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In this paper, the Caputo-Fabrizio definition of the frac-
tional derivative will be applied to the minimum energy control 
problem for fractional positive continuous-time linear systems 
with bounded inputs.

The paper is organized as follows. In Section 2 the condi-
tions for the reachability of the standard and positive fractional 
linear continuous-time systems will be given. The minimum en-
ergy control problem for the fractional positive continuous-time 
linear systems with bounded inputs is formulated and solved 
in Section 3. Procedure for computation of the optimal input 
that steers the state of the system from zero initial state to the 
desired final state is given and illustrated by example of positive 
fractional electrical circuit in Section 4. Concluding remarks 
are given in Section 5.

The following notation will be used: ℜ – the set of real 
numbers, ℜn×m – the set of n£m real matrices, ℜ+

n£m – the set 
of n£m matrices with nonnegative entries and ℜ+

n = ℜ+
n£1, Mn 

– the set of n£n Metzler matrices, In – the n£n identity matrix.

2. Reachability of standard fractional systems

The Caputo-Fabrizio definition of fractional derivative of order 
α of the function f(t) for 0 < α < 1 has the form [32, 33]
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1. Introduction 

A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains forever 

in the positive orthant for all nonnegative inputs. An 

overview of state of the art in positive theory is given in 

the monographs [1, 2]. Variety of models having positive 

behavior can be found in engineering, economics, social 

sciences, biology and medicine, etc. 

Mathematical fundamentals of the fractional calculus 

are given in the monographs [3-5]. The positive fractional 

linear systems have been investigated in [6-9]. Stability of 

fractional linear continuous-time systems has been 

investigated in the papers [9, 10]. The notion of practical 

stability of positive fractional discrete-time linear systems 

has been introduced in [11]. Descriptor fractional discrete-

time linear systems with different orders have been 

addressed in [12]. The positivity and stability of fractional 

discrete-time nonlinear systems have been analyzed in 

[13], the Drazin inverse matrix method for analysis 

descriptor fractional discrete-time linear systems has been 

proposed [14]. Some recent interesting results in 

fractional systems theory and its applications can be found 

in [5, 15-17].  

The minimum energy control problem for standard 

linear systems has been formulated and solved by J. 

Klamka in [18-20] and for 2D linear systems with variable 

coefficients in [21]. The controllability and minimum 

energy control problem of fractional discrete-time linear 

systems has been investigated by Klamka in [22]. The 

minimum energy control of positive continuous-time 

linear systems has been addressed in [23-25] and for 

positive discrete-time linear systems in [26, 27]. The 

minimum energy control problem for positive fractional 

electrical circuits has been investigated in [24] and for 

positive fractional linear systems with two different 

fractional orders in [28]. Robust stability and stabilization 

of the continuous-time fractional positive systems has 

been considered in [29, 30] and continuous-time fractional 

positive systems with bounded states in [31]. 

Recently a new definition of the fractional derivative 

without singular kernel has been proposed in [32, 33]. 

In this paper the Caputo-Fabrizio definition of the 

fractional derivative will be applied to the minimum 

energy control problem for fractional positive continuous-

time linear systems with bounded inputs. 

The paper is organized as follows. In section 2 the 

conditions for the reachability of the standard and positive 

fractional linear continuous-time systems will be given. 

The minimum energy control problem for the fractional 

positive continuous-time linear systems with bounded 

inputs is formulated and solved in section 3. Procedure for 

computation of the optimal input that steers the state of 

the system from zero initial state to the desired final state 

is given and illustrated by example of positive fractional 

electrical circuit in section 4. Concluding remarks are 

given in section 5. 

The following notation will be used: ℜ  - the set of 

real numbers, mn×ℜ  - the set of mn ×  real matrices, 
mn×

+ℜ  - the set of mn ×  matrices with nonnegative entries 

and 1×
++ ℜ=ℜ nn , nM  - the set of nn ×  Metzler matrices, 

nI  - the nn ×  identity matrix. 

2. Reachability of standard fractional 

systems 

The Caputo-Fabrizio definition of fractional derivative 

of order α  of the function )(tf  for 10 << α  has the 

form [32, 33] 
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where u(t) 2 ℜn, u(t) 2 ℜm, y(t) 2 ℜp are the state, input and 
output vectors and A 2 ℜn£n, B 2 ℜn£m, C 2 ℜp£n, D 2 ℜp£n.

1. Introduction

A dynamical system is called positive if its trajectory starting 
from any nonnegative initial state remains forever in the posi-
tive orthant for all nonnegative inputs. An overview of state of 
the art in positive theory is given in the monographs [1, 2]. Va-
riety of models having positive behavior can be found in engi-
neering, economics, social sciences, biology and medicine, etc.

Mathematical fundamentals of the fractional calculus are 
given in the monographs [3‒5]. The positive fractional linear 
systems have been investigated in [6‒9]. Stability of frac-
tional linear continuous-time systems has been investigated in 
[9, 10]. The notion of practical stability of positive fractional 
discrete-time linear systems has been introduced in [11]. De-
scriptor fractional discrete-time linear systems with different or-
ders have been addressed in [12]. The positivity and stability of 
fractional discrete-time nonlinear systems have been analyzed 
in [13], the Drazin inverse matrix method for analysis descriptor 
fractional discrete-time linear systems has been proposed [14]. 
Some recent interesting results in fractional systems theory and 
its applications can be found in [5, 15‒17].

