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LABORATORY INVESTIGATIONS OF STATIONARY METHANE ANEMOMETER

BADANIA LABORATORYJNE METANOANEMOMETRU STACJONARNEGO

This paper presents a new stationary device that can perform simultaneous measurements of air flow 
velocity and methane concentration in a mine heading (stationary methane anemometer). The test station 
is designed to use the instrument to test the effect of various parameters on the air-methane stream. The 
air velocities and methane concentrations were fed to the measuring area via an injector and recorded. The 
results present numerical simulations of flow phenomena that occurred during measurement experiments.
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W artykule zaprezentowano nowe, stacjonarne urządzenie do jednoczesnego pomiaru prędkości prze-
pływu powietrza i stężenia metanu w wyrobisku kopalni (metanoanemometr stacjonarny). Przedstawiono 
stanowisko badawcze pozwalające na przeprowadzenie eksperymentów pomiarowych polegających na 
oddziaływaniu na przyrząd strugą mieszaniny powietrzno-metanowej o zmiennych parametrach. Za-
rejestrowano przebiegi prędkości i stężenia metanu podawanego do obszaru pomiarowego za pomocą 
iniektora. Pokazano wyniki symulacji numerycznej zjawisk przepływowych zachodzących podczas 
eksperymentów pomiarowych.

Słowa kluczowe: wentylacja kopalń, aerologia górnicza, stężenie metanu, anemometr, metanoanemometr, 
analiza CFD

1. Introduction

An essential problem in the metrology of underground mine ventilation networks is the meas-
urement of the methane volume stream. Despite the adoption of a few measurement procedures 
in previous years, only recently has research been undertaken aimed at the verification of their 
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accuracy and feasibility of use based on flow and environmental conditions, The factors which 
may impact the accuracy of measurement results include the separation of air volume stream 
measurements from average methane concentration measurements in the cross-section. Research 
aimed at the construction of measurement devices in which both parameters are measured simul-
taneously (Janus et al., 2013; Kruczkowski & Ostrogórski, 2013) is being carried out in the IMG 
PAN (Eng. The Strata Mechanics Research Institute of the Polish Academy of Sciences). The 
first instrument where simultaneous measurements were determined was the portable methane 
anemometer denoted as SOM 2303 (Kruczkowski & Ostrogórski, 2015). The sensors of air flow 
velocity and methane concentration used in the measurement experiment recorded quasi-point-by-
point measurements of both values at the same time. After entering the information about the size 
of the heading cross-section, the instrument measures methane volume stream by the continuous 
traverse method. At present, after having obtained required certificates, the methane anemometer 
was deployed for use in underground coal mines. The experience gained during its construction 
and the positive opinions on the increase in the quality and accuracy of measurements were the 
basis for undertaking research on a corresponding solution in a stationary form. An additional 
factor justifying the decision was to attempt to control air flow directly, very close to the meth-
ane sensor. This would enable observation of any possible disruptions to operating conditions.

As opposed to a hand-held methane anemometer, a stationary instrument needs to perform 
additional activities in order to measure the methane volume stream. The requirements are the 
same as for the hand-held methane anemometer intended for the measurement of the air volume 
stream (Wasilewski et al., 2015). The correction coefficient for the measured local velocity in rela-
tion to the average velocity at the place of installation should be determined. The measured local 
methane concentration can be assumed to represent the average value provided that methane is 
thoroughly mixed in the heading cross-section. This paper presents the results of the measurement 
laboratory experiment concerning the effect of the methane stream on the concentration sensor of 
the stationary methane anemometer under the flow conditions where a lack of mixing methane 
with air may be suspected. In addition to the measurement experiments, numerical simulations 
of the phenomena occurring during the flows generated on the test stations were also carried out.

2. Methane anemometer description

The stationary methane anemometer shown in photo (Fig. 1) is the device which performs 
simultaneous measurement of air flow velocity in a mine heading and the concentration of methane 
contained in this air flow. The concept of the project was presented in the previous publications 
(Kruczkowski, 2013b; Janus et al., 2013; Kruczkowski & Ostrogórski, 2013). The measuring 
device was built because there was no other equivalent among the meters of the physical param-
eters of the mine atmosphere which could perform the desired measurements.

The instrument shown in the photo above consists of a vane anemometer velocity sensor 
and a methane concentration pellistor sensor; both sensors were placed in a common tube shield. 
The methane sensor is located in the upper part of the shield from the side of the expected air 
inflow. Between the methane concentration sensor and the velocity sensor a palisade of three 
bars protecting the vane against mechanical damage.

