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Abstract. The paper presents a survey of recent results in the area of controllability of second order dynamical systems. Controllability problem 
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dynamical system are unstable, the concepts of observability 
and detectability are equivalent. On the other hand, stabiliz-
ability means controllability of at least all unstable modes of 
the dynamical system. Once again, if all modes of the system 
are unstable, notions of controllability and stabilizability co-
incide. If the system is stabilizable, it is possible to stabilize 
it by the appropriate state feedback, whereas if the system is 
stabilizable and detectable, it is possible to stabilize it by the 
appropriate output feedback. In the same way as for control-
lability and observability, there is a formal duality between 
stabilizability and detectability concepts.

Controllability is also strongly related to the theory of re-
alization and so called minimal realization [8–10]. Realization 
theory makes clear the relationship between input-output de-
scription in the operator domain (transfer-function) and state-
space representation (system of differential equations) in the 
time domain. The aim of the minimal state-space realization 
problem is to find a state-space model of minimal size of the 
given system. Realization theory has also shown the impor-
tance of using the right system model for a particular problem. 
The transfer function formulation does not reveal the behavior 
inside the system, such as unobservable unstable modes. There-
fore, the transfer function matrix cannot always be used to 
study the stability properties of the time-invariant systems, 
since it describes only the controllable and observable part of 
the dynamical system. This is because of so-called hidden pole-
zero cancellations [11, 4]. Different properties of dynamical 
systems stand out more clearly in some special descriptions of 
the system referred to as canonical forms. That is why they are 
often used to simplify the system analysis and synthesis of the 
solution to many problems of control theory. Controllability 
is strongly related to Kalman, Jordan and Luenberger canon-
ical forms for linear time-invariant control systems [3, 12, 13]. 
Moreover, the concept of controllability plays an important role 
in determining the solution to the optimal control problem, in 
particular to the so called minimum energy control problem 
for many classes of linear finite dimensional, infinite dimen-
sional and delayed dynamical systems, both deterministic and 
stochastic [14–17]. Therefore, controllability criteria are useful 

1.	 Introduction

Controllability is one of the most fundamental concepts in 
mathematical control theory. It is a qualitative property of dy-
namical systems important from theoretical as well as practical 
point of view. The notion of controllability, introduced in the 
early sixties of the 20th century by Kalman, covers time-in-
variant and time-varying linear control systems described by 
a state equation [1–5].

Roughly speaking, controllability means that it is possible 
to steer, in a given time interval, a dynamical system from any 
arbitrary initial state to any arbitrary final state by means of 
admissible controls. In general, there are many different defi-
nitions of controllability, the applications of which depend on 
the class of dynamical system.

Controllability has many practical implications in control 
theory. There are strong relationships between controllability 
and such concepts as stability and stabilizability, observ-
ability and detectability of linear both finite-dimensional and 
infinite-dimensional control systems. The problem of observ-
ability is related to the fact that in real world systems, not 
all state variables are available for direct measurements. In 
practice, the number of state variables is much greater than 
the number of outputs. In this context, observability denotes 
studying the possibility of estimating the state of the dy-
namical system from the output. If the dynamical system is 
observable, all modes of the system may be observed from 
the output. The concept of observability is strongly related 
to the state observers of dynamical systems. Controllability 
and observability are dual concepts; a dynamical system is 
controllable if and only if the corresponding dual system is 
observable and vice versa [6, 7]. The duality between control-
lability and observability makes it possible to reduce optimal 
control problems to optimal observation problems and vice 
versa [4]. Detectablility means the observability of at least all 
unstable modes of the dynamical system. If all modes of the 
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in determining the solution to the following problems of con-
trol theory:
●	 stabilizability conditions,
●	 duality theorems, concerning in particular observability and 

detectability conditions,
●	 solution to the optimal control problems, in particular to the 

minimum energy control problem,
●	 transforming the system to equivalent canonical forms (e.g. 

Kalman, Jordan, Luenberger forms).
In this paper, an overview of the current state of control-

lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. The paper is 
focused on various types of controllability which suit the types 
of systems they describe. In doing so, it is possible to give an 
overview of various approaches and techniques used in this 
problem. Among the considered controllability types and, what 
follows, types of systems analysed, there are approximate con-
trollability of second order linear infinite dimensional systems, 
approximate controllability of second order semilinear finite 
dimensional systems with delay in control, trajectory control-
lability of second order semilinear integro-differential systems, 
approximate controllability of a second order neutral stochastic 
differential equations with state dependent delay, nonlocal 
conditions and Poisson jumps, exact controllability of Duffing 
equation, exact boundary controllability of coupled hyperbolic 
equations and exact controllability of neutral integrodifferential 
impulsive systems with infinite delay and damping.

The paper is organized as follows. In the Preliminaries 
section we give the basic definitions, together with necessary 
notation, to form a common basis to which other section refer. 
The Controllability Results section forms the main part of this 
survey. Each of the system types is described there together 
with appropriate comments on its controllability results. The 
concluding section gives a notion about the direction of re-
search in the field of controllability of second order dynamical 
systems.

2.	 Preliminaries

As stated in the introduction, this section contains common 
notions used throughout the article. To maintain the appropriate 
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state 
equation defined on the closed time interval J = [0, T ] as:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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that is, the equation describing the dependance between the time 
change of a state of system x(t) 2 X under the influence of the 
admissible control signal u(t) 2 U and possibly other arguments 
where X and U are Banach spaces. The generally nonlinear 
function 
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
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 on the right-hand side of (1) differs in nature and the 
list of arguments in each of the cases under discussion, thus 

defining the character of the system. It is generally assumed that 
function f is such that equation (1) has a solution (not necessary 
unique) for suitably defined initial condition x(0) 2 X.

The solution to (1) mostly takes the form of an integral 
equation, referred to as a mild solution [18]:
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which is a starting point to the analysis of controllability [19].
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Definition 2.4. Space of piecewise continuous functions.
	 (i)	� A function x : [σ, τ] ! X is said to be a normalized piece-

wise continuous function on [σ, τ] if x is a piecewise 
continuous and left continuous on [σ, τ].
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scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
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what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 ∙ Hkxtk

J. Klamka, J. Wyrwał and R. Zawiski

(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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piecewise continuous functions x : J → X such that x(·)
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3.	 Controllability results for second-order linear 
infinite-dimensional dynamical systems

Up to the present time, the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been 
extensively investigated in many papers [7, 23–29]. Different 
types of linear systems have been investigated including 
time-invariant and time-varying systems, finite-dimensional 
and infinite dimensional systems as well as systems with un-
constrained and constrained controls. In the case of most of 
semilinear dynamical systems, controllability criteria are formu-
lated in such a way that an overall system may be controllable 
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verify controllability for a class of linear second order systems, 
the criteria presented in this section may be used.
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malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
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is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
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Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
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In particular, the space PC is formed by all normalized
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is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
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DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:
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dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
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G =


 0(

e2A+ e1A
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)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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d
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v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2
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‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

(A) ! V is a linear generally unbounded 
self-adjoint and positive-definite linear operator with 
domain 

On controllability of second order dynamical systems

evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
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(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
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tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.
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(3)

where:
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2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
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5. controls u belong to the set of admissible controls
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[
w1(t)
w2(t)

]
=
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(4)

system (3) may be rewritten as the equivalent first order dy-
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dt
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where:

F =
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,
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the operator
(
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)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
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DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

(A
1
2)£V with the inner 

product:

On controllability of second order dynamical systems

evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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Using standard substitution:
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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ical system in the product space W described by the following 
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (
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1
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) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


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(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
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2 + c0I
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G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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Remark 1. From assumptions on operator A it follows that the 
operator (e2A + e1A

1
2 + e0I)–1 is sef-adjoint, positive and 

bounded on V.
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In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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where α 2 (0, 1).

Definition 3.1. (Approximate controllability). Dynamical 
system (5) is said to be approximately controllable at the time 
interval [0, T ] if for any initial condition w(0) 2 W, any given 
final condition wf 2 W and each positive real number ε, there 
exists an admissible control u 2 L2

loc((0, T), U) such that:
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∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (
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)
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where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =
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[v1,v2], [w1,w2]

〉
W =
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1
2 v1,A

1
2 w1

〉
V +
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〉
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Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
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1
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)
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)−1
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(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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Definition 3.2. (Approximate controllability at a finite time). 
Dynamical system (5) is said to be approximately controllable 
at a finite time if for any initial condition w(0) 2 W, any given 
final condition wf 2 W and each positive real number ε, there 
exists a finite time T < 1 (depending generally on w(0) and 
wf and an admissible control u 2 L2

loc((0, T ], U) such that in-
equality (8) holds.

Lemma 3.1. Approximate controllability [30]. Dynamical 
system (7) is approximately controllable in a finite time for 
each α 2 (0, 1) if and only if it is approximately controllable 
in a finite time for some α 2 (0, 1).

Lemma 3.2. Approximate controllability [31]. Dynamical 
system (5) is approximately controllable in a finite time if 
and only if for any complex number z, there exists no nonzero 
w 2 D(F*) such that:
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and w f and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:

d2

dt2 w(t) = Gw(t)+ f (w(t),u(t),u(t −h))+

Hu(t)+Ku(t −h)

for t ∈ [0,T ],

w(0) = 0,
d
dt

w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =

[
x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:

x(0) = 0,u(t) = 0 for t ∈ [−h,0], (14)
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Similarly, dynamical system (7) is approximately control-
lable in a finite time if and only if for any complex number s, 
there exists no nonzero v 2 D(Aα) ½ V such that:
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and w f and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:

d2

dt2 w(t) = Gw(t)+ f (w(t),u(t),u(t −h))+

Hu(t)+Ku(t −h)

for t ∈ [0,T ],

w(0) = 0,
d
dt

w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =
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x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:
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Operators A*, G* and B* are adjoint operators for F, G and 
B, respectively.

Theorem 3.3. Approximate controllability [32]. Dynamical 
system (3) is approximately controllable in a finite time if and 
only if dynamical system (7) is approximately controllable in 
a finite time for some α 2 (0, 1).

Proof of Theorem 3.3 is based on a perturbation theory of 
controllable systems.

Remark 2. Results of Theorem 3.3 make it possible to verify 
approximate controllability of second-order linear dynamical 
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4.	 Controllability results for semilinear 
dynamical systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33–39]. The semilinear dynamical 
systems are special case of nonlinear dynamical systems. They 
consist of purely linear and purely nonlinear parts in differential 
state equations. One of the most popular approach to control-
lability analysis for these systems is to treat a nonlinear part 
of the semilinear system as a nonlinear perturbation of linear 
system. This research direction is particularly attractive since it 
allows to determine if the semilinear system is controllable by 
verifying controllability for much simpler linear part of semil-
inear system and checking some additional, rather simply veri-
fiable, conditions assuring boundedness of nonlinear part of the 
system. Another popular method of studying controllability of 
these systems is based on different fixed point theorems.