The minimum energy control problem for standard linear 
systems has been formulated and solved by J. Klamka in [18‒20] 
and for 2D linear systems with variable coefficients in [21]. 
The controllability and minimum energy control problem of 
fractional discrete-time linear systems has been investigated by 
Klamka in [22]. The minimum energy control of positive contin-
uous-time linear systems has been addressed in [23‒25] and for 
positive discrete-time linear systems in [26, 27]. The minimum 
energy control problem for positive fractional electrical circuits 
has been investigated in [24] and for positive fractional linear 
systems with two different fractional orders in [28]. Robust sta-
bility and stabilization of the continuous-time fractional positive 
systems has been considered in [29, 30] and continuous-time 
fractional positive systems with bounded states in [31].

Recently a new definition of the fractional derivative 
without singular kernel has been proposed in [32, 33].
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Theorem 1. The solution x(t) of the equation (2a) for a given 
initial condition x(0) = x0 and input u(t) has the form
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where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
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C
×ℜ∈ , 
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×ℜ∈ . 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 
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Proof. Substituting 
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into (3a) for 00 =x , 00 =u  we obtain 
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The solution of the differential equation (6) for 
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Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 
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of the system (2a). 
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(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  
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B
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+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 
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(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T
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1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 
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From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 
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(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
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fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 

 

ffff

t

ff

tATtA

f

xxRR

xRdeBBetx

f

f
T

f

==

=

−

−−−∫
1

0

1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 
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time ],0[ ftt ∈  of the system (11) if and only if the input 
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Definition 2. The fractional system (11) is called 
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and all mtu +ℜ∈)( , 0≥t . 
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Proof is similar to the one given in [9]. 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
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fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 
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fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 
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f
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ff dteBBetRR

0
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is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t
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tATt xRdeBetu f
T

0
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)( ˆ)( τ

ττβ ,  
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 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 
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To show that the input 
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From Theorem 1 and its proof follows the corollary. 
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time ],0[ ftt ∈  if and only if the fractional system 
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is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
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+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 
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where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D
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Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt
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+=
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α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

 (3b)

Proof. The proof is given in [13] under the assumption that the 
matrix [In ¡ (1 ¡ α)A] is non-singular.

Definition 1. A state xf 2 ℜn of the standard system (2) is called 
reachable in time t 2 [0, tf ] if there exists an input u(t) 2 ℜm 
for t 2 [0, tf ] which steers the state of the system from zero 
initial condition x0 = 0 to the final state xf 2 x(tf). If every state 
xf 2 ℜn is reachable in time t 2 [0, tf ] then the system is called 
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t 2 [0, tf ] which steers the state of the system from x0 = 0 to xf.
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time t 2 [0, tf ] if and only if the matrix

 

2 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 
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is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
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input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  
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0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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t
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f

xxRR
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f

f
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f
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1
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1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9].  (5)

Proof. Substituting

 

2 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 

 τττβτ duuBeuBxetx

t
tAtA )]()([ˆ)ˆˆ()(

0

)(ˆ

00

ˆ
&+++= ∫ − ,    (3a) 

where 
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 (3b) 

Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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t

ff

tATtA

f

xxRR
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f

f
T

f
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1

0

1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

 (6)

into (3a) for x0 = 0, u0 = 0 we obtain

 

2 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 

 τττβτ duuBeuBxetx

t
tAtA )]()([ˆ)ˆˆ()(

0

)(ˆ

00

ˆ
&+++= ∫ − ,    (3a) 

where 
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 (3b) 

Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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t

ff
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f

xxRR

xRdeBBetx

f

f
T

f
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=
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−−−∫
1

0

1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

. (7)

The solution of the differential equation (6) for u0 = u(0) = 0  
has the form

 

2 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 

 τττβτ duuBeuBxetx

t
tAtA )]()([ˆ)ˆˆ()(

0

)(ˆ

00

ˆ
&+++= ∫ − ,    (3a) 

where 
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 (3b) 

Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 

 

ffff

t

ff

tATtA

f

xxRR

xRdeBBetx

f

f
T

f

==

=

−

−−−∫
1

0

1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

. (8)

To show that the input

 

2 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 

 τττβτ duuBeuBxetx

t
tAtA )]()([ˆ)ˆˆ()(

0

)(ˆ

00

ˆ
&+++= ∫ − ,    (3a) 

where 
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 (3b) 

Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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t

ff
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f

xxRR

xRdeBBetx

f

f
T

f
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=
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1

0

1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

 (9)

steers the state from x0 = 0 to xf in time t 2 [0, tf ] we substitute 
(9) into (7) and we obtain

 

2 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 

 τττβτ duuBeuBxetx

t
tAtA )]()([ˆ)ˆˆ()(

0

)(ˆ

00

ˆ
&+++= ∫ − ,    (3a) 

where 
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 (3b) 

Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

2 

where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 

 τττβτ duuBeuBxetx

t
tAtA )]()([ˆ)ˆˆ()(

0

)(ˆ

00

ˆ
&+++= ∫ − ,    (3a) 

where 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 
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tuBtxA
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txd
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is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 
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mp
D

×ℜ∈ . 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=
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α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 
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Substituting (9) into (8) we obtain (5).  □
From Theorem 1 and its proof follows the corollary.

Corollary 1. The fractional system (2) is reachable in time 
t 2 [0, tf ] if and only if the fractional system
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where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, 

input and output vectors and nnA ×ℜ∈ , mnB ×ℜ∈ , 
np

C
×ℜ∈ , 

mp
D

×ℜ∈ . 

Theorem 1. The solution )(tx  of the equation (2a) for 

a given initial condition 0)0( xx =  and input )(tu  has the 

form 
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Proof. The proof is given in [13] under the assumption 

that the matrix ])1([ AIn α−−  is non-singular. 

