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Relationship between the observability of standard
and fractional linear systems

TADEUSZ KACZOREK

The relationship between the observability of standard and fractional discrete-time and
continuous-time linear systems are addressed. It is shown that the fractional discrete-time and
continuous-time linear systems are observable if and only if the standard discrete-time and
continuous-time linear systems are observable.
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1. Introduction

The notion of controllability and observability of linear systems have been intro-
duced by Kalman [14, 15]. Those notions are the basic concepts of the modern control
theory [1, 6, 13, 16, 21, 24, 25]. They have been extended to positive and fractional
linear and nonlinear systems [2, 4, 5, 7-11, 22, 23]. The mathematical fundamentals of
fractional calculus are given in the monographs [18-20]. The positive fractional linear
systems have been introduced in [8, 11].

In the paper [17] it has been shown that the fractional discrete-time and continuous-
time linear systems are controllable if and only if the standard discrete-time and
continuous-time systems are controllable.

In this paper it will be shown that the fractional discrete-time and continuous-time
linear systems are observable if and only if the standard discrete-time and continuous-
time linear systems are observable.

The paper is organized as follows. In section 2 the basic definitions and theorems
concerning standard and fractional discrete-time and continuous-time linear systems
are recalled. The relationship between the observability of the standard and fractional
discrete-time linear systems is considered in section 3 and of continuous-time linear
systems in section 4. Concluding remarks are given in section 5.
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The following notation will be used: ℜn×m is the set of n×m real matrices and
ℜn = ℜn×1, Z+ is the set of nonnegative integers, In is the n×n identity matrix.

2. Preliminaries

Consider the standard discrete-time linear system

xi+1 = Axi +Bui, i ∈ Z+ = {0,1, ...}, (1a)

yi =Cxi, (1b)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are state, input and output vectors and A ∈ ℜn×n,
B ∈ ℜn×m, C ∈ ℜp×n.

The solution to the equation (1a) is given by

xi = Aix0 +
i−1

∑
j=0

Ai− j−1Bu j. (2)

Substituting (2) into (1b) we obtain

yi =CAix0 +
i−1

∑
j=0

CAi− j−1Bu j. (3)

Now let us consider the fractional discrete-time linear system

∆αxi+1 = Axi +Bui, 0 < α < 2, (4a)

yi =Cxi, (4b)

where

∆αxi =
i

∑
j=0

(−1) j

(
α
j

)
xi− j, (4c)

(
α
j

)
=

{
1 for j = 0
α(α−1)...(α− j+1)

j! for j = 1,2, ...
(4d)

is the fractional α-order difference of xi and xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are state, input
and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

Substitution of (4c) into (4a) yields

xi+1 = (A+ Inα)xi +
i+1

∑
j=2

c jxi− j+1 +Bui, i ∈ Z+, (5a)
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where

c j = c j(α) = (−1) j+1

(
α
j

)
, j = 2,3, ... (5b)

The solution to the equation (5a) has the form [11]

xi+1 = (A+ Inα)xi +
i+1

∑
j=2

c jxi− j+1 +Bui, i ∈ Z+, (6a)

where

Φ j+1 = Φ j(A+ Inα)+
j+1

∑
k=2

ckΦ j−k+1, Φ0 = In (6b)

and ck is defined by (5b).
Substituting (6a) into (4b) we obtain

yi =CΦix0 +
i−1

∑
j=0

CΦi− j−1Bu j. (7)

Consider the standard continuous-time linear system

ẋ(t) = Ax(t)+Bu(t), (8a)

y(t) =Cx(t), (8b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are state, input and output vectors and A ∈ ℜn×n,
B ∈ ℜn×m, C ∈ ℜp×n.