The same palisade is behind the sensor. Placing the methane concentration sensor in front of 
the palisade allows calibration using the standard procedure for stationary methane anemometers. 
Above the shield of the sensor is a chamber with electric circuits with communication terminals. 
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The methane anemometer was fitted with three terminals which connect to a transmission-power 
supply line, data monitor, and alarm signals, as well as two-state control circuits. The instrument 
is designed for interaction with the most modern generation of digital telemetry systems due 
to the type of information generated. Apart from the main sensors, an outer element measur-
ing temperature was built-in into the lid that closes the chamber of the electronic circuits. The 
thermometer’s measuring range records high temperatures which can occur in catastrophic 
conditions. The structure of the methane anemometer was designed with such situations in 
mind, and considerably exceeds the requirements for regular mining measuring instruments. 
The electronic system also records data in the “Black Box” technology after the external power 
supply-transmission lines are broken.

Fig. 2. The monitor of the stationary methane anemometer

The monitor shown in photo (Fig. 2) is an additional equipment element of the methane 
anemometer and allows direct access to data from the distance of up to a few hundred meters. 
The monitor functions as an optical alarm signaling device and also calibrates the methane sensor 

Fig. 1. Stationary methane anemometer
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in underground conditions. Most elements of both devices are made of high-grade acid resistant 
steel guarantying resistance to the aggressive mine environment.

The range of measurement of flow velocity is ± (0.16 up to 12 m/s) and the range of the 
measurement of methane concentration is 0 up to 100%. The frequency of measurement is 1 Hz.

3. Test station

The structure of the test station was dictated by the necessity to check the operation of the 
new device and to make the observations of the methane concentration sensor, depending on the 
how the air-methane mixture enters the system. An attempt to create a methane path in the air 
stream with adjustable flow velocity was undertaken. It was appropriate to make the assumption 
that methane will not be completely mixed with air, and by this, the adverse phenomena could 
be observed when the instrument is possibly used as a stationary meter of the methane volume 
stream. However, in most mine headings a homogenous distribution of the methane concentra-
tion field in the heading cross-section can be expected, the presence of other distribution patterns 
cannot be excluded (Skotniczny, 2014; Kruczkowski, 2013a).

Fig. 3. Test station for the investigation of the stationary methane anemometer

The test station shown in Fig. 3 consists of a section of the pipeline 1.5 m long with an in-
ner diameter of 0.11 m. The pipeline was connected with the radial fan by means of the diffuser 
with an inlet diameter of 0.05 m. The rotational speed of the fan was adjusted by the inverter. 
The tested methane anemometer was installed at the end of the pipeline. An air-methane mixture 
of 40.36% is fed to the inside of the pipeline by the injector made of the pipe bent at the angle 
of 90°. The inner diameter of the pipe is 0.008 m. The time of feeding mixture was set by means 
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of the unit of the coil electrovalves. The output of the mixture was controlled by the rotameter 
installed between the pressure reducer and the coil valves. The distance between the injector 
outlet and the methane anemometer inlet is 0.95 m. The device controlling the experiments was 
an arbitrary generator initiating the operation of the methane anemometer, controlling the coil 
valves, and the fan inverter. The station measured out the time of mixture feeding, setting the 
mixture stream quantity, and the smooth adjustment of the flow velocity inside the pipeline. 
There was also a possibility of the synchronisation of the recording time and the opening of the 
electrovalves. The measurement data were gathered in the methane anemometer memory and 
then analysed by the computer.

4. Results of the investigations

The investigation of the stationary methane anemometer involved injecting the inlet of the 
instrument measurement section with an air stream of known and controlled velocity. Known 
concentrations of methane and air stream volume were fed to the air stream. The standard 
measurement frequency of 1 Hz was increased to 10 Hz. This frequency was sufficient for the 
methane concentration sensor. The pellistor sensor contains its own electronic circuit which can 
give responses with required frequency, but the limitation in the A/C converter line of the pel-
listor bridges results in a change of the analogue signal limited to 5 Hz. Hence, in the presented 
charts the characteristic serration can be seen. However, this signal has no substantial importance 
for the discussion of the paper.