Definition 1. A state 
n

fx ℜ∈  of the standard system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

)( ff txx = . If every state 
n

fx ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The system (2) is called reachable if for every 

n
fx ℜ∈  there exists ft  and an input mtu ℜ∈)(  for 

],0[ ftt ∈  which steers the state of the system from 

00 =x  to fx . 

Theorem 2. The standard fractional system (2) is 

reachable in time ],0[ ftt ∈  if and only if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(          (4) 

is invertible. 

The input which steers the state of the system from 00 =x  

to fx  is given by  

∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ ,  

],0[ ftt ∈  and 0)0(0 == uu .                  (5) 

Proof. Substituting 

 )()()( tututu &+= β          (6) 

into (3a) for 00 =x , 00 =u  we obtain 

 ∫ −=

t

tA duBetx

0

)(ˆ
)(ˆ)( τττ . (7) 

The solution of the differential equation (6) for 

0)0(0 == uu  has the form 

 ∫ −−=

t
t duetu

0

)( )()( τττβ . (8) 

To show that the input 

 ff

ttAT xReBtu f 1)(ˆ
ˆ)( −−

= , ],0[ ftt ∈  (9) 

steers the state from 00 =x  to fx  in time ],0[ ftt ∈  we 

substitute (9) into (7) and we obtain 
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f
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f
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−

−−−∫
1

0

1)(ˆ)(ˆ
ˆˆ)( τ

ττ

.   (10) 

Substituting (9) into (8) we obtain (5). □ 

From Theorem 1 and its proof follows the corollary. 

Corollary 1. The fractional system (2) is reachable in 

time ],0[ ftt ∈  if and only if the fractional system 

 )(ˆ)(ˆ)(
tuBtxA

dt

txd
+=

α

α

 (11) 

is reachable in time ],0[ ftt ∈ . 

The input )(tu  steers the state )(tx  from 00 =x  to fx  in 

time ],0[ ftt ∈  of the system (11) if and only if the input 

(8) steers the state from 00 =x  to fx  in time ],0[ ftt ∈  

of the system (2a). 

Definition 2. The fractional system (11) is called 

(internally) positive if ntx +ℜ∈)( , 0≥t  for every 
nx +ℜ∈0  

and all mtu +ℜ∈)( , 0≥t . 

Theorem 3. The fractional system (11) is positive if 

and only if nMA ∈ˆ  and mn
B

×
+ℜ∈ˆ . 

Proof is similar to the one given in [9]. 

 (11)

is reachable in time t 2 [0, tf ].
The input u–(t) steers the state x(t) from x0 = 0 to xf in 

time t 2 [0, tf ] of the system (11) if and only if the input (8) 
steers the state from x0 = 0 to xf in time t 2 [0, tf ] of the 
system (2a).

Definition 2. The fractional system (11) is called (internally) 
positive if x(t) 2 ℜ+

n, t ¸ 0 for every x0 2 ℜ+
n and all u(t) 2 ℜ+

m, 
t ¸ 0.

Theorem 3. The fractional system (11) is positive if and only 
if A ̂  2 Mn and B ̂  2 ℜ+

n£m.
Proof is similar to the one given in [9].

Definition 3. A state xf 2 ℜ+
n of the positive system (2) is called 

reachable in time t 2 [0, tf ] if there exists an input u(t) 2 ℜ+
m 

for t 2 [0, tf ] which steers the state of the system from zero 
initial condition x0 = 0 to the final state xf 2 ℜ+

n. If every 
state xf 2 ℜ+

n is reachable in time t 2 [0, tf ] then the system is 
called reachable in time t 2 [0, tf ]. The positive system (2) is 
called reachable if for every xf 2 ℜ+

n there exists tf and an input 
u(t) 2 ℜ+

m for t 2 [0, tf ] which steers the state of the system 
from x0 = 0 to xf.

Definition 4. A matrix A 2 ℜn£n is called monomial if in each 
row and in each column only one entry is positive and the re-
maining entries are zero.

Theorem 4. The positive fractional system (2) is reachable in 
time t 2 [0, tf ] if the matrix

 

3 

Definition 3. A state 
n

fx +ℜ∈  of the positive system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu +ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

n
fx +ℜ∈ . If every state 

n
fx +ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The positive system (2) is called reachable if 

for every 
n

fx +ℜ∈  there exists ft  and an input 

mtu +ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from 00 =x  to fx . 

Definition 4. A matrix nnA ×ℜ∈  is called monomial if 

in each row and in each column only one entry is positive 

and the remaining entries are zero. 

Theorem 4. The positive fractional system (2) is 

reachable in time ],0[ ftt ∈  if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(  (12) 

is monomial. 

The input which steers the state of the system from 00 =x  

to fx  is given by 

 ∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ .   (13) 

Proof. It is well-known [2] that 
nn

fR
×

+
− ℜ∈1

 if and 

only if the matrix 
nn

fR
×

+ℜ∈  is monomial. In a similar 

way as in proof of Theorem 1 it can be shown that the 

input (13) steers the state of positive system from 00 =x  

to 
n

fx +ℜ∈  in time ],0[ ftt ∈ . From (13) it follows that 

mtu +ℜ∈)(  since 0>− te β  for 0
1

>
−

=
α

α
β , 10 << α , 

nmtAT feB ×
+

−
ℜ∈

)(ˆ
ˆ τ

 and 
n

ff xR +
− ℜ∈1

. □ 

3. Problem formulation and its solution 

Consider the fractional positive system (2) with 

nMA ∈  and mnB ×
+ℜ∈  monomial. If the system is 

reachable in time ],0[ ftt ∈ , then usually there exists 

many different inputs ntu +ℜ∈)(  that steers the state of the 

system from 00 =x  to 
n

fx +ℜ∈ . Among these inputs we 

are looking for input ,)( ntu +ℜ∈  ],0[ ftt ∈  satisfying the 

condition 

 nUtu +ℜ∈≤)( , ],0[ ftt ∈    (14) 

that minimizes the performance index 

 ∫=

ft

T dQuuuI

0

)()()( τττ , (15) 

where nnQ ×
+ℜ∈  is a symmetric positive definite matrix 

and nnQ ×
+

− ℜ∈1 .  

