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Analytic solutions of transcendental equations
with application to automatics

HENRYK GÓRECKI and MIECZYSŁAW ZACZYK

In the paper the extremal dynamic error x(τ) and the moment of time τ are considered.
The extremal value of dynamic error gives information about accuracy of the system. The time
τ gives information about velocity of transient. The analytical formulae enable design of the
system with prescribed properties. These formulae are calculated due to the assumption that
x(τ) is a function of the roots s1, ..., sn of the characteristic equation.
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1. Introduction

In the paper [1] the necessary conditions for the extremal value x(τ) are presented.
In the article [2] the method of the decomposition of nth order system into a set of 2-nd
order systems is given. In this article some new results are obtained.

2. Statement of the problem

Calculation of conditions and extremum of the extreme value of the dynamic error
[1]. Let us consider the differential equation determining the dynamic error in a linear
control system of nth order with lumped and constant parameters:

dnx
dtn +a1

dn−1x
dtn−1 + · · ·+an−1

dx
dt

+anx = 0. (1)

The initial conditions are determined by the force function and the system’s parameters.
Let us assume in general, that

x(i)(0) = ci+1 ̸= 0 for i = 0,1, ...,n−1
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We assume further that the characteristic equation of equation (1) has m different real
roots and 2p different complex roots.

It is evident that

m+2p = n.

We denote by sk real roots and

αk + jωk = rk, αk − jωk = r̂k (k = 1,2, ..., p).

The solution of equation (1) takes the form

x(t) =
m

∑
k=1

Akeskt +
p

∑
k=1

[Bk cos(ωkt)+Ck sin(ωkt)]eαkt (2)

where Ak, Bk, Ck, sk, αk and ωk are real numbers.
The necessary conditions for the dynamic error x(t) to attain an extreme value at

t = τ is given by the relation:

dx
dt

=
m

∑
k=1

Akskeskτ +

(3)

+
p

∑
k=1

[(−Bk sinωkτ+Ck cosωkτ)ωk +(Bk cosωkτ+Ck sinωkτ)αk]eαkτ = 0.

The constants are determined from

x(i)(0) = ci+1 =
m

∑
k=1

Aksi
k +

p

∑
k=1

[
Bk Re(ri

k)+Ck Im(ri
k)
]

(i = 0,1, ...,n−1). (4)

The extreme value of the dynamic error is

x(τ) =
m

∑
k=1

Akeskτ +
p

∑
k=1

[Bk cos(ωkτ)+Ck sin(ωkτ)]eαkτ. (5)

The extremum of extreme value of the dynamic error given by equation (5), computed
with regard to the parameters sk, αk, ωk, is obtained by putting the respective partial
derivatives of x(τ) equal to zero.

Denoting by (
∂x(τ)
∂sk

)∗
,

(
∂x(τ)
∂αk

)∗
,

(
∂x(τ)
∂ωk

)∗
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the partial derivatives of expression (5) for constant τ we may write

∂x(τ)
∂sk

=

(
∂x(τ)
∂sk

)∗
+

∂x(τ)
∂τ

∂τ
∂sk

∂x(τ)
∂αk

=

(
∂x(τ)
∂αk

)∗
+

∂x(τ)
∂τ

∂τ
∂αk

∂x(τ)
∂ωk

=

(
∂x(τ)
∂ωk

)∗
+

∂x(τ)
∂τ

∂τ
∂ωk


. (6)

However, we have from equation (3)

∂x(τ)
∂τ

= 0

and therefore
∂x(τ)
∂sk

=

(
∂x(τ)
∂sk

)∗

∂x(τ)
∂αk

=

(
∂x(τ)
∂αk

)∗

∂x(τ)
∂ωk

=

(
∂x(τ)
∂ωk

)∗


. (7)