After a series of trial measurements, it was established that the volume of the air-methane 
mixture stream fed to the pipeline will be constant for all the experiments and its value will be 
1.2 l/min. This flow rate allowed measurement of the methane concentration over various time 
points and air stream velocities. The velocity of the outflow of the established mixture stream 
from the injection pipe was 0.4 m/s. Figs. 4-6 present the concentrations recorded by the methane 
sensor under constant methane concentration but varying air stream velocities. The change in 
methane concentration with time is recorded by the methane sensor. 

Fig. 4. Recording of the delay time of the methane propagation from the injector outlet 
to the methane concentration sensor.

Duration of mixture inflow = 10 s. Air stream velocity = 0.3 m/s
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Fig. 5. Recording of the delay time of the methane propagation from the injector outlet 
to the methane concentration sensor.

Duration of mixture inflow = 10 s. Air stream velocity = 0.6 m/s

Fig. 6. Recording of the delay time of methane propagation from the injector outlet 
to the methane concentration sensor.

Duration of mixture inflow = 10 s. Air stream velocity = 1.0 m/s

For the case shown in Fig. 4, with the stream velocity of 0.3 m/s, the reaction occurred after 
5.1 s. The maximum recorded methane concentration was 2.38%. With the stream velocity of 
0.6 m/s, the reaction occurred after 3.2 s and the maximum recorded methane concentration was 
0.77%. And finally, with the stream velocity of 1.0 m/s, the reaction occurred after 3.1 s and the 
maximum recorded methane concentration was 0.18%. In each case, the reaction time was greater 
than the time needed for the displacement of the air stream from the injector outlet to the sensor. 
Also, lower methane concentrations were recorded, as the velocity increased. This proves that 
the streams did not intermingle within this section and that a methane stream was formed which 
partially bypassed the concentration sensor.

Figs. 7, 8, and 9 present the results of the mixture pulse propagation, over different durations. 
The aim was to observe how the methane concentration is being formed in the flow condition 
similar to steady state. It can be noted that with the increase in the air stream velocity the sensor 
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Fig. 7. Recording of the methane concentration fluctuation during the air-methane mixture propagation.
Duration of the mixture inflow = 30 s. Air stream velocity = 0.3 m/s

Fig. 8. Recording of the methane concentration fluctuations during the air-methane mixture propagation.
Duration of the mixture inflow = 30 s. Air stream velocity = 0.5 m/s.

Fig. 9. Recording of the methane concentration fluctuations propagation during air-methane propagation.
Duration of the mixture inflow = 30 s. Air stream velocity = 1.0 m/s
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records lower methane concentrations. Also, the pulse duration becomes shorter. The measured 
concentration values prove that no full intermingle of air occurred after the mixture is fed. The 
calculations show that the methane concentration should be 0.3% for the ideal intermingle. The 
measured values are much higher. This confirms the hypothesis that a methane path was formed 
between the end of the injector and the inlet surface of the methane sensor measurement cham-
ber. With the increase in the air stream velocity the fluctuations of the methane concentrations 
also increases.

The investigation aimed to determine the mixture pulse feeding time needed to settle the 
methane concentration. As shown in Fig. 7, for the 0.3 m/s flow velocity, the methane concen-
tration being measured settles for the mixture feeding times longer than 7 s. After this time the 
increase in pulse duration does not cause any changes in the concentration being measured, and 
the high fluctuations of its values can be seen.

In addition, there were investigations into changes of the methane concentration sensor 
during sinusoidal changes of flow velocity. To this end, the inverter was programmed so that 
the frequency of the velocity changes was 0.1 Hz. The amplitude of the velocity changes was 
0.18 m/s. The changes of the methane concentration are shown in Fig. 9. In Fig. 10 the analo-
gous recording for the frequency of 0.2 Hz is presented. The increase in the frequency of air 
stream velocity changes caused a reduction in the amplitude of concentrations being recorded 
and shortened the time of methane removal.

Fig. 11 shows the delay which occurs between the velocity changes being recorded by the 
anemometric sensor and methane concentration changes. The reduction in the velocity causes 
the increase in the concentration with a certain delay. The shift between both signals results from 
the different dynamic properties of the vane sensor and the methane sensor.

5. Numerical simulations. Model and assumptions

The geometry of the test station and the methane anemometer was generated based on CAD 
software imported to the Gambit grid generator. The geometry of the area is shown in the figure 

Fig. 10. Propagation of the methane concentration for the flow velocity 0.3 m/s.
Duration of pulses 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.8, 0.6, 0.4, 0.2 s, respectively. 