The performance index (15) is a measure of the energy 

used for steering the state of the systems from x0 = 0 to xf. 

The minimum energy control problem for the fractional 

positive system (2) can be stated as follows.  

Given the matrices nMA ∈  monomial, mnB ×
+ℜ∈ , α, 

nU +ℜ∈  and nnQ ×
+ℜ∈  of the performance matrix (15), 

n
fx +ℜ∈  and 0>t , find an input ntu +ℜ∈)(  for ],0[ ftt ∈  

satisfying (14) that steers the state vector of the system 

from 00 =x  to 
n

fx +ℜ∈  and minimizes the performance 

index (15). 

To solve the problem we define the matrix 

 ∫ −−−
=

f

f
T

f

t

tATtA

f deBQBetW

0

)(ˆ
1)(ˆ

ˆˆ)( τ
ττ

. (16) 

From (16) and Theorem 4 it follows that the matrix (16) is 

monomial if and only if the fractional positive system (2) 

is reachable in time ],0[ ftt ∈ . In this case we may define 

the input 

ff

ttAT xtWeBQtu f
T

)(ˆ)(ˆ 1)(ˆ
1 −−−=  for ],0[ ftt ∈ .   (17) 

Note that the input (17) satisfies the condition ntu +ℜ∈)(  

for ],0[ ftt ∈  if 

 nnQ ×
+

− ℜ∈1  and 
nn

ftW
×

+
− ℜ∈)(1 . (18) 

Theorem 5. Let ntu +ℜ∈)(~  for ],0[ ftt ∈  be an input 

satisfying (14) that steers the state of the fractional 

positive system (2) from 00 =x  to 
n

fx +ℜ∈ . Then the 

input (17) satisfying (14) also steers the state of the 

system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15), i.e. )~()ˆ( uIuI ≤ . 

 (12)

is monomial.
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The input which steers the state of the system from x0 = 0 
to xf is given by

 

3 

Definition 3. A state 
n

fx +ℜ∈  of the positive system 

(2) is called reachable in time ],0[ ftt ∈  if there exists an 

input mtu +ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from zero initial condition 00 =x  to the final state 

n
fx +ℜ∈ . If every state 

n
fx +ℜ∈  is reachable in time 

],0[ ftt ∈  then the system is called reachable in time 

],0[ ftt ∈ . The positive system (2) is called reachable if 

for every 
n

fx +ℜ∈  there exists ft  and an input 

mtu +ℜ∈)(  for ],0[ ftt ∈  which steers the state of the 

system from 00 =x  to fx . 

Definition 4. A matrix nnA ×ℜ∈  is called monomial if 

in each row and in each column only one entry is positive 

and the remaining entries are zero. 

Theorem 4. The positive fractional system (2) is 

reachable in time ],0[ ftt ∈  if the matrix 

 ∫==

f
T

t

tATtA
ff dteBBetRR

0

ˆˆ ˆˆ)(  (12) 

is monomial. 

The input which steers the state of the system from 00 =x  

to fx  is given by 

 ∫ −−−−=

t

ff

tATt xRdeBetu f
T

0

1)(ˆ
)( ˆ)( τ

ττβ .   (13) 

Proof. It is well-known [2] that 
nn

fR
×

+
− ℜ∈1

 if and 

only if the matrix 
nn

fR
×

+ℜ∈  is monomial. In a similar 

way as in proof of Theorem 1 it can be shown that the 

input (13) steers the state of positive system from 00 =x  

to 
n

fx +ℜ∈  in time ],0[ ftt ∈ . From (13) it follows that 

mtu +ℜ∈)(  since 0>− te β  for 0
1

>
−

=
α

α
β , 10 << α , 

nmtAT feB ×
+

−
ℜ∈

)(ˆ
ˆ τ

 and 
n

ff xR +
− ℜ∈1

. □ 

3. Problem formulation and its solution 

Consider the fractional positive system (2) with 

nMA ∈  and mnB ×
+ℜ∈  monomial. If the system is 

reachable in time ],0[ ftt ∈ , then usually there exists 

many different inputs ntu +ℜ∈)(  that steers the state of the 

system from 00 =x  to 
n

fx +ℜ∈ . Among these inputs we 

are looking for input ,)( ntu +ℜ∈  ],0[ ftt ∈  satisfying the 

condition 

 nUtu +ℜ∈≤)( , ],0[ ftt ∈    (14) 

that minimizes the performance index 

 ∫=

ft

T dQuuuI

0

)()()( τττ , (15) 

where nnQ ×
+ℜ∈  is a symmetric positive definite matrix 

and nnQ ×
+

− ℜ∈1 .  

The performance index (15) is a measure of the energy 

used for steering the state of the systems from x0 = 0 to xf. 

The minimum energy control problem for the fractional 

positive system (2) can be stated as follows.  

Given the matrices nMA ∈  monomial, mnB ×
+ℜ∈ , α, 

nU +ℜ∈  and nnQ ×
+ℜ∈  of the performance matrix (15), 

n
fx +ℜ∈  and 0>t , find an input ntu +ℜ∈)(  for ],0[ ftt ∈  

satisfying (14) that steers the state vector of the system 

from 00 =x  to 
n

fx +ℜ∈  and minimizes the performance 

index (15). 