We obtain the following conditions:

m

∑
k=1

∂Ak

∂s j
eskτ +A jτes jτ +

p

∑
k=1

(
∂Bk

∂s j
cosωkτ+

∂Ck

∂s j
sinωkτ

)
eαkτ = 0

j = 1,2, ...,m
m

∑
k=1

∂Ak

∂α j
eskτ+

+
p

∑
k=1

(
∂Bk

∂α j
cosωkτ+

∂Ck

∂α j
sinωkτ

)
eαkτ +(B j cosω jτ+C j sinω jτ)eα jττ = 0

m

∑
k=1

∂Ak

∂ω j
eskτ+

+
p

∑
k=1

(
∂Bk

∂ω j
cosωkτ+

∂Ck

∂ω j
sinωkτ

)
eαkτ +(C j cosω jτ−B j sinω jτ)eα jττ = 0

j = 1,2, ..., p



(8)

In this way we have a system of n linear and homogenous equations with n unknowns
eskτ, eαkτ sinωkτ, eαkτ cosωkτ.
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The determinant of system (8) must vanish if there are not to be all zero solutions.
The same determinant (after being reflected about one of the main diagonals) is:

|D+Aτ| (9)

where D and A are matrices determined by the following equations:

D =
m

∑
j=1

m

∑
k=1

∂A j

∂sk
E jk +

p

∑
j=1

m

∑
k=1

(
∂B j

∂sk
Em+2 j−1,k +

∂C j

∂sk
Em+2 j,k

)
+

+
m

∑
j=1

p

∑
k=1

(
∂A j

∂αk
E j,m+2k−1 +

∂A j

∂ωk
E j,m+2k

)
+

+
p

∑
j=1

p

∑
k=1

[(
∂B j

∂αk
Em+2 j−1,m+2k−1 +

∂B j

∂ωk
Em+2 j−1,m+2k

)
+

+

(
∂C j

∂αk
Em+2 j,m+2k−1 +

∂C j

∂ωk
Em+2 j,m+2k

)]
,

A =
m

∑
j=1

A jE j j +
p

∑
j=1

[B j(Em+2 j−1,m+2 j−1 −Em+2 j,m+2 j)+

+C j(Em+2 j−1,m+2 j +Em+2 j,m+2 j−1)]



, (10)

E jk =
(

e( jk)
µ,ν

)
µ,ν = 1, ...,n

e( jk)
µ,p = δµ jδνk =

{
1
0

for µ= j,ν=k
for all other cases.

(11)

Finally we have
|D+Aτ|= 0 (12)

and system (8) yields for unknown τ (after some algebraic manipulations) the following
equation:

(−1)nτn
m

∏
k=1

Ak

p

∏
k=1

(
B2

k +C2
k
)
= 0. (13)

From relation (13) it is evident that the necessary conditions for x[τ(s1,s2, . . . ,sn)] to
have an extremum with respect to (s1,s2, . . . ,sn) are

τ = 0 (14)

which means that
c2 = 0 (15)

or
Ak = 0 for k = 1,2, . . . ,m (16)
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or
(B2

k +C2
k ) = 0 for k = 1,2, . . . , p. (17)

By applying Laplace transformation to the equation (1) we obtain the transform X(s) of
the error x(t).

X(s) =

sn−1c1+(a1c1 + c2)sn−2+(a2c1+a1c2+c3)sn−3+ · · ·+(an−1c1+an−2c2+. . .+a1cn−1+cn)

sn +a1sn−1 +a2sn−2 + · · ·+an−1s+an

=
L(s)
M(s)

.

(18)
The coefficients Ak, Bk, Ck as we know, are equal

Ak =
L(sk)[

dM(s)
ds

]
s=sk

k = 1,2, . . . ,m (19)

and they can attain zero value if the Sylvester’s determinant of the polynomials L(s) and
M(s) is equal zero. We obtain the following theorem:

Theorem 2 The vanishing of the coefficients Ak (16) or (B2
k +C2

k ) (17) is possible if the
numerator L(s) and the denominator M(s) of the transform X(s) have a common root, it
means Ak = 0 if L(sk) = 0 and M(sk) = 0.

In order to eliminate the root sk which will satisfy both equations L(s) = 0 and
M(s) = 0 we can also use Euclides algorithm [2].