The frequency of mixture feeding is 0.05 Hz
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where the positions of the virtual methane concentration sensors were marked. It was assumed 
that a vane of the anemometer is in motion and affects the velocity field to a negligible extent. 
A non-stationary, three-dimensional flow of the air-methane mixture was considered with the 
displacement taken into account. Flat velocity profiles were assumed on the diffuser inlet and 
the outlet of the pipe feeding the air-methane mixture. The preliminary calculations were carried 
out for the k-e turbulence model, whereas the target calculations were carried out by the k-w SST 
model. The Fluent (ANSYS, 2015) software was used for the calculations.

6. Calculations of the initial state

The initial state, before the mixture was fed, was generated by carrying out the calculation 
for 5 seconds. It was assumed that the pipe is filled with the air-methane mixture. Preliminary 
calculations were carried out until the stationary concentration field was obtained.

The diffuser is located at the inlet of the model. The angle of the diffuser is so large that 
the flow is torn away and the turbulence generation increases. This is proved by the rotation 
contours. The difference between the cross-sections of the diffuser inlet and outlet is about 4, 
and this causes a quadruple drop of the average velocity in the pipe of the station. The pipe sec-
tion from the diffuser to the anemometer inlet is too short to create a developed velocity profile. 
At the distance of 0.95 m before the methane anemometer there is a bent pipe for feeding the 
methane and air mixture, which constitutes a local flow disturbance and extends about 0.5 m. At 
the instrument inlet, there is a slight cross-section narrowing causing only a small increase in the 
velocity. On the inlet of the anemometric sensor, there is a bar palisade protecting the sensor. The 
bars generate a rotary path. Further, there is a hemisphere-shaped cup suspended on three bars. 
The cap narrows the cross-section causing an increase in the velocity in the area of the inflow 
on the vane. The second cap is practically located in the aerodynamic shadow generated by the 
first one. The cap supports constitute another source of flow disturbance. A similar impact on 
the flow was the second palisade at the sensor outlet. It was assumed that the injection pipe is 
filled with the air-methane mixture. Through the outlet cross-section methane diffuses to the air 
flowing in the pipeline and is swept towards the outlet. On the way to the outlet, the methane is 

Fig. 11. The propagation of the methane concentration for the flow velocity 0.3 m/s.
Durations of pulses 10, 20, 30 and 40 s, respectively. The frequency of mixture feeding is 0.017 Hz
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Fig. 12. The changes in the methane concentration caused by the changes in the air stream velocity.
The initial flow velocity was 0.65 m/s and the frequency 0.1 Hz

Fig. 13. The changes in the methane concentrations caused by the changes in the air stream velocity.
The initial flow velocity was 0.65 m/s and the frequency 0.1 Hz

Fig. 14. The changes in the methane concentration caused by the changes in the air stream velocity.
The initial flow velocity was 0.6 m/s and the frequency 0.1 Hz
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gradually diluted due to the turbulent diffusion. The displacement causes a slight deviation of the 
concentration field upwards. In this case, the simulation assessed not only the initial velocity field 
but also the field of concentrations. The methane concentration field constituted a marker useful 
to determine if the expected initial state was achieved. That was indicated by the steady point 
sensor readings and also by the fact that the gas stream has reached the station outlet, Figs. 12-14.

7. Response to the discrete methane inflow

In the next stage, a discrete increase in the methane inflow velocity up to 0.4 m/s was set, 
which corresponds to the 0.2E-3 m3/s stream. It was assumed that opening the coil valve causes 
the increase in the methane outflow velocity at 0.6 second, i.e. during six-time steps of the simu-
lation. The course of the increase in velocity is presented in Table 1.

The volume stream at the diffuser inlet was 0.00255 m3/s which corresponds to 0.0029 kg/s. 
The methane mixture stream was 1.68E-05 kg/s which, at the mass share of 0.279 kg/kg, gives 
0.47E-05 kg/s of pure methane. When ideal mixing of the streams occurs the mass share is 1.61E-
03 kg/kg or 0.28% of the volume.  