To solve the problem we define the matrix 

 ∫ −−−
=

f

f
T

f

t

tATtA

f deBQBetW

0

)(ˆ
1)(ˆ

ˆˆ)( τ
ττ

. (16) 

From (16) and Theorem 4 it follows that the matrix (16) is 

monomial if and only if the fractional positive system (2) 

is reachable in time ],0[ ftt ∈ . In this case we may define 

the input 

ff

ttAT xtWeBQtu f
T

)(ˆ)(ˆ 1)(ˆ
1 −−−=  for ],0[ ftt ∈ .   (17) 

Note that the input (17) satisfies the condition ntu +ℜ∈)(  

for ],0[ ftt ∈  if 

 nnQ ×
+

− ℜ∈1  and 
nn

ftW
×

+
− ℜ∈)(1 . (18) 

Theorem 5. Let ntu +ℜ∈)(~  for ],0[ ftt ∈  be an input 

satisfying (14) that steers the state of the fractional 

positive system (2) from 00 =x  to 
n

fx +ℜ∈ . Then the 

input (17) satisfying (14) also steers the state of the 

system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15), i.e. )~()ˆ( uIuI ≤ . 

. (13)

Proof. It is well-known [2] that Rf
–1 2 ℜ+

n£n if and only if the 
matrix Rf 2 ℜ+

n£n is monomial. In a similar way as in proof of 
Theorem 1 it can be shown that the input (13) steers the state of 
positive system from x0 = 0 to xf 2 ℜ+

n in time t 2 [0, tf ]. From 
(13) it follows that u(t) 2 ℜ+

m since e¡βt > 0 for β =¡1¡
α
α  > 0, 

0 < α < 1, B ̂ TeA ̂ (tf –τ) 2 ℜ+
m£n and Rf
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where Q 2 ℜ+
n£n is a symmetric positive definite matrix and 

Q–1 2 ℜ+
n£n.

The performance index (15) is a measure of the energy used 
for steering the state of the systems from x0 = 0 to xf.

The minimum energy control problem for the fractional 
positive system (2) can be stated as follows.

Given the matrices A 2 Mn monomial, B 2 ℜ+
n£m, α, U 2 ℜ+

n 
and Q 2 ℜ+

n£n of the performance matrix (15), xf 2 ℜ+
n and 

t > 0, find an input u(t) 2 ℜ+
n for t 2 [0, tf ] satisfying (14) that 

steers the state vector of the system from x0 = 0 to xf 2 ℜ+
n and 
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To solve the problem we define the matrix
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4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 
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Proof. If the conditions (18) are met then the input (17) is 
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From (27) it follows that )~()ˆ( uIuI <  since the second 

term in the right-hand side of the inequality is 

nonnegative. To find the minimal value of the 
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4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 

Procedure 1. 
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Knowing Ψ(t) and using the equality
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The minimal value of the performance index (15) is equal 

to 
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f xtWxuI )()ˆ( 1−= . (19) 

Proof. If the conditions (18) are met then the input 

(17) is well defined and ntu +ℜ∈)(ˆ  for ],0[ ftt ∈ . We 

shall show that the input steers the state of the system 

from 00 =x  to 
n
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To find ],0[ ftt ∈  for which ntu +ℜ∈)(ˆ  reaches its 
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we can find ],0[ ftt ∈  for which )(ˆ tu  reaches its maximal 

value and we check if the condition (14) is satisfied. If 

not, we increase the value of tf so that the condition is 

satisfied. 

Note that if the system is asymptotically stable 

0lim
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e  then )(ˆ tu  reaches its maximal value for 

ftt =  and if it is unstable then for 0=t . 

By assumption the inputs )(~ tu  and )(ˆ tu , ],0[ ftt ∈  steers 

the state of the system from 00 =x  to 
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Substitution of (17) into (25) yields 

 

0)(ˆ)](ˆ)(~[

ˆ)](ˆ)(~[

0

0

1)(ˆ

=−=

−

∫

∫ −−

f

f

f
T

t

T

t

f

tATT

duQuu

xWdeBuu

ττττ

τττ
τ

. (26) 

Using (26) it is easy to verify that 
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From (27) it follows that )~()ˆ( uIuI <  since the second 

term in the right-hand side of the inequality is 

nonnegative. To find the minimal value of the 

performance index (15) we substitute (17) into (15) and 

we obtain 
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since (26) holds. □ 

4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 

Procedure 1. 

 (23)

we can find t 2 [0, tf ] for which u ̂ (t) reaches its maximal value 
and we check if the condition (14) is satisfied. If not, we in-
crease the value of tf so that the condition is satisfied.

Note that if the system is asymptotically stable l
t
i
→
m
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eA ̂ t = 0 
then u(t) reaches its maximal value for t = tf and if it is unstable 
then for t = 0.

By assumption the inputs ũ(t) and u ̂ (t), t 2 [0, tf ] steers the 
state of the system from x0 = 0 to xf 2 ℜ+

n, i.e.
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to 
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Proof. If the conditions (18) are met then the input 

(17) is well defined and ntu +ℜ∈)(ˆ  for ],0[ ftt ∈ . We 

shall show that the input steers the state of the system 

from 00 =x  to 
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fx +ℜ∈ . Substitution of (17) into (3a) for 

00 =x , 00 =u  and ftt =  yields 
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since (16) holds.  

