show the stationary yawing/divergence mode shape of cylinder 1, while
subfigures (e)-(h) show a cycle of flutter motion of cylinder 1, reconstructed
at u = 1.01uc f , where uc f represents the threshold of flutter. It is seen from
these figures that, as κ∗0 is increased from 10−8 to 108, the modal shape of
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the first unstable mode changes gradually from a skewed rigid body to a rigid
body involving flexing and then to a buckled shape. Also, variation in the
flutter mode shape, especially over the first half of the cylinder length, as κ∗0
is varied, is evident from the figures. On the other hand, subfigures (i) and (j)
show, respectively, the divergence mode shape and a cycle of flutter motion
of cylinder 2 for κ∗0 = 1. In fact, it was found that the modal shapes of the
unstable modes of cylinder 2 are independent of κ∗0 and therefore, they are
given in Fig. 5 for a single value of κ∗0. Unlike the modal shapes of cylinder 1,
those of cylinder 2 show that the deformation is limited to a small region close
to the downstream end of the cylinder; this dynamical feature of very slender
cylinders was discovered previously (see, e.g. [11, 14, 15]).

3.2. The effect of the shape of the end-piece on the critical flow velocities
and the modal shapes

Fig. 6 shows the variation of u∗cr for a pinned-free cylinder, additionally
supported at the pinned end by a rotational spring of stiffness κ∗0 and fitted at
the free end by different end-pieces, as a function of κ∗0. The different values of
f considered in Fig. 6, i.e. f = 0.4, 0.7 and 1.0, correspond, respectively, to
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Fig. 6. Variation of the critical flow velocities for static and dynamic instabilities of a pinned-free
cylinder (i.e. u∗cr = ucr/ε∗, where ε∗ = (1/2)εcf ), additionally supported at the pinned end by a
rotational spring of stiffness κ∗0, with different end-pieces as a function of κ∗0: —, divergence; R,
flutter. Other parameters are: εcT = εcN = 0.5, cb = 1 − f , χe = 0.00667, χ̄e = 0.00785 and

c = 0.0.
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a fairly blunt, well streamlined and perfectly streamlined end-piece. It is noted
that for all the three end-pieces, the form drag coefficient over the end-piece,
cb, is assumed to be related to f as cb = 1 − f .

As seen from the figure, for all values of κ∗0, as f is decreased from 1.0
to 0.4 (i.e. the end-piece becomes less streamlined), u∗cr for both divergence
and flutter increases, meaning that the cylinder becomes more stable. The only
exception occurs for very low values of κ∗0 (i.e. κ∗0 < 10−2), where divergence
(precisely speaking, stationary yawing) occurs at u∗cr = 0+, independently
from f .

Thus, by choosing a reasonably blunt end-piece one can significantly im-
prove stability of the system. In fact, making the end-piece less streamlined
has a twofold effect: the transverse force (lift) acting on the end-piece ( f FA)
decreases, while the drag force (FTD) and as a result the induced tension
increases, and both of these changes have a stabilizing effect.

Fig. 7 shows the flutter mode shape of a cylinder with a relatively blunt
and a perfectly streamlined end-piece, for different values of κ∗0. From this
figure and Fig. 5(e-h), which is for the cylinder with a relatively streamlined
end-piece, it is found that the flutter mode shape is generally dependent on the
shape of the end-piece. On the other hand, the modal shapes of divergence of
cylinders with f = 0.4 and f = 1.0 were not shown in Fig. 7, as they were
generally similar to those in Fig. 5(a-d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Modal shapes of the unstable modes of a pinned-free cylinder, additionally supported at the
pinned end by a rotational spring of stiffness κ∗0, for different values of κ

∗
0. (a-d) Flutter mode shape

of the cylinder with a relatively blunt end-piece ( f = 0.4) for several instants in a cycle of oscillation
obtained at u = 1.01uc f , for κ∗0 = 10−8, 1, 10 and 108, respectively. (e-h) Flutter mode shape of the
cylinder with a perfectly streamlined end-piece ( f = 1.0) for several instants in a cycle of oscillation

obtained at u = 1.01uc f , for κ∗0 = 10−8, 1, 10 and 108, respectively.
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4. Concluding remarks

In this paper, the equation of motion for a flexible, slender cylinder sup-
ported only by a translational and a rotational spring at the upstream end and
subjected to axial flow was presented. For a typical cylinder (i.e. not a very
slender cylinder) with a very stiff translational spring, it was found that at
low flow velocities, stationary yawing or divergence may occur, depending
on the rotational stiffness, while at higher flows, flutter may arise; moreover,
the critical flow velocities for these instabilities and their associated modal
shapes were found to be dependent on the rotational stiffness. In contrast, for
a very slender cylinder, divergence is the only form of instability at low flow
velocities; moreover, the critical flow velocities and the modal shapes of the
unstable modes were found to be almost independent of the rotational stiffness.
It was also found that a reasonably blunt end-piece can significantly increase
the critical flow velocities and thus stabilize the system. The flutter mode shape
was found to be dependent on the shape of the end-piece, while the divergence
mode shape was weakly dependent on the shape of the end-piece.
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Dynamika i stabilność giętkiego, smukłego cylindra, z jednym końcem umocowanym
sprężyście a drugim swobodnym, w warunkach przepływu osiowego

S t r e s z c z e n i e

W pracy zastosowano równania Lagrange’a i metodę Ritza by uzyskać równania ruchu giętkiego,
smukłego cylindra poddanego działaniu przepływu osiowego. Cylinder umocowany od strony do-
pływu za pomocą sprężyn translacyjnej i rotacyjnej ma drugi koniec swobodny ze zbieżną końcówką.
Równanie ruchu jest rozwiązane numerycznie dla systemu, w którym sprężyna translacyjna ma
nieskończoną sztywność i zachowuje się jak kołek, podczas gdy sztywność sprężyny rotacyjnej jest
generalnie różna od zera. Opisano krótko dynamikę takiego systemu ze sprężyną rotacyjną o średniej
sztywności. Ponadto, badano zależności między długością cylindra i kształtem końcówki a krytycz-
nymi prędkościami przepływu i rozkładami modów niestabilnych.
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