4.1. Constrained controllability of second order semilinear 
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real 
systems is also important for the synthesis of effective control 
systems since systems with delays show significantly different 
characteristics from those without delays. As a consequence, the 
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That is 
why controllability of time-delay dynamical systems has been 
studied in a great number of papers recently [40, 41, 38, 42, 39]. 
It is also motivated by significant theoretical problems posed 
by such systems. It has to be emphasized that in a time-delay 
system, systems with point and distributed delays, systems with 
delays in a state variable and in a control can be distinguished. 
Moreover, in semi-linear dynamical systems delays may be 
contained both in purely linear and purely nonlinear parts of 
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a nonlinear term continuously differentiable near the origin are 
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Consider semilinear finite-dimentional control system with 
single point delay described by a following differential equation:
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and w f and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:

d2

dt2 w(t) = Gw(t)+ f (w(t),u(t),u(t −h))+

Hu(t)+Ku(t −h)

for t ∈ [0,T ],

w(0) = 0,
d
dt

w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =

[
x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:

x(0) = 0,u(t) = 0 for t ∈ [−h,0], (14)
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and wf and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).
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system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:
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dt2 w(t) = Gw(t)+ f (w(t),u(t),u(t −h))+

Hu(t)+Ku(t −h)

for t ∈ [0,T ],

w(0) = 0,
d
dt

w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =

[
x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:

x(0) = 0,u(t) = 0 for t ∈ [−h,0], (14)
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and wf and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:

d2

dt2 w(t) = Gw(t)+ f (w(t),u(t),u(t −h))+

Hu(t)+Ku(t −h)

for t ∈ [0,T ],

w(0) = 0,
d
dt

w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =

[
x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:

x(0) = 0,u(t) = 0 for t ∈ [−h,0], (14)
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and wf and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:
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Hu(t)+Ku(t −h)

for t ∈ [0,T ],
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w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.
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x(t) =
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x1(t)
x2(t)

]
=
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w(t)
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(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:
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x(t) = Ax(t)+F(x(t),u(t),u(t −h))+
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and w f and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:
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for t ∈ [0,T ],

w(0) = 0,
d
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(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =

[
x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:

x(0) = 0,u(t) = 0 for t ∈ [−h,0], (14)

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

,,,,

,

� (11)

where state vector w(t) 2 Rn = W and control vector u(t) 2 U, 
G is n£n dimensional constant matrix, H and K are n£m di-
mensional constant matrices, H > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W£ 
U£U ! W is continuously differentiable near the origin and 
such that f(0, 0, 0) = 0.
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DEFINITION 3.2. (Approximate controllability at a finite
time) Dynamical system (5) is said to be approximately con-
trollable at a finite time if for any initial condition w(0) ∈ W ,
any given final condition w f ∈ W and each positive real num-
ber ε , there exists a finite time T < ∞ (depending generally on
w(0) and wf and an admissible control u ∈ L2

loc((0,T ],U) such
that inequality (8) holds.

LEMMA 3.1 Approximate controllability [30]. Dynamical
system (7) is approximately controllable in a finite time for
each α ∈ (0,∞) if and only if it is approximately controllable
in a finite time for some α ∈ (0,∞).

LEMMA 3.2 Approximate controllability [31]. Dynamical
system (5) is approximately controllable in a finite time if and
only if for any complex number z, there exists no nonzero w ∈
D(F∗) such that: [

F∗ − zI
G∗

]
= 0. (9)

Similarly, dynamical system (7) is approximately controllable
in a finite time if and only if for any complex number s, there
exists no nonzero v ∈ D(Aα)⊂V such that:

[
−Aα − sI

B∗

]
= 0. (10)

Operators A∗, G∗ and B∗ are adjoint operators for F, G and
B, respectively.

THEOREM 3.3 Approximate controllability [32]. Dynami-
cal system (3) is approximately controllable in a finite time if
and only if dynamical system (7) is approximately controllable
in a finite time for some α ∈ (0,∞).

Proof of theorem 3.3 is based on a perturbation theory of
controllable systems.

Remark 2. Results of theorem 3.3 make it possible to verify
approximate controllability of second-order linear dynamical
systems on the basis of a well-known approximate controlla-
bility criteria for first-order dynamical systems.

4. Controllability results for semilinear dynami-
cal systems

The controllability concept for nonlinear systems are inten-
sively studied in literature [33, 34, 35, 36, 37, 38, 39]. The
semilinear dynamical systems are special case of nonlinear
dynamical systems. They consist of purely linear and purely
nonlinear parts in differential state equations. One of the most
popular approach to controllability analysis for these systems
is to treat a nonlinear part of the semilinear system as a non-
linear perturbation of linear system. This research direction is
particularly attractive since it allows to determine if the semi-
linear system is controllable by verifying controllability for
much simpler linear part of semilinear system and checking
some additional, rather simply verifiable, conditions assuring
boundedness of nonlinear part of the system. Another popular
method of studying controllability of these systems is based on
different fixed point theorems.

4.1. Constrained controllability of second order semilinear
systems with delay. Modelling and control of dynamical sys-
tems with delays arise naturally in numerous engineering prob-
lems. Satisfactory modelling of time delays appearing in a real
systems is also important for the synthesis of effective control
systems since systems with delays show significantly different
characteristics from that without delays. As a consequence, the
presence of time delay is often the cause of substantial perfor-
mance deterioration and even instability of the system. That
is why, controllability of time-delay dynamical systems have
been studied in a great number of papers, recently [40, 41, 38,
42, 39]. It is also motivated by significant theoretical prob-
lems posed by such systems. It has to be emphasized that in
a time-delay system it can be distinguished systems with point
and distributed delays, systems with delays in a state variable
and in a control. Moreover, in semi-linear dynamical systems
delays may be contained both in purely linear and purely non-
linear parts of differential state equation.

Sufficient conditions for constrained local relative control-
lability near the origin in a prescribed finite time interval for
semi-linear dynamical systems with multiple variable point de-
lays or distributed delays in a control and in state variables,
which nonlinear term is continuously differentiable near the
origin are presented in [42] and [39].

Consider semilinear finite-dimentional control system with
single point delay described by a following differential equa-
tion:

d2

dt2 w(t) = Gw(t)+ f (w(t),u(t),u(t −h))+

Hu(t)+Ku(t −h)

for t ∈ [0,T ],

w(0) = 0,
d
dt

w(0) = 0, u(t) = 0 for t ∈ [−h,0],

(11)

where state vector w(t) ∈ Rn =W and control vector u(t) ∈U ,
G is n× n dimensional constant matrix, H and K are n×m
dimensional constant matrices, h > 0 is single point delay.

Moreover, it is assumed that a nonliner mapping f : W ×U×
U →W is continuously differentiable near the origin and such
that f (0,0,0) = 0.

Using standard substitution:

x(t) =

[
x1(t)
x2(t)

]
=

[
w(t)
ẇ(t)

]
(12)

system (11) may be rewritten as an equivalent first order semi-
linear stationary 2n-dimensional equation described by a fol-
lowing semilinear ordinary differential equation:

d
dt

x(t) = Ax(t)+F(x(t),u(t),u(t −h))+

Bu(t)+Du(t −h)
(13)

for t ∈ [0,T ] with zero initial condition:

x(0) = 0,u(t) = 0 for t ∈ [−h,0], (14)
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
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be associated with a semilinear dynamical system (13).
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trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+
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(
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∫ t

0
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)
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d
dt
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where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =
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0
H
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, D =
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K

]
,

F(x(t),u(t),u(t −h)) =
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0

f (w(t),u(t),u(t −h))
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Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:
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Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
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(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
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where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
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d
dt
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where:
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H1) F(0,0,0) = 0,
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H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:
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[0,T ],
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follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.
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order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where matrix S(t) = exp(At) for t ¸ 0 is 2n£2n dimensional 
exponential transition matrix for the linear part of the semilinear 
first order control system (13).

Definition 4.1. Reachable set [40]. The attainable set RT(Uc) 
for the dynamical system (13) at the given final time T > 0 from 
zero initial conditions is defined as follows:
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t, u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions 
and given set of admissible controls u 2 Uad = L1([0, T ], Uc).

In literature the notion of reachable set is often referred to 
as an attainable set.

The two basic types of controllability are given by the fol-
lowing definitions.

Definition 4.2. Uc-local controllability [40]. The control system 
(11) is said to be Uc-locally controllable in [0, T] if the attain-
able set RT(Uc) contains a neigborhood of zero in the space X.

Definition 4.3. Uc-global controllability [40]. The control 
system (11) is said to be Uc-globally controllable in [0, T] if 
RT(Uc) = X.

Let a linear 2n dimensional control system given by
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

� (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t 2 [–h, 0], 
where:
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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be associated with a semilinear dynamical system (13).

Theorem 4.1. Uc-local controllability [40]. Suppose that:
	 H1)	 F(0, 0, 0) = 0,
	 H2)	 Uc ½ U is a closed and convex cone with vertex at zero,
	 H3)	� The associated linear control system (18) is Uc-globally 

controllable in [0, T].
Then, the semilinear stationary control system (11) is Uc-locally 
controllable in [0, T].

Corollary. Uc-global controllability [40]. Suppose that the dy-
namical system (11) has single input, i.e., m = 1 and Uc = R+. 
Then, the associated linear dynamical control system (18) is 
Uc-globally controllable in [0, T ], for T ∙ h if and only if it is 
controllable without any constraints, i.e.:

On controllability of second order dynamical systems

where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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and matrix C has only complex eigenvalues.
Theorem 4.1 is proved using a generalized open mapping 

theorem.

4.2. Trajectory controllability of second order semilinear 
integro-differential systems. Generally speaking, the trajectory 
controllability means, that it is possible to steer the dynamical 
control system from an arbitrary initial state to an arbitrary final 
state, along a prescribed trajectory, using the set of admissible 
controls.
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In trajectory controllability, the sufficient condition for 
semilinear system can be formulated and proved using well-
known Gronwal՚s inequality [43]. Let H an U be the Hilbert 
spaces. Consider semilinear integro-differential control system 
described by the following equation:
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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where x(t) ∈ R2n = X and a control u(t) ∈ Rm = U , A is 2n×
2n dimensional constant matrix, F ∈ R2n, B and D are 2n×m
dimensional constant matrices of the following form:

A =

[
0 I
G 0

]
, B =

[
0
H

]
, D =

[
0
K

]
,

F(x(t),u(t),u(t −h)) =

[
0

f (w(t),u(t),u(t −h))

]
.

(15)

Remark 3. From assumptions on f (w(t),u(t),u(t − h)) it
follows that a nonlinear mapping F : X × U × U → X is
also continuously differentiable near the origin and such that
F(0,0,0) = 0.

The set of admissible controls for control systems (11)
and (13) is defined as Uad = L∞([0,T ],Uc) where Uc ⊂ U is
a given closed and convex cone with nonempty interior and
vertex at zero.

For a given admissible control u(t) ⊂ Uad there exist a
unique solutions w(t,u) ∈ Rn and x(t,u) ∈ R2n to the second
order and first order differential equations (11) and (13) with
zero initial condition given by the following integral formula
[40]:

x(t,u) =
∫ t

0
S(t − s)

(
F(x(s,u(s)),u(s),u(s−h))+

+Bu(s)+Du(s−h)
)

ds
(16)

where the matrix S(t) = exp(At) for t ≥ 0 is 2n× 2n dimen-
sional exponential transition matrix for the linear part of the
semilinear first order control system (13).