The division of M(s) by L(s) gives

s1 =
c2

c1
(20)

for arbitrary natural power n = 1,2, . . .
In the particular cases, which are often in practice, c2 = 0, then from (20) we obtain

s1 = 0 [4]. This value is not useful, because this is limit of stability of (1). In this paper
these particular cases, using another method, are considered for c2 = 0, c1 ̸= 0, c3 ̸= 0
[3].

3. Solution of the problem

Let us consider the equation for n = 3

x(t) =
3

∑
i=1

Aiesit (21)
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with the initial conditions: x(0) = c1, x(1)(0) = c2, x(2)(0) = c3. The characteristic equa-
tion is

s3 +a1s2 +a2s+a3 = 0 (22)

where a1, a2, a3 > 0 and a1a2 − a3 > 0, are conditions for stability. Let us assume that
roots of the equation (22) fulfill the relation

s3 =
s1 + s2

2
and s1 < s3 < s2. (23)

This assumption denotes that localization of the roots can satisfy one of the three pos-
sibilities (Fig. 1). The roots of equation (22) are determined by the relation (23) and
Vieta’s formulae

a1 =−(s1 + s2 + s3) =−3s3

then
s3 =−1

3
a1. (24)

Figure 1: Localization of roots.

The division of the equation (22) by the root s3 gives

s2 +
2
3

a1s+a2 −
2
9

a2
1 = 0 (25)

and
a3 =

1
3

a1a2 −
2

27
a3

1. (26)

The roots of equation (25) are

s1,2 =−1
3

a1 ±
√

1
3

a2
1 −a2. (27)

From the relation (27) we deduce:

10 If 1
3 a2

1 −a2 > 0 there are three real, different roots s1 ̸= s2 ̸= s3 (24) and (27),
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20 If 1
3 a2

1 −a2 = 0 there is one triple root

s1 =−1
3

a1 (28)

30 If 1
3 a2

1 −a2 < 0 there is one real root s3 =−1
3 a1,

s3 =−1
3

a1 (29)

and two complex roots
s1,2 = α± jω (30)

where
α =−1

3
a1

ω =

√
a2 −

1
3

a2
1

 . (31)

The coefficients of equation (21) are

A1 =
c3 − c2(s2 + s3)+ c1s2s3

(s1 − s2)(s1 − s3)

A2 =
c3 − c2(s1 + s3)+ c1s1s3

(s1 − s2)(s3 − s2)

A3 =
c3 − c2(s1 + s2)+ c1s1s2

(s1 − s3)(s2 − s3)


. (32)

From the necessary condition for extremum x(t) determined by (21) we have

dx
dt

= s1A1es1τ + s2A2es2τ + s3A3es3τ = 0. (33)

After division of (33) by es3τ we obtain

s1A1e(s1−s3)τ + s2A2e(s2−s3)τ + s3A3 = 0. (34)

From the relation (23) we obtain a very important relation

s1 − s3 =−(s2 − s3) (35)

which substituted to (34) gives

s1A1e(s1−s3)τ + s2A2e−(s1−s3)τ + s3A3 = 0. (36)

After multiplying (36) by e(s1−s3)τ we obtain finally

s1A1e2(s1−s3)τ + s3A3e(s1−s3)τ + s2A2 = 0. (37)
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It is quadratic equation with respect to e(s1−s3)τ, then we have:

In the case 10, that is of real s1 ̸= s2 ̸= s3 and 1
3 a2

1 −a2 > 0

τ1,2 =
1

s1 − s3
ln

−1
2

s3A3

s1A1
±

√(
1
2

s3A3

s1A1

)2

− s2A2

s1A1

 (38)

or

τ1,2 =
1√

1
3 a2

1 −a2

ln

−1
2

s3A3

s1A1
±

√(
1
2

s3A3

s1A1

)2

− s2A2

s1A1

 . (39)

If (
1
2

s3A3

s1A1

)2

<
s2A2

s1A1
(40)

then no extremum exist. If (
1
2

s3A3

s1A1

)2

=
s2A2

s1A1

−1
2

s3A3

s1A1
> 1

 (41)

then we have one extremum. If (
1
2

s3A3

s1A1

)2

>
s2A2

s1A1

−1
2

s3A3

s1A1
 1

 (42)

then we have two extremums.