To find ],0[ ftt ∈  for which ntu +ℜ∈)(ˆ  reaches its 

maximal value using (17) we compute the derivative  
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T
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where  
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Knowing )(tΨ  and using the equality 

 0)()(
1 =Ψ −

ff xtWt  (23) 

we can find ],0[ ftt ∈  for which )(ˆ tu  reaches its maximal 

value and we check if the condition (14) is satisfied. If 

not, we increase the value of tf so that the condition is 

satisfied. 

Note that if the system is asymptotically stable 

0lim
ˆ

=
∞→

tA

t
e  then )(ˆ tu  reaches its maximal value for 

ftt =  and if it is unstable then for 0=t . 

By assumption the inputs )(~ tu  and )(ˆ tu , ],0[ ftt ∈  steers 

the state of the system from 00 =x  to 
n

fx +ℜ∈ , i.e. 
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Substitution of (17) into (25) yields 
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Using (26) it is easy to verify that 
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From (27) it follows that )~()ˆ( uIuI <  since the second 

term in the right-hand side of the inequality is 

nonnegative. To find the minimal value of the 

performance index (15) we substitute (17) into (15) and 

we obtain 
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since (26) holds. □ 

4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 

Procedure 1. 

 (24a)

and
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The minimal value of the performance index (15) is equal 

to 

 ff
T
f xtWxuI )()ˆ( 1−= . (19) 

Proof. If the conditions (18) are met then the input 

(17) is well defined and ntu +ℜ∈)(ˆ  for ],0[ ftt ∈ . We 

shall show that the input steers the state of the system 

from 00 =x  to 
n

fx +ℜ∈ . Substitution of (17) into (3a) for 

00 =x , 00 =u  and ftt =  yields 
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since (16) holds.  

To find ],0[ ftt ∈  for which ntu +ℜ∈)(ˆ  reaches its 

maximal value using (17) we compute the derivative  
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T

xtWtBQ
dt

tud
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)(ˆ 11 −− Ψ= , ],0[ ftt ∈  (21) 

where  
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Knowing )(tΨ  and using the equality 

 0)()(
1 =Ψ −

ff xtWt  (23) 

we can find ],0[ ftt ∈  for which )(ˆ tu  reaches its maximal 

value and we check if the condition (14) is satisfied. If 

not, we increase the value of tf so that the condition is 

satisfied. 

Note that if the system is asymptotically stable 

0lim
ˆ

=
∞→

tA

t
e  then )(ˆ tu  reaches its maximal value for 

ftt =  and if it is unstable then for 0=t . 

By assumption the inputs )(~ tu  and )(ˆ tu , ],0[ ftt ∈  steers 

the state of the system from 00 =x  to 
n

fx +ℜ∈ , i.e. 
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Substitution of (17) into (25) yields 
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Using (26) it is easy to verify that 
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From (27) it follows that )~()ˆ( uIuI <  since the second 

term in the right-hand side of the inequality is 

nonnegative. To find the minimal value of the 

performance index (15) we substitute (17) into (15) and 

we obtain 
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since (26) holds. □ 

4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 

Procedure 1. 

. (24b)
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By transposition of (24b) and postmultiplication by W –1(tf) xf 
we obtain
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The minimal value of the performance index (15) is equal 

to 
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f xtWxuI )()ˆ( 1−= . (19) 

Proof. If the conditions (18) are met then the input 

(17) is well defined and ntu +ℜ∈)(ˆ  for ],0[ ftt ∈ . We 

shall show that the input steers the state of the system 

from 00 =x  to 
n

fx +ℜ∈ . Substitution of (17) into (3a) for 
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since (16) holds.  

To find ],0[ ftt ∈  for which ntu +ℜ∈)(ˆ  reaches its 

maximal value using (17) we compute the derivative  
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Knowing )(tΨ  and using the equality 
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ff xtWt  (23) 

we can find ],0[ ftt ∈  for which )(ˆ tu  reaches its maximal 

value and we check if the condition (14) is satisfied. If 

not, we increase the value of tf so that the condition is 

satisfied. 

Note that if the system is asymptotically stable 

0lim
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t
e  then )(ˆ tu  reaches its maximal value for 

ftt =  and if it is unstable then for 0=t . 
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Using (26) it is easy to verify that 
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From (27) it follows that )~()ˆ( uIuI <  since the second 

term in the right-hand side of the inequality is 

nonnegative. To find the minimal value of the 

performance index (15) we substitute (17) into (15) and 

we obtain 
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4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 

Procedure 1. 
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Substitution of (17) into (25) yields
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since (16) holds.  
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not, we increase the value of tf so that the condition is 

satisfied. 

Note that if the system is asymptotically stable 

0lim
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ftt =  and if it is unstable then for 0=t . 
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4. Procedure and example

From the considerations given in Section 3, we have the fol-
lowing procedure for computation of the optimal inputs satis-
fying the condition (14) that steers the state of the system from 
x0 = 0 to xf 2 ℜ+

n and minimizes the performance index (15).

Procedure 1.
Step 1.  Knowing A 2 Mn, B 2 ℜ+

n£m and using (3b) compute 
A ̂ , B ̂ , eA ̂ t.

Step 2.  Using (16) compute the matrix Wf for given A ̂ , B ̂ , Q, α 
and some tf .

Step 3.  Using (17) and (23) find tf  for which u ̂ (t) satisfying 
(14) reaches its maximal value and the desired u ̂ (t) for 
given U 2 ℜ+

n and xf 2 ℜ+
n.

Step 4.  Using (19) compute the maximal value of the perfor-
mance index.

Example 1. Consider the fractional electrical circuit shown in 
Fig. 1 with given resistances R1, R2, R3, fractional inductances 
L1, L2 and source voltages e1, e2.