The solution to the equation (8a) has the form

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ (9)

and

y(t) =CeAtx0 +

t∫
0

CeA(t−τ)Bu(τ)dτ. (10)

Now let us consider the fractional continuous-time linear system

dαx(t)
dtα = Ax(t)+Bu(t), 0 < α < 2 (11a)

y(t) =Cx(t), (11b)

where
dαx(t)

dtα =
1

Γ(n−α)

t∫
0

x(n)(τ)
(t − τ)α+1−n dτ, x(n)(τ) =

dnx(τ)
dτn (12)
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is the Caputo fractional derivative of order n− 1 < α < n (n ∈ N) of x(t), Γ(x) is the
Euler gamma function, xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are state, input and output vectors and
A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

The solution of the equation (11a) is given by [11]

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(τ)dτ, x0 = x(0), (13a)

where

Φ0(t) =
∞

∑
k=0

Aktkα

Γ(kα+1)
, (13b)

Φ(t) =
∞

∑
k=0

Akt(k+1)α−1

Γ[(k+1)α]
(13c)

and

y(t) =CΦ0(t)x0 +

t∫
0

CΦ(t − τ)Bu(τ)dτ. (14)

Theorem 4 (Cayley-Hamilton) Let A ∈ ℜn×n and

det[Inλ−A] = λn +an−1λn−1 + ...+a1λ+a0. (15)

Then
An +an−1An−1 + ...+a1A+a0In = 0. (16)

Proof Proof is given in [3, 12].

Theorem 5 (Kronecker-Capelli) The linear matrix equation

Ax = b, A ∈ ℜn×n, b ∈ ℜn (17)

has a solution x ∈ ℜn if and only if

rank[A,b] = rankA. (18)

Proof Proof is given in [12].

3. Observability of standard and fractional discrete-time linear systems

It is well-known [1, 2, 7] that the observability of the standard and fractional linear
systems depends only of the pair (A,C) and it is independent of the matrix B.
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Definition 13 The standard linear discrete-time linear system (1) is called observable
in the interval [0,q] if knowing the output yi for i = 0,1, ...,q−1, q¬ n, it is possible to
find the unique x0 of the system.

Theorem 6 The standard linear discrete-time linear system (1) is observable if and only
if

rank


C

CA
...

CAn−1

= n. (19)

Proof Proof is given in [1, 6, 13].

Definition 14 The fractional discrete-time linear system (4) is called observable in the
interval [0,q] if knowing the output yi for i = 0,1, ...,q− 1, q < n, it is possible to find
the unique x0 of the system.

We shall show that the fractional discrete-time linear system (4) is observable in the
interval [0,q] if and only if the standard linear discrete-time system (1) is observable in
the same interval.

From (7) for B = 0 and (6b) for i = 0,1, ...,q−1 we have

y0q =


y0

y1
...

yq−1

=


CΦ0

CΦ1
...

CΦq−1

x0 = O0qx0, (20a)

where

O0q =



C
C(A+ Inα)

C[(A+ Inα)2 + c2In]
...

C[(A+ Inα)q−1 + ...+(αq−1 + ...+ cq−1)In]


. (20b)

By Kronecker-Capelli theorem the equation (20a) has a unique solution x0 for any given
y0q if and only if

rankO0q = n. (20c)

Therefore, the following theorem has been proved.

Theorem 7 The fractional discrete-time linear system (4) or equivalently (5a), (4b), is
observable in the interval [0,q] if and only if the condition (20c) is satisfied.
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It will be shown that the condition (20c) is equivalent to the condition (19). Note that

O0q =



C
C(A+ Inα)

C[(A+ Inα)2 + c2In]
...

C[(A+ Inα)q−1 + ...+(αq−1 + ...+ cq−1)In]



=



In 0 0 · · · 0
αIn In 0 · · · 0

(c2 +α2)In 2αIn In · · · 0
...

...
...

. . .
...

(cq−1 + ...+αq−1)In · · · · · · · · · In




C

CA
...

CAq−1



(21)

since
(A+ Inα)k = Ak + kαAk−1 + ...+αkIn for k = 2,3, ...,q−1. (22)

From (21) it follows that

rankO0q = rank


C

CA
...

CAq−1

 (23)

since the matrix 

In 0 0 · · · 0
αIn In 0 · · · 0

(c2 +α2)In 2αIn In · · · 0
...

...
...

. . .
...

(cq−1 + ...+αq−1)In · · · · · · · · · In


(24)

is nonsingular for all values of α and ck, k = 1,2, ...,q− 1. Therefore, the following
theorem has been proved.

Theorem 8 The fractional discrete-time linear system (4) is observable in the interval
[0,q], q ¬ n, if and only if the standard discrete-time linear system (1) is observable in
the same interval [0,q].