DEFINITION 4.1 Reachable set [40]. The attainable set
RT (Uc) for the dynamical system (13) at the given final time
T > 0 from zero initial conditions is defined as follows:

RT (Uc) =
{

x ∈ X : x = x(T,u),u(t) ∈Uc

for a.e. t ∈ [0,T ]
} (17)

where x(t,u), t > 0 is a unique solution to a first order differ-
ential equation (13) given by (16) with zero initial conditions
and given set of admissible controls u ∈Uad = L∞([0,T ],Uc).

In literature the notion of reachable set is often referred to
as an attainable set.

The two basic types of controllability are given by following
definitions.

DEFINITION 4.2 Uc-local controllability [40]. The control
system (11) is said to be Uc-locally controllable in [0,T] if the
attainable set RT (Uc) contains a neigborhood of zero in the
space X .

DEFINITION 4.3 Uc-global controllability [40]. The control
system (11) is said to be Uc-globally controllable in [0,T] if
RT (Uc) = X .

Let a linear 2n dimensional control system given by

d
dt

z(t) =Cz(t)+Eu(t)+Gu(t −h) for t ∈ [0,T ] (18)

with zero initial condition z(0) = 0 and u(t) = 0 for t ∈ [−h,0],
where:

C = A+DxF(0,0,0), E = B+DuF(0,0,0),
G = D+Du(t−h)F(0,0,0)

(19)

be associated with a semilinear dynamical system (13).

THEOREM 4.1 Uc-local controllability [40]. Suppose that:

H1) F(0,0,0) = 0,
H2) Uc ⊂U is a closed and convex cone with vertex at zero,
H3) The associated linear control system (18) is Uc-globally con-

trollable in [0,T].

Then, the semilinear stationary control system (11) is Uc-
locally controllable in [0,T].

COROLLARY Uc-global controllability [40]. Suppose that
the dynamical system (11) has single input, i.e., m = 1 and
Uc = R+. Then, the assotiated linear dynamical control sys-
tem (18) is Uc-globaly controllable in [0,T ], for T ≤ h if and
only if it is controllable without any constraints, i.e.:

rank[E,CE,C2E, . . . ,C2n−1E] = 2n,

and matrix C has only complex eigenvalues.

Theorem 4.1 is proved using a generalized open mapping
theorem.

4.2. Trajectory controllability of second order semilinear
integro-differential systems. Generally speaking, the trajec-
tory controllability means, that it is possible to steer the dy-
namical control system from an arbitrary initial state to an ar-
bitrary final state, along a prescribed trajectory, using the set of
admissible controls.

In trajectory controllability sufficient condition for semilin-
ear system can be formulated and proved using well-known
Gronwall’s inequality [43]. Let H an U be the Hilbert spaces.
Consider semilinear integro-differential control system de-
scribed by the following equation:

d2

dt2 w(t) = Aw(t)+B(t,u(t))+

F
(

t,w(t),
∫ t

0
G(t,s,w(s))ds

)

w(0) = w0,
d
dt

w(0) = w1, t ∈ [0,T ]

(20)

where:

1. the state w(t) ∈ H and control u(t) ∈ U = L2[0,T ] for t ∈
[0,T ],

2. the operator A : H → H is linear not necessarily bounded
operator,

3. the maps B : [0,T ]×U → H, G : �×H → H and F : [0,T ]×
H ×H → H are nonlinear operators, where � = {(t,s) =
[0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.
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� (20)

where:
1.	 the state w(t) 2 H and control u(t) 2 U = L2[0, T ] for 

t 2 [0, T ],
2.	 the operator A : H ! H is a linear and not necessarily 

bounded operator,
3.	 the maps B : [0, T ]£U ! H, G : 4£H ! H and 

F : [0, T ]£H£H ! H are nonlinear operators, where 
4 = {(t, s) = [0, T ]£[0, T ] : 0 ∙ s ∙ t ∙ T}.

Definition 4.4. Trajectory controllability [43]. Let τ be the 
set of all functions z 2 L2([0, T ], H) which are twice continu-
ously differentiable so that z(0) = w0 and τ1 be the set of all 
functions ż 2 L2([0, T ], H) such that ż(0) = w1(τ1 2 τ). Con-
trol system (20) is said to be trajectory controllable if for 
any z 2 τ and ż 2 τ1 there exist an L2-function u : [0, T ] ! H 
such that the corresponding solution of equation (20) satisfies 
w(¢) = z(¢) a.e.

Definition 4.5. Mild solution [43]. A function w(t) is said to 
be a mild solution of system (20) if it satisfies the following 
Volterra integral equation:
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DEFINITION 4.4 Trajectory controllability [43]. Let τ be
the set of all functions z ∈ L2([0,T ],H) which are twice con-
tinuously differentiable such that z(0) = w0 and τ1 be the set
of all functions ż ∈ L2([0,T ],H) such that ż(0) = w1 (τ1 ∈ τ).
Control system (20) is said to be trajectory controllable if for
any z ∈ τ and ż ∈ τ1 there exist an L2-function u : [0,T ]→ H
such that the corresponding solution of equation (20) satisfies
w(·) = z(·) a.e.

DEFINITION 4.5 Mild solution [43]. A function w(t) is said
to be a mild solution of system (20) if it satisfies the following
Volterra integral equation:

x(t) =C(t)w0 +S(t)w1 +
∫ t

0
S(t − s)B(s,u(s)ds

+
∫ t

0
S(t − s)F

(
s,w(s),

∫ s

0
G(s,τ,w(τ))dτ

)
ds,

t ∈ [0,T ].

(21)

where C(t) and S(t), t ∈ R denotes the strongly continuous co-
sine and associated sine families of linear bounded operators
in the space H generated by the operator A, respectively.

THEOREM 4.2 Mild solution [43]. Suppose that:

H1) Operator A is the infinitesimal generator of a strongly con-
tinuous cosine family C(t), t ∈ R of bounded linear operators
from X into itself and the adjoint operator A∗ is densely defined
i.e., D(A∗) = X∗,

H2) B and G satisfy the Caratheodory condition, i.e.:,

B(t, ·) : U → H is continuous for t ∈ [0,T ],

B(·,u) : [0,T ]→ H is measurable for u ∈U,

G(t,s, ·) : H → H is continuous for ∀(t,s) ∈ ∆,

G(·, ·,x) : ∆ → H is measurable for ∀x ∈ H,

H3) F satisfies is Caratheodory condition, i.e. F(·,x,y) is mea-
surable with respect to first argument and F(t, ·, ·) is continu-
ous with respect to second and third arguments,

H4) B,G,F satisfy the growth conditions:

‖B(t,u)‖H ≤ b0(t)+b1‖u‖U ∀u ∈U, t ∈ [0,T ],

‖G(t,s,x)‖H ≤ q0(t)+q1‖u‖H ∀t ∈ [0,T ], x ∈ H,

‖F(t,s,x)‖H ≤ a0(t)+a1‖x‖H +a2‖y‖H .

Then, system (20) has a mild solution on [0,T ] given by (21).

THEOREM 4.3 Trajectory controllability [43]. Suppose hy-
potheses (H1)-(H4) of theorem 4.2 are satisfied and addition-
ally the following conditions hold:

H5) F(t,x,y) is Lipschitz continuous with respect to x and y, i.e.
there exist constants α1,α2 ≥ 0 such that:

‖F(t,x1,y1)−F(t,x2,y2)‖H ≤α0‖x1−x2‖H +α1‖y1−y2‖H ,

for x1,x2,y1,y2 ∈ H, t ∈ [0,T ],
H6) G(t,s,x) is Lipschitz continuous with respect to x, i.e. there

exist constants β > 0 such that:

‖G(t,s,x)−G(t,s,y)‖H ≤ β‖x− y‖H , x,y ∈ H, (t,s) ∈ ∆,

H7) B satisfies monotonicity and coercivity conditions that is:

〈B(t,u)−B(t,v),u− v〉 ≥ 0 ∀u,v ∈U, t ∈ [0,T ],

and

lim
‖u‖→∞

〈B(t,u),u〉
‖u‖

= ∞.

Then, the nonlinear control system (20) is trajectory control-
lable.

Proof of theorem 4.3 is based on theory of monotone operators
and tools of cosine operators.

For the special case of (20), i.e. H = R and U = R, it is
possible to prove stronger result. Consider semilinear finite-
dimensional integro-differential control system described by
the following semilinear state equation:

d2

dt2 x(t) = a(t)x(t)+b(t,u(t))+

f
(

t,x(t),
∫ t

0
g(t,s,x(s))ds

)

x(0) = x0,
d
dt

x(0) = x1, t ∈ [0,T ], T < ∞.

(22)

where the state x(t) ∈ R and control u(t) ∈ R for t ∈ [0,T ],
a(t) ∈ L1[0,T ] and b : [0,T ]× R → R for t ∈ [0,T ]. Fur-
thermore, f : [0,T ]×R×R → R and g : �×R×R → H are
nonlinear functions satisfying Caratheodory conditions, where
�= {(t,s) = [0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.

DEFINITION 4.6. (Trajectory controllability [43]) Control
system (22) is said to be trajectory controllable if for any z ∈
τ and ż ∈ τ1 there exist a control u ∈ L2[0,T ] such that the
corresponding solution x(t) of equation (22) satisfies x(t) =
z(t) a.e.

THEOREM 4.4 Trajectory controllability [43]. Suppose
that:

H1) b(t,u) is continuous,
H2) b(t,u) is coercive in second variable, i.e. b(t,u) → ±∞ as

u →±∞,
H3) the function f is Lipschitz continuous in the second and third

variable, uniformly in t, i.e. there exist constants α1,α2 ≥ 0
such that:

| f (t,x1,y1)− f (t,x2,y2)| ≤ α0|x1 − x2|+α1|y1 − y2|,

for x1,x2,y1,y2 ∈ R, t ∈ [0,T ],
H4) the function g is Lipschitz in the third variable uniformly in

(t,s) ∈ ∆, i.e. there exists β > 0 such that:

|g(t,s,x)−g(t,s,y)≤ β |x− y|, ∀x,y ∈ R, (t,s) ∈ ∆.

Then, the nonlinear control system (22) is trajectory control-
lable.

Remark 4. The control u obtained in Theorem 4.4 is mea-
surable but may not be continuous. For the continuity of con-
trol function u additional assumptions on b(t,u) are required.
Control u(t) can be computed directly if the nonlinear function
b(t,u) is invertible [43].
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DEFINITION 4.4 Trajectory controllability [43]. Let τ be
the set of all functions z ∈ L2([0,T ],H) which are twice con-
tinuously differentiable such that z(0) = w0 and τ1 be the set
of all functions ż ∈ L2([0,T ],H) such that ż(0) = w1 (τ1 ∈ τ).
Control system (20) is said to be trajectory controllable if for
any z ∈ τ and ż ∈ τ1 there exist an L2-function u : [0,T ]→ H
such that the corresponding solution of equation (20) satisfies
w(·) = z(·) a.e.