In the case 20, s1 = s2 = s3 the moment of time τ is determined by the equation

x(1)(τ) = [s1A3τ2 +(s1A2 +2A3)τ+(s1A1 +A2)]es1τ = 0 (43)

and coefficients Ak are

Ak =
k

∑
i=1

x(k−i)(0)(−1)i−1si−1

(i−1)!(k− i+1)!
, k = 0,1,2, . . . ,n. (44)

For n = 3 we have
s =−1

3
a1

A1 = c1

A2 = (c2 − sc1)

A3 =
1
2

c3 − sc2 −
1
2

s2c1


. (45)
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From the equation (43) we have

τ =
−(sA2 +2A3)±

√
(sA2 +2A3)2 −4sA3(sA1 +A2)

2sA3
. (46)

Similarly to the case 10 one or two extremums may exist or no extremum exists.

In the case 30:
s3 = α

s1 = α+ jω
s2 = α− jω

 . (47)

where
α =−1

3
a1

ω =

√
a2 −

1
3

a2
1

 . (48)

The equation (34) takes a form

αA3eατ +[A1cosωτ+A2sinωτ]eατ = 0

or after division by eατ we obtain

αA3 +[A1cosωτ+A2sinωτ] = 0. (49)

From this equation we conclude that there may be infinitely many extremums. In order
to obtain the explicit relations of time τ with the initial conditions ci (i = 1,2,3) and
roots s1, s2, s3 we take into account the relations between coefficients A1, A2, A3 with
the initial conditions and the roots [5],[6].

In the paper [3] it was proved that the necessary and sufficient condition for the
positive and aperiodic solutions of equation (21) is

10

c2 = 0, c1 > 0, (50)

20 the roots s1, s2, s3 are real and negative,

30
c3

c1
=−s1s2

or
c3

c1
=−s1s3

or
c3

c1
=−s2s3.


. (51)
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The solution of equation (21) has only one extremum at the moment τ = 0, because
c2 =

dx
dt

∣∣
t=0 = 0 by the assumption.

In Fig. 2,3,4 there are presented solutions of (5) for the different c3
c1

and s1, s2, s3
which fulfill the conditions (50) and (51).

Figure 2: Transient of the error for: s1 =−1, s2 =−3, s3 =−2, c2 = 0, c3/c1 =−3.

Figure 3: Transient of the error for: s1 =−1, s2 =−3, s3 =−2, c2 = 0, c3/c1 =−2.

Figure 4: Transient of the error for: s1 =−1, s2 =−3, s3 =−2, c2 = 0, c3/c1 =−6.



ANALYTIC SOLUTIONS OF TRANSCENDENTAL EQUATIONS
WITH APPLICATION TO AUTOMATICS 507

In the considerations that follow we assume that

s3 =
s1 + s2

2
(52)

and that
s2 < s3 < s1 < 0. (53)

The solution of equation (21) is

x(t) =
[s2(s2 + s1)c1 − (3s2 + s1)c2 +2c3]es1t

(s1 − s2)2 +
[s1(s1 + s2)c1 − (3s1 + s2)c2 +2c3]es2t

(s1 − s2)2 +

+
[−4s1s2c1 +4(s1 + s2)c2 −4c3]e(

s1+s2
2 t)

(s1 − s2)2 .

(54)
The derivative of x(t) is

dx(t)
dt

=
[s1s2(s2 + s1)c1 − s1(3s2 + s1)c2 +2s1c3]es1t

(s1 − s2)2

+
[s1s2(s1 + s2)c1 − s2(3s1 + s2)c2 +2s2c3]es2t

(s1 − s2)2

+
[−2s1s2(s1 + s2)c1 +2(s1 + s2)

2c2 −2(s1 + s2)c3]e(
s1+s2

2 )t

(s1 − s2)2 .