Fig. 1. Electrical circuit

Using the Kirchhoff’s laws we can write the equations
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

, (29a)
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
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Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 
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Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
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det
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

 (29b)

where 0 < α < 1, which can be written in the form

 

5 

Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

 (30a)

where
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

. (30b)

The fractional electrical circuit is positive since the matrix 
A is Metzler matrix and the matrix B has nonnegative entries.

Note that the standard (full-order) electrical circuit is 
reachable for all positive values of the resistances and induc-
tances since B = ¡L1

1
L2

  6= 0.

Using (3b) and (30b) we obtain
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
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Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  
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desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

5 

Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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id
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where 10 << α , which can be written in the form 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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id
LiRiiRe ++−=  (29a) 
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where 10 << α , which can be written in the form 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

 (31a)
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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where 10 << α , which can be written in the form 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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where 10 << α , which can be written in the form 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

5 

Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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where 10 << α , which can be written in the form 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

 (31b)

From (31) it follows that the matrix A ̂ is asymptotically 
stable Metzler matrix and the matrix B ̂  has positive entries for 
all positive values of the resistances R1, R2, R3 and inductances 
L1, L2. Because of complicated calculations of (31a) and (31b) 
we will show an example for R1, R2, R3 = 1, L1, L2, = 1 and 
α = 0.5. In this case we obtain

 

5 

Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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where 10 << α , which can be written in the form 

 







+








=









2

1

2

1

2

1

e

e
B

i

i
A

i

i

dt

d
α

α

               (30a) 

where 

.
1

0

0
1

,

2

1

2

32

2

3

1

3

1

31



















=



















+
−

+
−

=

L

L
B

L

RR

L

R

L

R

L

RR

A     (30b) 

The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 

inductances since 0
1

det
21

≠=
LL

B . 

Using (3b) and (30b) we obtain 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B̂  is also diagonal with positive diagonal 

entries 

. (31c)

The standard fractional circuit is reachable since the matrix 
(31b) is invertible. It is easy to check that the matrix (4) for the 
standard fractional circuit is also invertible.

The positive fractional circuit is reachable only if R3 = 0. 
In this case the matrix A ̂ is diagonal of the form
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Step 1. Knowing nMA ∈ , mnB ×
+ℜ∈  and using (3b) 

  compute Â , B̂ , tA
e

ˆ
. 

Step 2. Using (16) compute the matrix Wf  for given Â , 

  B̂ , Q, α and some tf. 

Step 3. Using (17) and (23) find tf for which )(ˆ tu  

satisfying (14) reaches its maximal value and the 

desired )(ˆ tu  for given nU +ℜ∈  and 
n

fx +ℜ∈ . 

Step 4. Using (19) compute the maximal value of the 

performance index. 

Example 1. Consider the fractional electrical circuit 

shown on Figure 1 with given resistances 321 ,, RRR , 

fractional inductances 21, LL  and source voltages 21,ee . 

 
Fig. 1. Electrical circuit. 

Using the Kirchhoff’s laws we can write the equations 
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The fractional electrical circuit is positive since the matrix 

A is Metzler matrix and the matrix B has nonnegative 

entries.  

Note that the standard (full-order) electrical circuit is 

reachable for all positive values of the resistances and 
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From (31) it follows that the matrix Â  is asymptotically 

stable Metzler matrix and the matrix B̂  has positive 

entries for all positive values of the resistances 321 ,, RRR  

and inductances 21, LL . Because of complicated 

calculations of (31a) and (31b) we will show an example 

for 1,, 321 =RRR , 1, 21 =LL  and 5.0=α . In this case we 

obtain 
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The standard fractional circuit is reachable since the 

matrix (31b) is invertible. It is easy to check that the 

matrix (4) for the standard fractional circuit is also 

invertible. 

The positive fractional circuit is reachable only if 03 =R . 

In this case the matrix Â  is diagonal of the form 
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The matrix B ̂  is also diagonal with positive diagonal entries
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for all positive values of 21, RR  and 21, LL . 

Using (4) and (32) we obtain 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 

. (32b)

for all positive values of R1, R2 and L1, L2.

Using (4) and (32), we obtain
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 

 

6 



















−+

−
−+

−

=

22

11

)1(

1
0

0
)1(

1

ˆ

RL

RL
B

α

α
α

α

.           (32b) 

for all positive values of 21, RR  and 21, LL . 

Using (4) and (32) we obtain 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 
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for all positive values of 21, RR  and 21, LL . 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 

 (33)

The matrix (33) is monomial and the positive fractional cir-
cuit for R3 = 0 is reachable.

Now, we shall consider the minimum energy control problem 
for the fractional positive reachable electrical circuit shown 
in Fig. 1 for R1, R2, = 1, R3 = 0, L1, L2, = 1 and α = 0.5. To 
compute the input u(t) satisfying the condition
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for all positive values of 21, RR  and 21, LL . 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 

 (34)

that steers the state of the electrical circuit from zero state to 
final state xf = [1 1]T (T denotes the transpose) and minimizes 
the performance index (15) with
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for all positive values of 21, RR  and 21, LL . 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 
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T
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where )( ftW  is given by (36). 
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Fig. 2. Input signal and state vector for tf = 5[s]
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Procedure 1 will be used. Using (16, 17) and (33‒35), we obtain
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 
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T
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 
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T
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where )( ftW  is given by (36). 
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for all positive values of 21, RR  and 21, LL . 