DEFINITION 4.5 Mild solution [43]. A function w(t) is said
to be a mild solution of system (20) if it satisfies the following
Volterra integral equation:

x(t) =C(t)w0 +S(t)w1 +
∫ t

0
S(t − s)B(s,u(s)ds

+
∫ t

0
S(t − s)F

(
s,w(s),

∫ s

0
G(s,τ,w(τ))dτ

)
ds,

t ∈ [0,T ].

(21)

where C(t) and S(t), t ∈ R denotes the strongly continuous co-
sine and associated sine families of linear bounded operators
in the space H generated by the operator A, respectively.

THEOREM 4.2 Mild solution [43]. Suppose that:

H1) Operator A is the infinitesimal generator of a strongly con-
tinuous cosine family C(t), t ∈ R of bounded linear operators
from X into itself and the adjoint operator A∗ is densely defined
i.e., D(A∗) = X∗,

H2) B and G satisfy the Caratheodory condition, i.e.:,

B(t, ·) : U → H is continuous for t ∈ [0,T ],

B(·,u) : [0,T ]→ H is measurable for u ∈U,

G(t,s, ·) : H → H is continuous for ∀(t,s) ∈ ∆,

G(·, ·,x) : ∆ → H is measurable for ∀x ∈ H,

H3) F satisfies is Caratheodory condition, i.e. F(·,x,y) is mea-
surable with respect to first argument and F(t, ·, ·) is continu-
ous with respect to second and third arguments,

H4) B,G,F satisfy the growth conditions:

‖B(t,u)‖H ≤ b0(t)+b1‖u‖U ∀u ∈U, t ∈ [0,T ],

‖G(t,s,x)‖H ≤ q0(t)+q1‖u‖H ∀t ∈ [0,T ], x ∈ H,

‖F(t,s,x)‖H ≤ a0(t)+a1‖x‖H +a2‖y‖H .

Then, system (20) has a mild solution on [0,T ] given by (21).

THEOREM 4.3 Trajectory controllability [43]. Suppose hy-
potheses (H1)-(H4) of theorem 4.2 are satisfied and addition-
ally the following conditions hold:

H5) F(t,x,y) is Lipschitz continuous with respect to x and y, i.e.
there exist constants α1,α2 ≥ 0 such that:

‖F(t,x1,y1)−F(t,x2,y2)‖H ≤α0‖x1−x2‖H +α1‖y1−y2‖H ,

for x1,x2,y1,y2 ∈ H, t ∈ [0,T ],
H6) G(t,s,x) is Lipschitz continuous with respect to x, i.e. there

exist constants β > 0 such that:

‖G(t,s,x)−G(t,s,y)‖H ≤ β‖x− y‖H , x,y ∈ H, (t,s) ∈ ∆,

H7) B satisfies monotonicity and coercivity conditions that is:

〈B(t,u)−B(t,v),u− v〉 ≥ 0 ∀u,v ∈U, t ∈ [0,T ],

and

lim
‖u‖→∞

〈B(t,u),u〉
‖u‖

= ∞.

Then, the nonlinear control system (20) is trajectory control-
lable.

Proof of theorem 4.3 is based on theory of monotone operators
and tools of cosine operators.

For the special case of (20), i.e. H = R and U = R, it is
possible to prove stronger result. Consider semilinear finite-
dimensional integro-differential control system described by
the following semilinear state equation:

d2

dt2 x(t) = a(t)x(t)+b(t,u(t))+

f
(

t,x(t),
∫ t

0
g(t,s,x(s))ds

)

x(0) = x0,
d
dt

x(0) = x1, t ∈ [0,T ], T < ∞.

(22)

where the state x(t) ∈ R and control u(t) ∈ R for t ∈ [0,T ],
a(t) ∈ L1[0,T ] and b : [0,T ]× R → R for t ∈ [0,T ]. Fur-
thermore, f : [0,T ]×R×R → R and g : �×R×R → H are
nonlinear functions satisfying Caratheodory conditions, where
�= {(t,s) = [0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.

DEFINITION 4.6. (Trajectory controllability [43]) Control
system (22) is said to be trajectory controllable if for any z ∈
τ and ż ∈ τ1 there exist a control u ∈ L2[0,T ] such that the
corresponding solution x(t) of equation (22) satisfies x(t) =
z(t) a.e.

THEOREM 4.4 Trajectory controllability [43]. Suppose
that:

H1) b(t,u) is continuous,
H2) b(t,u) is coercive in second variable, i.e. b(t,u) → ±∞ as

u →±∞,
H3) the function f is Lipschitz continuous in the second and third

variable, uniformly in t, i.e. there exist constants α1,α2 ≥ 0
such that:

| f (t,x1,y1)− f (t,x2,y2)| ≤ α0|x1 − x2|+α1|y1 − y2|,

for x1,x2,y1,y2 ∈ R, t ∈ [0,T ],
H4) the function g is Lipschitz in the third variable uniformly in

(t,s) ∈ ∆, i.e. there exists β > 0 such that:

|g(t,s,x)−g(t,s,y)≤ β |x− y|, ∀x,y ∈ R, (t,s) ∈ ∆.

Then, the nonlinear control system (22) is trajectory control-
lable.

Remark 4. The control u obtained in Theorem 4.4 is mea-
surable but may not be continuous. For the continuity of con-
trol function u additional assumptions on b(t,u) are required.
Control u(t) can be computed directly if the nonlinear function
b(t,u) is invertible [43].
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� (21)

where C(t) and S(t), t 2 R denotes the strongly continuous co-
sine and associated sine families of linear bounded operators in 
the space H generated by the operator A, respectively.

Theorem 4.2. Mild solution [43]. Suppose that:
	H1)	� Operator A is the infinitesimal generator of a strongly 

continuous cosine family C(t), t 2 R of bounded linear 
operators from X into itself and the adjoint operator A* is 
densely defined i.e., 

On controllability of second order dynamical systems

evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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(A*)  = X *,
	H2)	� B and G satisfy the Caratheodory condition, i.e.:,
		 B(t, ¢) : U  ! H is continuous for t 2 [0, T ],
		 B(¢, u) : [0, T ] ! H is measurable for u 2 U,
		 G(t, s, ¢) : H ! H is continuous for 8(t, s) 2 ∆,
		 G(¢, ¢, x) : ∆ ! H is measurable for 8x 2 H,

	H3)	� F satisfies is Caratheodory condition, i.e. F(¢, x, y) is mea-
surable with respect to first argument and F(t, ¢, ¢) is con-
tinuous with respect to second and third arguments,

	H4)	 �B, G, F satisfy the growth conditions:
		 kB(t, u)kH ∙ b0(t) + b1kukU 8u 2 U, t 2 [0, T ],
		 kG(t, s, x)kH ∙ q0(t) + q1kukH 8t 2 [0, T ], x 2 H,
		  kF(t, s, x)kH ∙ a0(t) + a1kxkH + a2kykH.
Then, system (20) has a mild solution on [0, T ] given by (21).

Theorem 4.3. Trajectory controllability [43]. Suppose hy-
potheses (H1–H4) of Theorem 4.2 are satisfied and additionally, 
the following conditions hold:
	H5)	� F(t, s, x) is Lipschitz continuous with respect to x and y, 

i.e. there exist constants α1, α2 ¸ 0 such that:
		 kF(t, x1, y1) ¡ F(t, x2, y2)kH ∙ a0kx1 ¡ x2kH + a1ky1 ¡ y2kH, 
		 for x1, x2, y1, y2 2 H, t 2 [0, T ],
	H6)	� G(t, s, x) is Lipschitz continuous with respect to x, i.e. there 

exist constants β > 0 such that:
		 kG(t, s, x) ¡ G(t, s, y)kH ∙ βkx ¡ ykH, x, y 2 H, (t, s) 2 ∆,
	H7)	� B satisfies monotonicity and coercivity conditions that is:
		 hB(t, u) ¡ B(t, v), u ¡ vi ¸ 0 8u, v 2 U, t 2 [0, T ]

		 and
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DEFINITION 4.4 Trajectory controllability [43]. Let τ be
the set of all functions z ∈ L2([0,T ],H) which are twice con-
tinuously differentiable such that z(0) = w0 and τ1 be the set
of all functions ż ∈ L2([0,T ],H) such that ż(0) = w1 (τ1 ∈ τ).
Control system (20) is said to be trajectory controllable if for
any z ∈ τ and ż ∈ τ1 there exist an L2-function u : [0,T ]→ H
such that the corresponding solution of equation (20) satisfies
w(·) = z(·) a.e.

DEFINITION 4.5 Mild solution [43]. A function w(t) is said
to be a mild solution of system (20) if it satisfies the following
Volterra integral equation:

x(t) =C(t)w0 +S(t)w1 +
∫ t

0
S(t − s)B(s,u(s)ds

+
∫ t

0
S(t − s)F

(
s,w(s),

∫ s

0
G(s,τ,w(τ))dτ

)
ds,

t ∈ [0,T ].

(21)

where C(t) and S(t), t ∈ R denotes the strongly continuous co-
sine and associated sine families of linear bounded operators
in the space H generated by the operator A, respectively.

THEOREM 4.2 Mild solution [43]. Suppose that:

H1) Operator A is the infinitesimal generator of a strongly con-
tinuous cosine family C(t), t ∈ R of bounded linear operators
from X into itself and the adjoint operator A∗ is densely defined
i.e., D(A∗) = X∗,

H2) B and G satisfy the Caratheodory condition, i.e.:,

B(t, ·) : U → H is continuous for t ∈ [0,T ],

B(·,u) : [0,T ]→ H is measurable for u ∈U,

G(t,s, ·) : H → H is continuous for ∀(t,s) ∈ ∆,

G(·, ·,x) : ∆ → H is measurable for ∀x ∈ H,

H3) F satisfies is Caratheodory condition, i.e. F(·,x,y) is mea-
surable with respect to first argument and F(t, ·, ·) is continu-
ous with respect to second and third arguments,

H4) B,G,F satisfy the growth conditions:

‖B(t,u)‖H ≤ b0(t)+b1‖u‖U ∀u ∈U, t ∈ [0,T ],

‖G(t,s,x)‖H ≤ q0(t)+q1‖u‖H ∀t ∈ [0,T ], x ∈ H,

‖F(t,s,x)‖H ≤ a0(t)+a1‖x‖H +a2‖y‖H .

Then, system (20) has a mild solution on [0,T ] given by (21).