Example 1 Consider the standard system (1) and the fractional system (4) for α = 0.5
with the same matrices

A =

[
0 1
−1 −3

]
, C = [ 1 1 ]. (25)
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Using (19) and (25) for q = 2 we obtain

rank

[
C

CA

]
= rank

[
1 1
−1 −2

]
= 2 (26)

and by Theorem 6 the standard system is observable in the interval [0,2].
For the fractional system with (25) using (20b) we obtain

rank

[
C

C(A+αI2)

]
= rank

[
1 1

−0.5 −1.5

]
= 2. (27)

By Theorem 7 the fractional system with (25) is also observable in the interval [0,2].

4. Observability of standard and fractional continuous-time linear systems

Definition 15 The standard continuous-time linear system (8) is called observable in
the interval [0, t f ] if knowing the output y(t) for t ∈ [0, t f ] it is possible to find the unique
x0 of the system.

Theorem 9 The standard continuous-time linear system (8) is observable if and only if

rank


C

CA
...

CAn−1

= n. (28)

Proof Proof is given in [1, 6, 13].

Definition 16 The fractional continuous-time linear system (11) is called observable in
the interval [0, t f ] if knowing the output y(t) for t ∈ [0, t f ] it is possible to find the unique
x0 of the system.

We shall show that the fractional continuous-time linear system (11) is observable
in the interval [0, t f ] if and only if the standard continuous-time linear system (8) is
observable in the same interval.

Using the Cayley-Hamilton theorem (the equality (10)) it is possible to eliminate the
powers k = n,n+1, ... of the matrix Ak in (13b) and we obtain

Φ0(t) =
n−1

∑
k=0

ck(t)Ak. (29)

The coefficients ck in (29) can be computed as follows.
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To simplify the calculations it is assumed the eigenvalues λk of the matrix A are
distinct, i.e. λi ̸= λ j for i ̸= j. In this case using (29) we obtain

Φ0(λ1)

Φ0(λ2)
...

Φ0(λn)

= H


c0(t)
c1(t)

...
cn−1(t)

 , (30)

where

H =


1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λn · · · λn−1
n

 . (31)

If the eigenvalues are distinct, then the matrix (31) is nonsingular and from (30) we have
c0(t)
c1(t)

...
cn−1(t)

= H−1


Φ0(λ1)

Φ0(λ2)
...

Φ0(λn)

 . (32)

The coefficients ck(t), k = 0,1, ...,n − 1 can be also found using the well-known
Lagrange-Sylvester formula [3, 12].

Substitution of (29) into (14) for B = 0 yields

y(t) =CΦ0(t)x0 =
n−1

∑
k=0

ck(t)CAk = [ c0(t) c1(t) · · · cn−1(t) ]


C

CA
...

CAn−1

x0. (33)

From (33) it follows that it is possible to find y(t) for given t ∈ [0, t f ], if and only if

rank


C

CA
...

CAn−1

= n (34)

since ck(t) ̸= 0 for t ∈ [0, t f ]. Therefore, the following theorem has been proved.
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Theorem 10 The fractional continuous-time linear system (11) is observable in the in-
terval [0, t f ] if and only if the standard continuous-time linear system (8) is observable
in the same interval.

Example 2 Consider the standard system (8) and the fractional system (11) with the
same matrices

A =

[
0 1
0 0

]
, C = [ 1 0 ]. (35)

Using (28) and (35) we obtain

rank

[
C

CA

]
= rank

[
1 0
0 1

]
= 2 (36)

and by Theorem 10 the standard system is observable. In this case for the fractional
system (11) with (35) we obtain

Φ0(t) = I2 +
Atα

Γ(α+1)
= I2 +

Atα

α
=

[
1 tα

α
0 1

]
= c0(t)I2 + c1(t)A, (37)

where
c0(t) = 1, c1(t) =

tα

α
. (38)

By Theorem 10 the fractional system is also observable.

5. Concluding remarks

The relationship between the observability of the standard and fractional discrete-
time and continuous-time linear systems has been addressed. It has been shown that:
1) the fractional discrete-time linear systems are observable if and only if the standard
discrete-time linear systems are observable (Theorem 8); 2) the fractional continuous-
time linear systems are observable if and only if the standard continuous-time linear
systems are observable (Theorem 10). The considerations have been illustrated by nu-
merical examples. The considerations can be extended to the standard and fractional
time-varying linear systems.
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