Using (4) and (32) we obtain 

,
0

0
)ˆ(ˆˆˆ

0

2

1
ˆ

0

ˆ

0

ˆˆ
dt

r

r
dtBeBedteBBeR

fff
T

t

f

fTtA

t

tA

t

tATtA
f ∫∫∫ 











===   

.
)1(

)1(
exp)1(

,
)1(

)1(
exp)1(

2

22

22

2

2

2

11

11

1

1





















−+









−+

−
−

=





















−+









−+

−
−

=

RL

t
RL

R

r

RL

t
RL

R

r

f

f

α

α

α
α

α

α

α
α

                 (33) 

The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 
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for all positive values of 21, RR  and 21, LL . 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 
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T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 
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for all positive values of 21, RR  and 21, LL . 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 









≤








=

5

5
)(ˆ

2

1

e

e
tu  for ]5,0[∈t                  (34) 

that steers the state of the electrical circuit from zero state 

to final state T
fx ]11[=  (T denotes the transpose) and 

minimizes the performance index (15) with 

 







=

20

02
Q .                             (35) 

Procedure 1 will be used. Using the (16)-(17) and (33)-

(35) we obtain 

τ
τ

τ

τττ

d

deBQBetW
T

ATA
f

∫

∫
























































 −−
























 −−

×









== −−−

5

0

2

2

5

0

)5(ˆ1)5(ˆ

5.1

5.1

)5(5.0
exp5.0

0

0
5.1

5.1

)5(5.0
exp5.0

5.00

05.0ˆˆ)(









=

0804.00

00804.0
                                                        (36) 

and 

























 −−







 −−

























=

= −−−

5.1

)5(5.0
exp0

0
5.1

)5(5.0
exp

3

1
0

0
3

1

5.00

05.0

)(ˆ)(ˆ 1)5(ˆ1

t

t

xtWeBQtu ff
tAT T

 

.

4985.0

4985.0

1

1

4378.120

04378.12

3

1

3

1
















=
















×

t

t

e

e                      (37) 
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Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 
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reaches its maximal value for ftt = . From (23) we have 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 
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The matrix (33) is monomial and the positive fractional 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 
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The matrix (33) is monomial and the positive fractional 

circuit for 03 =R  is reachable. 

Now, we shall consider the minimum energy control 

problem for the fractional positive reachable electrical 

circuit shown on Fig. 1 for 1, 21 =RR , 03 =R , 1, 21 =LL  

and 5.0=α . To compute the input )(ˆ tu  satisfying the 

condition 
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Fig. 2. Input signal and state vector for ]s[5=ft . 

Note that the electrical circuit is stable. Therefore, )(ˆ tu  

reaches its maximal value for ftt = . From (23) we have 

the minimal value of the performance index 

 ff
T
f xtWxuI )()ˆ( 1−= ,                    (38) 

where )( ftW  is given by (36). 

, (38)

where W(tf) is given by (36).

5. Concluding remarks

The Caputo-Fabrizio definition of the fractional derivative 
has been applied to minimum energy control of the fractional 
positive continuous-time linear systems with bounded inputs. 
Conditions for the reachability of the standard and positive frac-
tional linear systems have been established (Theorems 2 and 3). 
The conditions for the existence of solution of the minimum 
energy control problem for the positive fractional systems with 
bounded inputs have been derived (Theorem 5). A procedure 
for computation of the optimal inputs has been proposed (Pro-
cedure 1) and illustrated by example of the positive fractional 
electrical circuit. The considerations can be easily extended to 
positive linear systems and electrical circuits with different frac-
tional orders. An open problem is an extension of this results to 
the fractional nonlinear systems.
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since (16) holds.  
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e  then )(ˆ tu  reaches its maximal value for 

ftt =  and if it is unstable then for 0=t . 

By assumption the inputs )(~ tu  and )(ˆ tu , ],0[ ftt ∈  steers 

the state of the system from 00 =x  to 
n

fx +ℜ∈ , i.e. 

 ∫∫ −−
==

f

f

f

f

t

tA

t

tA

f duBeduBex

0

)(ˆ

0

)(ˆ
)(ˆˆ)(~ˆ ττττ

ττ
  (24a) 

and 

 0)](ˆ)(~[ˆ

0

)(ˆ
=−∫ −

f

f

t

tA
duuBe τττ

τ
. (24b) 

By transposition of (24b) and postmultiplication by 

ff xtW )(1−
 we obtain 

 0)(ˆ)](ˆ)(~[

0

1)(ˆ
=−∫ −−

f

f
T

t

ff

tATT xtWdeBuu τττ
τ

. (25) 

Substitution of (17) into (25) yields 

 

0)(ˆ)](ˆ)(~[

ˆ)](ˆ)(~[
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=−=

−

∫
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f
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f
T

t

T

t

f

tATT

duQuu
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ττττ

τττ
τ

. (26) 

Using (26) it is easy to verify that 

 

∫

∫∫

−−+

=

f
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t

T
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T
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duuQuu

duQuduQu

0

00
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.    (27) 

From (27) it follows that )~()ˆ( uIuI <  since the second 

term in the right-hand side of the inequality is 

nonnegative. To find the minimal value of the 

performance index (15) we substitute (17) into (15) and 

we obtain 

f
T
f

f

t

tATtAT
f

t

T

xWx

xWdeBQBeWx

duQuuuI

f

f
T

f

f

1

1

0

)(ˆ
1)(ˆ

1

0

ˆˆ

)ˆ()(ˆ)ˆ(

−

−−−−−

=

=

=

∫

∫

τ

ττ

ττ
 (28) 

since (26) holds. □ 

4. Procedure and example 

From the considerations given in section 3, we have 

the following procedure for computation of the optimal 

inputs satisfying the condition (14) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈  and minimizes the 

performance index (15). 

Procedure 1. 
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