THEOREM 4.3 Trajectory controllability [43]. Suppose hy-
potheses (H1)-(H4) of theorem 4.2 are satisfied and addition-
ally the following conditions hold:

H5) F(t,x,y) is Lipschitz continuous with respect to x and y, i.e.
there exist constants α1,α2 ≥ 0 such that:

‖F(t,x1,y1)−F(t,x2,y2)‖H ≤α0‖x1−x2‖H +α1‖y1−y2‖H ,

for x1,x2,y1,y2 ∈ H, t ∈ [0,T ],
H6) G(t,s,x) is Lipschitz continuous with respect to x, i.e. there

exist constants β > 0 such that:

‖G(t,s,x)−G(t,s,y)‖H ≤ β‖x− y‖H , x,y ∈ H, (t,s) ∈ ∆,

H7) B satisfies monotonicity and coercivity conditions that is:

〈B(t,u)−B(t,v),u− v〉 ≥ 0 ∀u,v ∈U, t ∈ [0,T ],

and

lim
‖u‖→∞

〈B(t,u),u〉
‖u‖

= ∞.

Then, the nonlinear control system (20) is trajectory control-
lable.

Proof of theorem 4.3 is based on theory of monotone operators
and tools of cosine operators.

For the special case of (20), i.e. H = R and U = R, it is
possible to prove stronger result. Consider semilinear finite-
dimensional integro-differential control system described by
the following semilinear state equation:

d2

dt2 x(t) = a(t)x(t)+b(t,u(t))+

f
(

t,x(t),
∫ t

0
g(t,s,x(s))ds

)

x(0) = x0,
d
dt

x(0) = x1, t ∈ [0,T ], T < ∞.

(22)

where the state x(t) ∈ R and control u(t) ∈ R for t ∈ [0,T ],
a(t) ∈ L1[0,T ] and b : [0,T ]× R → R for t ∈ [0,T ]. Fur-
thermore, f : [0,T ]×R×R → R and g : �×R×R → H are
nonlinear functions satisfying Caratheodory conditions, where
�= {(t,s) = [0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.

DEFINITION 4.6. (Trajectory controllability [43]) Control
system (22) is said to be trajectory controllable if for any z ∈
τ and ż ∈ τ1 there exist a control u ∈ L2[0,T ] such that the
corresponding solution x(t) of equation (22) satisfies x(t) =
z(t) a.e.

THEOREM 4.4 Trajectory controllability [43]. Suppose
that:

H1) b(t,u) is continuous,
H2) b(t,u) is coercive in second variable, i.e. b(t,u) → ±∞ as

u →±∞,
H3) the function f is Lipschitz continuous in the second and third

variable, uniformly in t, i.e. there exist constants α1,α2 ≥ 0
such that:

| f (t,x1,y1)− f (t,x2,y2)| ≤ α0|x1 − x2|+α1|y1 − y2|,

for x1,x2,y1,y2 ∈ R, t ∈ [0,T ],
H4) the function g is Lipschitz in the third variable uniformly in

(t,s) ∈ ∆, i.e. there exists β > 0 such that:

|g(t,s,x)−g(t,s,y)≤ β |x− y|, ∀x,y ∈ R, (t,s) ∈ ∆.

Then, the nonlinear control system (22) is trajectory control-
lable.

Remark 4. The control u obtained in Theorem 4.4 is mea-
surable but may not be continuous. For the continuity of con-
trol function u additional assumptions on b(t,u) are required.
Control u(t) can be computed directly if the nonlinear function
b(t,u) is invertible [43].
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DEFINITION 4.4 Trajectory controllability [43]. Let τ be
the set of all functions z ∈ L2([0,T ],H) which are twice con-
tinuously differentiable such that z(0) = w0 and τ1 be the set
of all functions ż ∈ L2([0,T ],H) such that ż(0) = w1 (τ1 ∈ τ).
Control system (20) is said to be trajectory controllable if for
any z ∈ τ and ż ∈ τ1 there exist an L2-function u : [0,T ]→ H
such that the corresponding solution of equation (20) satisfies
w(·) = z(·) a.e.

DEFINITION 4.5 Mild solution [43]. A function w(t) is said
to be a mild solution of system (20) if it satisfies the following
Volterra integral equation:

x(t) =C(t)w0 +S(t)w1 +
∫ t

0
S(t − s)B(s,u(s)ds

+
∫ t

0
S(t − s)F

(
s,w(s),

∫ s

0
G(s,τ,w(τ))dτ

)
ds,

t ∈ [0,T ].

(21)

where C(t) and S(t), t ∈ R denotes the strongly continuous co-
sine and associated sine families of linear bounded operators
in the space H generated by the operator A, respectively.

THEOREM 4.2 Mild solution [43]. Suppose that:

H1) Operator A is the infinitesimal generator of a strongly con-
tinuous cosine family C(t), t ∈ R of bounded linear operators
from X into itself and the adjoint operator A∗ is densely defined
i.e., D(A∗) = X∗,

H2) B and G satisfy the Caratheodory condition, i.e.:,

B(t, ·) : U → H is continuous for t ∈ [0,T ],

B(·,u) : [0,T ]→ H is measurable for u ∈U,

G(t,s, ·) : H → H is continuous for ∀(t,s) ∈ ∆,

G(·, ·,x) : ∆ → H is measurable for ∀x ∈ H,

H3) F satisfies is Caratheodory condition, i.e. F(·,x,y) is mea-
surable with respect to first argument and F(t, ·, ·) is continu-
ous with respect to second and third arguments,

H4) B,G,F satisfy the growth conditions:

‖B(t,u)‖H ≤ b0(t)+b1‖u‖U ∀u ∈U, t ∈ [0,T ],

‖G(t,s,x)‖H ≤ q0(t)+q1‖u‖H ∀t ∈ [0,T ], x ∈ H,

‖F(t,s,x)‖H ≤ a0(t)+a1‖x‖H +a2‖y‖H .

Then, system (20) has a mild solution on [0,T ] given by (21).

THEOREM 4.3 Trajectory controllability [43]. Suppose hy-
potheses (H1)-(H4) of theorem 4.2 are satisfied and addition-
ally the following conditions hold:

H5) F(t,x,y) is Lipschitz continuous with respect to x and y, i.e.
there exist constants α1,α2 ≥ 0 such that:

‖F(t,x1,y1)−F(t,x2,y2)‖H ≤α0‖x1−x2‖H +α1‖y1−y2‖H ,

for x1,x2,y1,y2 ∈ H, t ∈ [0,T ],
H6) G(t,s,x) is Lipschitz continuous with respect to x, i.e. there

exist constants β > 0 such that:

‖G(t,s,x)−G(t,s,y)‖H ≤ β‖x− y‖H , x,y ∈ H, (t,s) ∈ ∆,

H7) B satisfies monotonicity and coercivity conditions that is:

〈B(t,u)−B(t,v),u− v〉 ≥ 0 ∀u,v ∈U, t ∈ [0,T ],

and

lim
‖u‖→∞

〈B(t,u),u〉
‖u‖

= ∞.

Then, the nonlinear control system (20) is trajectory control-
lable.

Proof of theorem 4.3 is based on theory of monotone operators
and tools of cosine operators.

For the special case of (20), i.e. H = R and U = R, it is
possible to prove stronger result. Consider semilinear finite-
dimensional integro-differential control system described by
the following semilinear state equation:

d2

dt2 x(t) = a(t)x(t)+b(t,u(t))+

f
(

t,x(t),
∫ t

0
g(t,s,x(s))ds

)

x(0) = x0,
d
dt

x(0) = x1, t ∈ [0,T ], T < ∞.

(22)

where the state x(t) ∈ R and control u(t) ∈ R for t ∈ [0,T ],
a(t) ∈ L1[0,T ] and b : [0,T ]× R → R for t ∈ [0,T ]. Fur-
thermore, f : [0,T ]×R×R → R and g : �×R×R → H are
nonlinear functions satisfying Caratheodory conditions, where
�= {(t,s) = [0,T ]× [0,T ] : 0 ≤ s ≤ t ≤ T}.

DEFINITION 4.6. (Trajectory controllability [43]) Control
system (22) is said to be trajectory controllable if for any z ∈
τ and ż ∈ τ1 there exist a control u ∈ L2[0,T ] such that the
corresponding solution x(t) of equation (22) satisfies x(t) =
z(t) a.e.

THEOREM 4.4 Trajectory controllability [43]. Suppose
that:

H1) b(t,u) is continuous,
H2) b(t,u) is coercive in second variable, i.e. b(t,u) → ±∞ as

u →±∞,
H3) the function f is Lipschitz continuous in the second and third

variable, uniformly in t, i.e. there exist constants α1,α2 ≥ 0
such that:

| f (t,x1,y1)− f (t,x2,y2)| ≤ α0|x1 − x2|+α1|y1 − y2|,

for x1,x2,y1,y2 ∈ R, t ∈ [0,T ],
H4) the function g is Lipschitz in the third variable uniformly in

(t,s) ∈ ∆, i.e. there exists β > 0 such that:

|g(t,s,x)−g(t,s,y)≤ β |x− y|, ∀x,y ∈ R, (t,s) ∈ ∆.

Then, the nonlinear control system (22) is trajectory control-
lable.

Remark 4. The control u obtained in Theorem 4.4 is mea-
surable but may not be continuous. For the continuity of con-
trol function u additional assumptions on b(t,u) are required.
Control u(t) can be computed directly if the nonlinear function
b(t,u) is invertible [43].
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� (22)

where the state x(t) 2 R and control u(t) 2 R for t 2 [0, T ], 
a(t) 2 L1[0, T ] and b : [0, T ]£R£R ! R for t 2 [0, T ]. Fur-
thermore, f : [0, T ]£R£R ! R and g : 4£R£R ! H are 
nonlinear functions satisfying Caratheodory conditions, where 
4 = {(t, s) = [0, T ]£[0, T ] : 0 ∙ s ∙ t ∙ T}.

Definition 4.6. (Trajectory controllability [43]). Control 
system (22) is said to be trajectory controllable if for any z 2 τ 
and ż 2 τ1 there exist a control u 2 L2[0, T ] such that the cor-
responding solution x(t) of equation (22) satisfies x(t) = z(t)

Theorem 4.4. Trajectory controllability [43]. Suppose that:
	H1)	� b(t, u) is continuous,
	H2)	� b(t, u) is coercive in second variable, i.e. b(t, u) ! §1 as 

u ! §1,
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	H3)	� the function f is Lipschitz continuous in the second and 
third variable, uniformly in t, i.e. there exist constants 
α1, α2 ¸ 0 such that:

		 j f(t, x1, y1) ¡ f(t, x2, y2)j ∙ a0jx1 ¡ x2j + a1jy1 ¡ y2j

		 for x1, x2, y1, y2 2 R, t 2 [0, T ],
	H4)	� the function g is Lipschitz in the third variable uniformly 

in (t, s) 2 ∆, i.e. there exists β > 0 such that:

		 jg(t, s, x) ¡ g(t, s, y) ∙ βjx ¡ yj, 8x, y 2 R, (t, s) 2 ∆.

Then, the nonlinear control system (22) is trajectory control-
lable.

Remark 4. The control u obtained in Theorem 4.4 is measur-
able but may not be continuous. For the continuity of control 
function u additional assumptions on b(t, u) are required. Con-
trol u(t) can be computed directly if the nonlinear function 
b(t, u) is invertible (43).