(55)

Using the necessary condition for extremum dx(t)
dt

∣∣∣
t=τ

= 0 we obtain from (55)

τ1 =
−2

s1 − s2
ln

(
[−s1s2(s1 + s2)c1 +(s1 + s2)

2c2 − (s1 + s2)c3]+
√

A
s2[−s1(s1 + s2)c1 +(3s1 + s2)c2 −2c3]

)
, (56)

τ2 =
−2

s1 − s2
ln

(
[−s1s2(s1 + s2)c1 +(s1 + s2)

2c2 − (s1 + s2)c3]−
√

A
s2[−s1(s1 + s2)c1 +(3s1 + s2)c2 −2c3]

)
, (57)

where

A =−(s1− s2)
2(−c2

2s2
2+ s2

2s1c1c2+2s2c2c3−3c2
2s1s2+ s2s2

1c1c2+2c3s1c2− s2
1c2

2−c2
3).

In Fig. 5 the plot of the solution x(t) is presented for c1 = 1, c2 = 1, c3 = 3 and the roots
s1 =−1, s2 =−3, s3 =−2.

x(t) = 7e−t +4e−3t −10e−2t .

The extremum is only one at the moment of time τ = 0.69314718.
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Figure 5: Transient of the error.

Figure 6: Transient of the error.

In the next example, where c1 = 1, c2 = −2, c3 = 15 we have two extremums at
times τ1 = 0.2352329 and τ2 = 0.863379. The solution x(t) is presented in Fig. 6.

x(t) =
11
2

e−t +
11
2

e−3t −10e−2t .

In the particular case when c2 = 0 the general formulae (56) and (57) are simpler

τ1 =
−2

s1 − s2
ln

s1s2
2c1 + c3s2 + s2

1s2c1 + c3s1 +
√
(s1 − s2)2c2

3

s2(s2
1c1 + s1s2c1 +2c3)


=

−2
s1 − s2

ln
(

s1(s2
2c1 + s1s2c1 +2c3)

s2(s2
1c1 + s1s2c1 +2c3)

) (58)

τ2 =
−2

s1 − s2
ln

s1s2
2c1 + c3s2 + s2

1s2c1 + c3s1 −
√
(s1 − s2)2c2

3

s2(s2
1c1 + s1s2c1 +2c3)


=

−2
s1 − s2

ln
(

s2(s2
1c1 + s1s2c1 +2c3)

s2(s2
1c1 + s1s2c1 +2c3)

)
= 0.

(59)
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The condition c2 = 0 gives minimal transient error (see [1]). In this particular case when
c2 = 0 and c1 = 1, c3 = 3 extremum is at the moment τ1 = 0, because c2 = 0, and at the
moment of time τ2 = 0.510825 (Fig.7) and

x(t) =
9
2

e−t +
5
2

e−3t −6e−2t .

Figure 7: Transient of the error.

The case 20

s1 = s2 = s3 =−1
3

a1. (60)

The solution is

x(t) =
[(

1
2

c3 +
1
2

s2
1c1 − s1c2

)
t2 +(c2 − s1c1)t + c1

]
es1t . (61)

The derivative

dx(t)
dt

=

[(
1
2

s1c3 +
1
2

s3
1c1 − s2

1c2

)
t2 +(c3 − s1c2)t + c2

]
es1t . (62)

From the condition that dx(t)
dt = 0 we obtain

τ1 =
−c3 + s1c2 +

√
c2

3 −4c3c2s1 +5s2
1c2

2 −2c2c1s3
1

s1c3 + s3
1c1 −2s2

1c2
, (63)

τ2 =
−c3 + s1c2 −

√
c2

3 −4c3c2s1 +5s2
1c2

2 −2c2c1s3
1

s1c3 + s3
1c1 −2s2

1c2
. (64)

For numerical example according to s1 =−1, c1 = 1, c2 = 1, c3 = 2 the solution of x(t)
is presented in Fig. 8.

x(t) =
(

5
2

t2 +2t +1
)

e−t
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Figure 8: Transient of the error.