The calculation of the methane propagation for a constant inflow was continued for 6 s 
recording the intermediate states every 0.1 second. The average methane concentration at the 
inflow to the sensor measuring chamber (inlet filter) was recorded. The concentrations were 
monitored pointwise for the points in the station axis (methane anemometer inlet 0.1, 0.3, 0.5, 0.7, 
and 0.9 m before inlet) and at one point close to the methane sensor. Also, the following methane 
concentration values were monitored: average, maximum and minimum, for the cross-sections 
of 0.3 and 1 m before the sensor in the sensor cross-section, and in the methane anemometer 
inlet and outlet cross-section.

TABLE 1

Increase in the methane inflow velocity

Time s Velocity m/s Stream l/min CH4 stream l/min
5 0 0 0

5.01 0.1 0.268359 0.10788
5.02 0.3 0.805078 0.323641
5.03 0.35 0.939258 0.377582
5.04 0.375 1.006348 0.404552
5.05 0.3875 1.039892 0.418037
5.06 0.4 1.073437 0.431522

The calculation results are presented in the form of the charts of the concentration changes 
with time (Fig. 16). In addition, the distribution of the concentrations with time for both vertical 
and horizontal cross-sections along the station axis are shown.

After opening the valve, the stream moves with the velocity only slightly higher than the 
velocity of the ambient air. The displacement forces convect the stream upwards. Before the 
methane anemometer inlet, the stream reaches the upper wall of the pipe and sticks to it. The sen-
sor housing is lipped by the stream and the sensor filter surface (inlet to the measuring chamber) 
is in the centre of the stream where the maximum concentrations occur. The simulated average 
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Fig. 15. The location of the virtual concentration sensors and the initial flow state.
a) the location of the sensors in the vertical cross-section of the station; b) velocity field – component parallel 

to the axis; c) vorticity distribution within the range of 0 up to 100 1/s

Fig. 16. Methane propagation in the station before opening of the valve – the distribution of the methane vol-
ume in both vertical and horizontal cross-sections along the station axis
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Fig. 17. Concentration changes with time for the virtual sensors before, during, and after feeding the methane 
and air mixture

Fig. 18. Velocity field during the methane inflow – the component parallel to the axis.
b) Vorticity distribution from 0 up to 100 1/s, distributions in both vertical 

and horizontal cross-sections along the station axis

concentration on the methane sensor filter surface was about 0.81% (Fig. 17). As a result of the 
simulation, a considerably lower methane concentration value was observed around the sensor 
than that recorded. The real methane stream was likely less dispersed.

8. Flow at the steady inflow

No significant fluctuations of the concentration field at the steady inflow conditions were 
found in assumed turbulence model (Figs. 18, 19).
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Fig. 19. The methane propagation after opening the valve – the distributions of the methane volume shares 
in both vertical and horizontal cross-sections along the station axis for the selected moments

9. The process of the removal of methane after the cut off 
of the mixture inflow

After 10 seconds of the inflow simulation, the methane inflow was gradually limited within 
0,05 s. The calculations were carried on for 9 seconds. After about 5 seconds the concentration 
field has returned to the state from before the opening of the valve (Fig. 20).

10. Summary

The research carried out reveals a number of interesting results by recording methane veloci-
ties and concentrations with the anemometer vane sensor and pellistor sensor incorporated in the 
methane anemometer. These measurements were possible due to construction of an appropriate 
measurement station. The introduction of the methane stream into the air stream allowed ap-
proximation of the heterogeneous distribution of the methane concentration field in the methane 
anemometer measurement area. The variable stream velocity demonstrated a phase shift between 
the recordings of both sensors due to their different dynamic properties. This observed phase 
shift may cause measurement errors in non-mixed streams and/or varying velocity. The numerical 
simulations carried out did not fully illustrate the real flow phenomena. The methane concentration 
determined in the simulation was lower than that recorded by the sensor. This means that the real 
methane stream was less dispersed. The simulations provide a rough image of flow phenomena 
inside the test stand. Further studies might be aimed at refining the modeling to improve accuracy 
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Fig. 20. The courses of the maximum and average concentrations for the selected station cross-sections

Fig. 21. Concentration distributions in both vertical and horizontal cross-sections

Fig. 22. The concentration distribution for the selected cross-sections
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and reproducing the unsteady flow experiments. Future research should address the dynamics 
of both sensors and in-situ experiments should be carried out to develop additional metrological 
procedures (calibration in the heading cross-section) in order to allow the instrument to determine 
the methane volume stream. In the present form, the methane anemometer can be used for the 
local measurement of methane velocity and concentration, and also provide an air flow velocity 
control in the area of the measuring chamber inlet.
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