4.3. Stochastic systems. Classical control theory is developed 
for deterministic systems. However, uncertainty is a funda-
mental characteristic of many real dynamical systems. More-
over, stochastic modelling has been widely used to model the 
phenomena arising in such branches of science and industry 
as biology, reliability and risk theory, economics, mechanics, 
electronics and telecommunications. Therefore, controllability 
of linear and nonlinear stochastic systems have been a subject 
of intense research over the last few years [44, 45, 16, 46–49]. 
The proofs of the controllability results for stochastic systems 
are based on theorems of the theory of stochastic processes, 
linearization methods for stochastic dynamical systems, theory 
of semi-groups of linear operators, Banach, Schauder, Schaefer, 
or Nussbaum fixed-point theorems and on the so-called gener-
alized open mapping theorem.

4.3.1. Approximate controllability of a second order neutral 
stochastic differential equations with state dependent delay. 
Consider dynamical system described by the following partial 
neural stochastic differential equation with state delay:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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where:
	 1.	� A : 
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

(A) ½ X ! X is the infinitesimal generator of 
a strongly continuous cosine family {C(t) : t 2 R} of 
bounded linear operators on a Hilbert space X,

	 2.	� {S(t) : t 2 R} is the strongly continuous sine family asso-
ciated to a strongly continuous cosine family {C(t) : t 2 R} 
defined as S(t)x = ∫0

tC(s)xds, x 2 X, t 2 R,
	 3.	� (Ω, 

On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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defined as S(t)x =
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θ) belongs to some abstract phase space B defined axiomat-
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scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:
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where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)
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LF
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8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):
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Q = Tr(φQφ ∗) =
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∑
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< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:
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dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t
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S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 and there exists a continuous bounded 
function J ϕ : ℝ(ρ–) ! (0, 1) such that kϕtk

J. Klamka, J. Wyrwał and R. Zawiski

(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

 the function 
G(¢, z) : [0, T ] ! LQ(K, X ) is strongly 

On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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t measurable,
	 (ii)	� There exists an integrable function αG : [0, T ] ! [0, 1] 

and a monotone continuous nondecreasing function 
ϒG : [0, +1) ! [0, +1) such that:
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H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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g(t, ¢) is Lipschitz continuous such that there exists a pos-
itive constant Lg such that:
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H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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	H5)	� There exists a function H : [0, 1]£[0, 1] ! [0, 1] which 
is locally integrable in t. H is a continuous, monotone, 
nondecreasing in second variable and H(t, 0) ´ 0 and:

		 E(k f(t, m1) ¡ f(t, m2)k2) + E(kG(t, m1) ¡ G(t, m2)k2) ∙
		 ∙ H(t, km1 ¡ m2)k2), for all t 2 [0, T ] and m1, m2 2  
		 2 L2(Ω, 

On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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(r)
r  ∙ 1, where 

R̃ = 12Na2Ka
2Lg, kC(t)k ∙ N and kS(t)k ∙ Ñ  for every 

t 2 [0, a] and Ka = supt 2 [0, T ]K(t).
Then the initial value problem (23) has at least one mild solu-
tion.

Proof of Theorem 4.5 is based on the measure of non-com-
pactness.

Theorem 4.6. Approximate controllability [50]. Assume that 
the associated linear control system (26) is approximately con-
trollable on [0, T ], the hypotheses (H1–H4) of Theorem 4.5 are 
satisfied and additionally, the following conditions hold:
	H7)	� the functions f, g : [0, T ]£

J. Klamka, J. Wyrwał and R. Zawiski

(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
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every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],
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tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
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stant Lg such that:
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Proof of theorem 4.5 is based on the measure of non-
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t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:
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ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =
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ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
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every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],
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and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
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H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,
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where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
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∫ T
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Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
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x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

J. Klamka, J. Wyrwał and R. Zawiski

H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for
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by the following partial neural stochastic semilinear differen-
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]
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where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.
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mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d
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f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
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x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .
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10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.
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tem (23) is said to be approximately controllable if RT ( f ) is
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8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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motion W (t) with finite second moment. Also ψ(t) is an
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7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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t-measurable pth 
power integrable random variables with values in Hil-
bert space X, L

J. Klamka, J. Wyrwał and R. Zawiski

H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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p([0, T ], X ) is the space of all 

On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:
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(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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ics, electronics and telecommunications. Therefore, control-
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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0-measurable X valued random variables 
independent of W,

	14.	� g and g1 are continuous functions from C([0, T ], X ) ! X,
	15.	� h(t) = t ¡ h1(t) is continuous, differentiable and strictly in-

creasing on [0, T ] and h1(t) > 0. Function r(t) = t + h1(t) 
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse func-
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	16.	� u 2 Uad, where Uad is the set of admissible controls Uad = L

J. Klamka, J. Wyrwał and R. Zawiski

H1) The function t → φt is continuous from R(ρ−) = {ρ(s,ψ) :
ρ(s,ψ) ≤ 0} into B and there exists a continuous bounded
function Jφ : R(ρ−)→ (0,∞) such that ‖φt‖B ≤ Jφ (t)‖φ‖B
for every t ∈ R(ρ−),

H2) f : [0,T ]×B→ X satisfies the following:

i) For every x : (−∞,T ]→ X , x0 ∈B and x|[0,T ]∈ PC, the
function f (·,ψ) : [0,T ]→ X is strongly measurable for
every ψ ∈B and f (·, t) is continuous for a.e. t ∈ [0,T ],

ii) There exists an integrable function α : [0,T ]→ [0,+∞]
and the monotone continuous nondecreasing func-
tion ϒ f : [0,+∞) → [0,+∞) such that ‖ f (t,v)‖ ≤
α(t)ϒ f (‖v‖B) ∀t ∈ [0,T ] and v ∈B,

H3) The function G satisfies the following conditions:

i) For almost all t ∈ [0,T ] the function G(t, ·) : B →
LQ(K,X) is continuous. For all z ∈ B the function
G(·,z) : [0,T ]→ LQ(K,X) is strongly Ft measurable,

ii) There exists an integrable function αG : [0,T ]→ [0,∞]
and a monotone continuous nondecreasing function
ϒG : [0,+∞)→ [0,+∞) such that:

‖G(t,z)‖2
Q ≤ αG(t)ϒG(‖z‖2

B),

H4) The function g(·) is continuous ∀(t,v)∈ [0,T ]×B and g(t, ·)
is Lipschitz continuous such that there exists a positive con-
stant Lg such that:

‖g(t,v1)−g(t,v2)‖ ≤ Lg‖v1 − v2‖B,

(t,vi) ∈ [0,T ]×B, (i = 1,2)

H5) There exists a function H : [0,∞]× [0,∞] → [0,∞] which is
locally integrable in t. H is a continuous, monotone, nonde-
creasing in second variable and H(t,0)≡ 0 and:
E
(
‖ f (t,m1)− f (t,m2)‖2

)
+ E

(
‖G(t,m1)−G(t,m2)‖2

)
≤

H(t,‖m1 − m2)‖2), for all t ∈ [0,T ] and m1,m2 ∈
L2(Ω,F ,P),

H6) R̃ +
(

Ña6+6ÑTr(Q)
)∫ a

0 α(s)ds limr→∞ sup�(r)
r ≤ 1,

where R̃ = 12Na2K2
a Lg, ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for

every t ∈ [0,a] and Ka = supt∈[0,T ]K(t).

Then the initial value problem (23) has at least one mild solu-
tion.

Proof of theorem 4.5 is based on the measure of non-
compactness.

THEOREM 4.6 Approximate controllability [50]. Assume
that the associated linear control system (26) is approxi-
mately controllable on [0,T ] and hypotheses (H1)-(H4) of The-
orem 4.5 are satisfied and additionally the following conditions
hold:

H7) the functions f ,g : [0,T ] × B → X are continuous for
t ∈ [0,T ] and ∀z1,z2 ∈ L2([0,T ],B) there exists constants
L f ,Lg > 0 such that:

‖ f (t,z1)− f (t,z2)‖ ≤ L f ‖z1 − z2‖B,

‖g(t,z1)−g(t,z2)‖ ≤ Lg‖z1 − z2‖B,

H8) the function G : [0,T ]×B→ LQ(K,X) is Lipschitz continu-
ous with constant LG > 0 such that:

‖G(t,z1)−G(t,z2)‖ ≤ LG‖z1 − z2‖B,

H9) the space L2([0,T ],X) = Ri + R(B) (i = 1,2) and
L2([0,T ],LQ(K,X)) = R3 +R(B) where Ri = ker(Λi) (i =
1,2,3) and bounded operators Λi (i = 1,2,3) are defined as
follows:

Λ1x(t) =
∫ T

0
S(t − s)x(s)ds,

Λ2x(t) =
∫ T

0
C(t − s)x(s)ds,

Λ3x(t) =
∫ T

0
S(t − s)x(s)dW (s).

Then, the semilinear control system with state dependent de-
lay (23) is approximately controllable on [0,T ].

4.3.2. Approximate controllability of second order semilin-
ear stochastic systems with variable delay in control and
nonlocal conditions.Consider dynamical system described
by the following partial neural stochastic semilinear differen-
tial state equation with variable delay in control:

d
(

d
dt

x(t)
)
=

[
A(t)x(t)+B1u(t)+B2u(h(t))+ f (t,x(t))

]
dt+

+σ(t,x(t)dW (t), t ∈ [0,T ],
x(0) = x0 +g(x), ẋ(0) = x1 +g1(x), and

u(t) = 0 for t ∈ [h(0),0]

(28)

where:

1. X ,U,K are separable Hilbert spaces,
2. A : D(A) ⊂ X → X is closed, linear and densely defined on

X and is the infinitesimal generator of a strongly continuous
cosine family {C(t) : t ∈ R} of bounded linear operators on
a Hilbert space X ,

3. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

4. B1,B2 are bounded linear operators from the U into X ,
5. (Ω,F ,P) is a complete probability space with probability

measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

6. {W (t)}t≥0 is a K-valued Q-Wiener process on (Ω,F ,P)
given explicitly by (24) with covariance operator Q with fi-
nite trace Tr(Q)< ∞,

7. Ft = F W
t , where F W

t is the σ -algebra generated by W ,
8. L0

2 = L2(Q1/2K;X) is the space of all Hilbert-Schmidt op-
erator from Q1/2K to X with inner product 〈ψ,π〉L0

2
=

Tr (ψQπ∗),
9. Lp(FT ,X) is the Banach space of all Ft -measurable pth

power integrable random variables with values in Hilbert
space X , Lp

F ([0,T ],X) is the space of all Ft adopted, X-
valued stochastic processes on [0,T ]×Ω,
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Definition 4.10. (Mild solution). A stochastic process x 2 H2 
is a mild solution of (28) if for each u 2 L2([0, T ], U) it satisfies 
the following integral equation:
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,

Bull. Pol. Ac.: Tech. XX(Y) 2016 9

On controllability of second order dynamical systems

10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,

Bull. Pol. Ac.: Tech. XX(Y) 2016 9

� (29)

Definition 4.11. (Approximate controllability). The stochastic 
dynamical system (28) is approximately controllable on [0, T ] 
if R(T)  = Lp(

On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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T, X ), where R(T) = {x(T, u) : u 2 Uad}.