and from (64) we have τ = 1.471779.
In the case when c2 = 0 the formulae (63) and (64) are

τ1 =
1
2

−2c3 +2
√

c2
3

s1c3 + s3
1c1

= 0, (65)

τ2 =
−2c3

s1(c3 + s2
1c1)

. (66)

The case 30

s3 = α, s1 = α+ jω, s2 = α− jω, c1 ̸= 0, c2 = 0, c3 ̸= 0. (67)

The solution is

x(t) =−eαt [−c1α2 − c1ω2 − c3 + cos(tω)c1α2 + c3 cos(tω)+αc1ωsin(tω)
ω2 . (68)

The derivative

dx(t)
dt

=

−eαt [−c1α3−αc1ω2−αc3+α3c1 cos(tω)+αc1ω2 cos(tω)+αc3 cos(tω)−c3ωsin(tω)]
ω2

(69)
or in a more convenient form

dx(t)
dt

=

[
c3sin(tω)

ω
+

(c1α3 +αc1ω2 +αc3)[1− cos(tω)]
ω2

]
eαt . (70)

From the necessary condition dx(t)
dt = 0 using (70) we obtain

τ1 = 2
kπ
ω
, k = 0,1, . . . , (71)
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τ2 =
−2
ω

arctg
(

c3ω
α(c1α2 + c1ω2 + c3)

)
+

2kπ
ω

, k = 0,1, . . . (72)

where for α =−1
3 a1, ω =

√
a2 − 1

3 a2
1 we obtain finally from (72)

τ2 = 6
−arctg

(
9 c3

√
(9a2−3a2

1
a1(−9c3+2c1a2

1−9c1a2)

)
+ kπ√

9a2 −3a2
1

. (73)

A numerical example for α =−1, ω = 2, c1 = 1, c2 = 0, c3 =−3 is presented in Fig. 9
and the solution is

x(t) =
1
2
[1+ cos(2t)+ sin(2t)]e−t

Figure 9: Transient of the error.

Extremums from (71) and (72) are as follows: τ1 = 0, τ2 = 1.89254688, τ3 =
3.14159265, τ4 = 5.03413953, τ5 = 6.2831853.

For c2 = 0, the example presented in the paper [2] can be described by the following
relations:

Transform of the error

E(s) =
1+2ξT3s+T 2

3 s2

K +(1+KT2)s+2ξT3s2 +T 2
3 s3 .

The initial conditions are

c1 = 1, c2 = 0, c3 =−KT2

T 2
3
.

For numerical values: ξ = 0.75, T3 = 0.1, K = 10, T2 = 0.15 we obtain

X(s) =
1+0.15s+0.01s2

10+2.5s+0.15s2 +0.01s3 .
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Solution
x(t) = [0.2857142857+0.7142857143cos(13.22875656t)+

+0.3779644731sin(13.22875656t)]e−5t

is presented in Fig. 10.

Figure 10: Transient of the error.

From (71) and (72) the extremums of x(t) are at the moments of time τ1 = 0, τ2 =
0.2564298695, τ3 = 0.4749641647, τ4 = 0.7313940343, τ5 = 0.9499283295 and so on.
The values of the extremum are: x(τ1)= 1, x(τ2)=−0.13872, x(τ3)= 0.093031, x(τ4)=
−0.012905, x(τ5) = 0.0086548.

4. Conclusions

It was shown that also in the difficult case when c2 = 0 it is possible to obtain so-
lution of the problem. In the article [1] it was proved that the condition c2 = 0 gives
minimal dynamic error for the nth order equation (n = 2,3, . . .). For that reason this par-
ticular case is very important. The 3-rd order equation was analyzed and for the different
kinds of roots the analytical formulae of the extremum of dynamic error x(τ) and time
τ has been obtained. In the figures there are shown the transients of x(t). The practical
example, which was considered in [2], is also solved for the initial conditions c1 = 1,
c2 = 0. The roots of the characteristic equation may be shifted in the desired location
using the well known methods of the poles and zeros locations (see [7]).
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