Theorem 4.7. Mild solution [51]. Suppose that:
	H1)	� the functions f : [0, T ]£X ! X and σ : [0, T ]£X ! L0

2 sat-
isfy linear growth and Lipschitz conditions, i.e., there exist 
positive constants N1, N2, K1, K2 such that:

On controllability of second order dynamical systems

10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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	H2)	� the functions g and g1 are continuous and there exist some 
positive constants Mg and Mg1 such that:
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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		 for all x, y 2 C([0, T ], X ),

	H3)	� for each 0 ∙ t ∙ T, the operator α(αI + Ψt
T)–1 ! 0 in the 

strong operator topology as α ! 0+ where the operator Ψt
T 

is defined as:
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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On controllability of second order dynamical systems

10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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10. C([0,T ],Lp(F ,X)) is the Banach space of continuous
maps from [0,T ] into Lp(F ,X) satisfying condition
supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds

+
∫ t

0
S(t − s)σ(s,x(s)dW (s), t ∈ [0,T ].

(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,

‖ f (t,x)‖p ≤ N2 (1+‖x‖p) ,

‖σ(t,x)−σ(t,y)‖p
L0

2
≤ K1‖x− y‖p,

‖σ(t,x)‖p
L0

2
≤ K2 (1+‖x‖p) ,

H2) the functions g and g1 are continuous and there exist some
positive constants Mg and Mg1 such that:

‖g(x)−g(y)‖p ≤ Mg‖x− y‖p,

‖g(x)‖p ≤ Mg (1+‖x‖p) ,

‖g1(x)−g1(y)‖p ≤ Mg1‖x− y‖p,

‖g1(x)‖p ≤ Mg1 (1+‖x‖p) ,

for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+

∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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supt∈[0,T ] E‖x(t‖p < ∞, where E denotes the expectation,

11. H2 =Cp([0,T ],X) is the closed space of C([0,T ],Lp(F ,X))
consisting of measurable and Ft -adopted, X valued pro-
cesses φ ∈C([0,a],Lp(F ,X)) endowed with the norm:

‖φ‖H2 =

(
sup

t∈[0,T ]
E‖φ‖p

X

)1/p

12. f : [0,T ]× X → X and σ : [0,T ]× X → L0
2 are nonlinear

suitable functions,
13. x0 and x1 are F0-measurable X valued random variables in-

dependent of W ,
14. g and g1 are continuous functions from C([0,T ],X)→ X ,
15. h(t) = t − h1(t) is continuous, differentiable and strictly in-

creasing on [0,T ] and h1(t) > 0. Function r(t) = t + h1(t)
with h1(t) satisfying r(h1(t)) = t. In fact, r(t) is inverse
function of h(t),

16. u ∈ Uad , where Uad is the set of admissible controls Uad =
Lp

F ([0,T ],X).

DEFINITION 4.10. (Mild solution) A stochastic process x ∈
H2 is a mild solution of (28) if for each u ∈ L2([0,T ],U) it
satisfies the following integral equation:

x(t,u) =C(t)(x0 +g(x))+S(t)(x1 +g1(x))+

+
∫ t

0
S(t − s) [B1(s)u(s)+ f (s,x(s))]ds

+
∫ t

0
S(t − s)B2(s)u(h(s))ds
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∫ t

0
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(29)

DEFINITION 4.11. (Approximate controllability) The
stochastic dynamical system (28) is approximately control-
lable on [0,T ] if R(T ) = Lp(FT ,X), where R(T ) = {x(T,u) :
u ∈Uad}.

THEOREM 4.7 Mild solution [51]. Suppose that:

H1) the functions f : [0,T ]×X → X and σ : [0,T ]×X → L0
2 sat-

isfy linear growth and Lipschitz conditions, i.e., there exist
positive constants N1,N2,K1,K2 such that:

‖ f (t,x)− f (t,y)‖p ≤ N1‖x− y‖p,
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L0

2
≤ K1‖x− y‖p,
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L0

2
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H2) the functions g and g1 are continuous and there exist some
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for all x,y ∈C([0,T ],X),

H3) for each 0 ≤ t ≤ T , the operator α(αI +ΨT
t )

−1 → 0 in the
strong operator topology as α → 0+ where the operator ΨT

t
is defined as:

ΨT
t =

∫ h(T )

t

[
r
′
(s)S(T − r(s))B̃(r(s))S∗(T − r(s))r

′
(s)

]
ds+

+
∫ h(T )

t
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds+

+
∫ T

h(T )
[S(T − s)B1(s)B∗

1(s)S
∗(T − s)]ds,

where B̃(r(s)) = B2(r(s))B∗
2(r(s)).

Then, the system (28) has a mild solution on [0,T ].

THEOREM 4.8 Approximate controllability [51]. If the hy-
potheses (H1) - (H3) of the theorem 4.7 are satisfied and
{S(t) : t ≥ 0} is compact and functions f and σ are uniformly
bounded, the the system (28) is approximately controllable on
[0,T ].

Proof of theorem 4.8 is based on the Banach fixed-point theo-
rem.

4.3.3. Approximate controllability of second order neu-
ral stochastic differential equations with infinite delay and
Poisson jumps. Consider second order neural stochastic dif-
ferential equation with infinite delay in the state variable and
Poisson jumps:

d
[

d
dt

x(t)− f (t,xt)

]
=

[
Ax(t)+Bu(t)

]
dt +g(t,xt)dW (t)

+
∫

Z
h(t,xt ,η)Ñ(dt,dη), t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ξ

(30)

where:

1. state variable x(·) takes values in a Hilbert space H with in-
ner product 〈·, ·〉 and norm ‖·, ·‖, and the control u(·) in given
in L2([0,T ],U), a Banach space of admissible controls with
U as a Banach space,

2. K is a separable Hilbert space and {W (t)}t≥0 is a K-valued
Q-Wiener process on (Ω,F ,P) given explicitly by (24) with
covariance operator Q with finite trace Tr(Q)< ∞,

3. q = (q(t)), t ∈ Dq is stationary Ft -Poisson point process
with a characteristic measure λ . N(dt,dη) is the Pois-
son counting measure associated with q, so N(t,Z) =

∑s∈Dq,s≤t IZ(q(s)) with measurable set Z ∈ B̄(Y − {0}),
which denotes the Borel σ -field of Y −{0},

4. Ñ(dt,dη) = N(dt,dη) = dtλ (dη) is the compensated Pois-
son measure that is independent of W (t),

5. p2([0,T ] × Z,H) is the space of all predictable map-
pings χ : [0,T ]→ H for which

∫ T
0
∫

Z E ‖χ‖2
H dtλ (dη) < ∞,∫ T

0
∫

Z χ(t,η)Ñ(dt,dη) is a centred square integrable martin-
gale,
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
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mal basis in K, Q ∈ L (K) is an operator defined by Qen =
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10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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t-Poisson point pro-
cess with a characteristic measure λ. N(dt , dη) is the 
Poisson counting measure associated with q, so N(t, Z) =  
= ∑s2Dq, s∙t Iz = (q(s)) with measurable set Z 2 B–(Y ¡ {0}), 
which denotes the Borel σ-field of Y ¡ {0},

	 4.	� Ñ(dt , dη) = N(dt , dη) = dtλ(dη) is the compensated 
Poisson measure that is independent of W(t),

	 5.	� p2([0, T ]£Z, H) is the space of all predictable map-
pings χ : [0, T ] ! H for which ∫0

T ∫Z Ekχk2
Hdtλ(dη) < 1, 

∫0
T ∫Z χ(t, η)Ñ(dt , dη) is a centred square integrable martin-

gale,
	 6.	� the history valued function xt : (–1, 0] ! X, xt(θ) = x(t  + θ) 

belongs to some abstract phase space 

J. Klamka, J. Wyrwał and R. Zawiski

(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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LQ([0, T ], H) is the space of all Q-Hilbert Schmidt opera-
tors from K into H, i.e. such that (25) holds true,

	 8.	� the initial data ψ = {ϕ(t) : –1 < t ∙ 0} is 

On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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 -valued stochastic process independent of Brownian mo-
tion W(t) and Poisson point process q with finite second 
moment. Also ξ(t) is an 
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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On controllability of second order dynamical systems

4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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∞
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∥∥∥
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−
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reachable set of the corresponding linear control system (26).
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fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
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where:
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2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:
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∑
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where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-
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real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
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surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
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Q = Tr(φQφ ∗) =
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∑
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∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:
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x(0) = x0,
d
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x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
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Ω h(ω)dP.
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dom variables equipped with the norm ‖x(·)‖2
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C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.
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x0 = φ , d
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gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
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Below the reachable set for unconstrained values of admissible
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reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
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dense in X . The corresponding linear system (26) is approxi-
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try as biology, reliability and risk theory, economics, mechan-
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defined as S(t)x =

∫ t
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4. the stochastic process is a collection of random variables
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2 ([0,T ],U), where X and U are separable Hilbert spaces
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ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
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valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
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10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.
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system given by:
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d
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(26)

Let E denotes expectation defined by E(h) =
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Ω h(ω)dP.
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x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d
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−
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+
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fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
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lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
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λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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4.3. Stochastic systems. Classical control theory is devel-
oped for deterministic systems. However, uncertainty is a
fundamental characteristic of many real dynamical systems.
Moreover, stochastic modelling has been widely used to model
the phenomena arising in such branches of science and indus-
try as biology, reliability and risk theory, economics, mechan-
ics, electronics and telecommunications. Therefore, control-
lability of linear and nonlinear stochastic systems have been
a subject of intense research over the last few years [44, 45,
16, 46, 47, 48, 49]. The proofs of the controllability results
for stochastic systems are based on theorems of the theory of
stochastic processes, linearization methods for stochastic dy-
namical systems, theory of semi-groups of linear operators,
Banach, Schauder, Schaefer, or Nussbaum fixed-point theo-
rems and on the so-called generalized open mapping theorem.

4.3.1. Approximate controllability of a second order neu-
tral stochastic differential equations with state dependent
delay. Consider dynamical system described by the following
partial neural stochastic differential equation with state delay:

d
(

d
dt

x(t)+g(t,xt)

)
=

[
Ax(t)+ f (t,xρ(t,xt ))+Bu(t)

]
dt+

+G(t,xt)dW (t), a.e. on t ∈ [0,T ]

x(0) = φ ∈B,
d
dt

x(0) = ψ ∈ X

(23)

where:

1. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

2. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

3. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

4. the stochastic process is a collection of random variables
S = {x(t,w) : Ω → X : t ∈ [0,T ]} and the control u(t) ∈
LF

2 ([0,T ],U), where X and U are separable Hilbert spaces
and d is the stochastic differentiation.

5. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

6. B is a bounded linear operator on a Hilbert space U into X ,
7. ρ : [0,T ]×B→ (−∞,T ] is continuous function, which de-

scribes delay at time t dependant on state,
8. K is a separable Hilbert space and {W (t)}t≥0 is a given K-

valued Brownian motion or Wiener process with finite trace
nuclear covariance operator Q > 0 given explicitly by:

W (t) =
∞

∑
n=1

√
λnβn(t)en(t), t ≥ 0, (24)

where βn(t) (n = 1,2, . . .) is a sequence of real-valued one-
dimensional standard Brownian motions mutually indepen-

dent over (Ω,F ,P), λn ≥ 0 (n = 1,2, . . .) are non-negative
real numbers and {en} (n = 1,2, . . .) is a complete orthonor-
mal basis in K, Q ∈ L (K) is an operator defined by Qen =
λen with finite trace Tr(Q) = ∑∞

n=1 λn ≤ ∞,
9. the functions f ,g : [0,T ]×B → X are measurable map-

pings in X norm and G : [0,T ]×B → LQ(K,X) is mea-
surable mapping in LQ([0,T ],X) norm. LQ([0,T ],X) is the
space of all Q-Hilbert Schmidt operators from K into X , i.e.
∀φ ∈ LQ([0,T ],X):

‖φ‖2
Q = Tr(φQφ ∗) =

∞

∑
n=1

∥∥∥
√

λnφen

∥∥∥
2
< ∞, (25)

10. φ(t) is B-valued random variable independent of Brownian
motion W (t) with finite second moment. Also ψ(t) is an
X-valued Ft measurable function.

Associate with semilinear control system (23) a linear control
system given by:

d2

dt2 x(t) = Ax(t)+Bu(t), t ∈ [0,T ]

x(0) = x0,
d
dt

x(0) = x1.

(26)

Let E denotes expectation defined by E(h) =
∫

Ω h(ω)dP.
Let L2(Ω,F ,P;X) ≡ L2(Ω,X) be the Banach space of
all strongly measurable, square integrable, X-valued ran-
dom variables equipped with the norm ‖x(·)‖2

L2
= E‖x(·)‖2

X .
C ((−∞,T ],L2(Ω,X)) denotes the Banach space of all cot-
inuous maps from (−∞,T ] into L2(Ω,X) which satisfies
supt∈(−∞,T ]E‖x(t)‖2 < ∞ and L0

2(Ω,X) = { f ∈ L2(Ω,X) :
f is F0-measurable}.

DEFINITION 4.7 Mild solution. An Ft -adopted process
x : (−∞,T ] → X is a mild solution to the system (23) if
x0 = φ , d

dt x(0) = ψ,x(·) ∈ C1([0,T ],L2(Ω,X)), the functions
f (s,xρ(s,xs)), G(s,xs) and g(s,xs) are integrable and the inte-
gral equation is satisfied:

x(t) =C(t)φ(0)+S(t)[ψ +g(0,φ)]

−
∫ t

0
C(t − s)g(s,xs)ds

+
∫ t

0
S(t − s)

[
f (s,xρ(s,xs) +Bu(s)

]
ds

+
∫ t

0
S(t − s)G(s,xs)dW (s), t ∈ [0,T ].

(27)

Below the reachable set for unconstrained values of admissible
controls is defined.

DEFINITION 4.8 Reachable set. The set given by RT ( f ) =
{x(T )∈X : x is a mild solution of (23) given by (27)} is called
reachable set of the system (23) for some T > 0. RT (0) is the
reachable set of the corresponding linear control system (26).

DEFINITION 4.9 Approximate conrollability. The sys-
tem (23) is said to be approximately controllable if RT ( f ) is
dense in X . The corresponding linear system (26) is approxi-
mately controllable if RT (0) is dense in X .

THEOREM 4.5 Mild solution [50]. Suppose that:
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-measurable function 
x(t) : Ω ! H, and a collection of random variable S = {x(t, 
ω) : Ω ! H : jt 2 [0, T ]} is a stochastic process. The depen-
dence on ω 2 Ω is suppressed and x(t) is written instead 
of x(t, ω),

	11.	� A : 
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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 (A) ½ X ! X is the infinitesimal generator of a strong-
ly continuous cosine family {C(t) : t 2 R} of bounded linear 
operators on a Hilbert space X,

	12.	� {S(t) : t 2 R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t 2 R} 
defined as S(t)x = ∫0

tC(s)xds, x 2 X, t 2 R,
	13.	� B is a bounded linear operator from L2([0, T ], U) to 

L2([0, T ], H).

Definition 4.12. (Mild solution). A stochastic process xt(v) is 
a mild solution of (30) if for each u 2 L2([0, T ], H) it satisfies 
the following integral equation:

J. Klamka, J. Wyrwał and R. Zawiski

6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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θ) belongs to some abstract phase space B defined axiomat-
ically [21],
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LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,
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valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
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4. the multimap F : [0,T ]×R×R → R represents the feedback
law.

10 Bull. Pol. Ac.: Tech. XX(Y) 2016

J. Klamka, J. Wyrwał and R. Zawiski

6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].
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In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].
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back control system governed by the equation:
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and functional inclusion:
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where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,
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valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,
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that:
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Φp =
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< 1, where z = 8q1b2M2
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Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
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x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,
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where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
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of x(t,ω),
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defined as S(t)x =

∫ t
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that:
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H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists
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ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:
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Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
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chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
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back control system governed by the equation:
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where:
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R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,
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x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,
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where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.

10 Bull. Pol. Ac.: Tech. XX(Y) 2016

Then, the system (30) is approximately controllable on [0, T ].
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stochastic analysis techniques.

4.4. Controllability of Duffing equation. An increasing in-
terest in studying problems related to controllability of chaotic 
nonlinear systems has been observed in recent years. In sev-
eral papers Duffing equation is treated as a benchmark cha-
otic system [53, 54]. It was introduced in 1918 by Duffing 
as a model of nonlinear oscillator with cubic stiffness term to 
describe the hardening spring effect observed in many mechan-
ical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:
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6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.
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Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:
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x(t)+αx(t)+βx3(t) =
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where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
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valued stochastic process independent of Brownian motion
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Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
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back control system governed by the equation:
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d
dt
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R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.

10 Bull. Pol. Ac.: Tech. XX(Y) 2016

J. Klamka, J. Wyrwał and R. Zawiski

6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].
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back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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6. the history valued function xt : (−∞,0]→ X , xt(θ) = x(t +
θ) belongs to some abstract phase space B defined axiomat-
ically [21],

7. the functions f : [0,T ]×B→ H,g : [0,T ]×B→ LQ(K,H),
and h : [0,T ]×B× Z → H are nonlinear functions, where
LQ([0,T ],H) is the space of all Q-Hilbert Schmidt operators
from K into H, i.e. such that (25) holds true,

8. the initial data ψ = {φ(t) :−∞< t ≤ 0} is F0-measurable B-
valued stochastic process independent of Brownian motion
W (t) and Poisson point process q with finite second moment.
Also ξ (t) is an Ft -measurable H-valued Ft random variable
independent of W (t) and Poisson point process q with finite
second moment,

9. (Ω,F ,P) is a complete probability space with probability
measure P on Ω equipped with a normal filtration Ft , t ≥
0. It is endowed with complete family of right continuous
increasing sub σ -algebras {Ft , t ∈ [0,T ]} such that Ft ⊂ F ,

10. a H-valued random variable is an F -measurable function
x(t) : Ω → H, and a collection of random variable S =
{x(t,ω) : Ω → H : |t∈[0,T ]} is a stochastic process. The de-
pendence on ω ∈ Ω is suppressed and x(t) is written instead
of x(t,ω),

11. A : D(A)⊂X →X is the infinitesimal generator of a strongly
continuous cosine family {C(t) : t ∈ R} of bounded linear
operators on a Hilbert space X ,

12. {S(t) : t ∈ R} is the strongly continuous sine family associ-
ated to a strongly continuous cosine family {C(t) : t ∈ R}
defined as S(t)x =

∫ t
0 C(s)xds, x ∈ X , t ∈ R,

13. B is a bounded linear operator from L2([0,T ],U) to
L2([0,T ],H).

DEFINITION 4.12. (Mild solution) A stochastic process
xt(v) is a mild solution of (30) if for each u ∈ L2([0,T ],H)
it satisfies the following integral equation:

xt(v) =C(t)φ(0)+S(t)(ξ − f (0,φ))

+
∫ t

0
C(t − s) f (s,xs(v))ds

+
∫ t

0
S(t − s)v(s)ds+

∫ t

0
S(t − s)g(s,xs(v))dW (s)

+
∫ t

0

∫

Z
S(t − s)h(s,xs(v),η)Ñ(ds,dη), t ∈ [0,T ].

(31)

DEFINITION 4.13. (Approximate controllability) The
stochastic dynamical system (30) is approximately control-
lable on [0,T ] if RT (g,h) = L2(Ω,H), where RT (g,h) =
{xT (Bu) : u ∈ L2([0,T ],H)}, xT (Bu) is a mild solution of (30)
given by (31) with v = Bu.

THEOREM 4.9 Approximate controllability [52]. Suppose
that:

H1) the nonlinear functions f ,g satisfy Lipschitz condition i.e.,
there exist positive constants Mf ,Mg such that:

‖ f (t,x1)− f (t,x2)‖2 ≤ Mf ‖x1 − x2‖2
B,

‖g(t,x1)−g(t,x2)‖2 ≤ Mg‖x1 − x2‖2
B,

for all x1,x2 ∈B and t ∈ [0,T ]

H2) the nonlinear function h satisfies Lipschitz condition and
there exist positive constants Mh,Lh such that:

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖2λ (dη)≤ Mh‖x1 − x2‖2

B,

∫

Z
‖h(t,x1,η)−h(t,x2,η)‖4λ (dη)≤ Mh‖x1 − x2‖4

B,

for all x1,x2 ∈B and t ∈ [0,T ]
H3) for any given ε > 0 and p(·) ∈ L2([0,T ],H), there exists

some u(·) ∈ L2([0,T ],U) such that:

i) ‖Φp−ΦBu‖H < ε , where the continuous linear oper-
ator Φ from L2([0,T ],H) to L2(Ω,H) is defined as:

Φp =
∫ T

0
S(T − s)p(s)ds, for p ∈ L2([0,T ],H),

ii) ‖Bu(·)‖L2([0,T ],H) ≤ q1‖p(·)‖L2([0,T ],H), where q1 is a
positive constant dependent of p(·),

iii) the constant q1 satisfies:
zexp

{
4K̄3b{bM2

CMf + Tr(Q)M2
S Mg + bM2

S(Mh +
√

Lh)}
}

< 1, where z = 8q1b2M2
s K̄3(Tr(Q)Mg +

b(Mh +
√

Lh).

Then, the system (30) is approximately controllable on [0,T ].

Proof of theorem 4.9 is based on semigroup theory and
stochastic analysis techniques.

4.4. Controllability of Duffing equation. It has been ob-
served in recent years an increasing interest in studding prob-
lems related to controllability of chaotic nonlinear systems.
In several papers Duffing equation is treated as a benchmark
chaotic system [53, 54]. It was introduced in 1918 by Duff-
ing as a model of nonlinear oscillator with cubic stiffness term
to describe the hardening spring effect observed in many me-
chanical systems [55].

Consider the following controllability problem for a feed-
back control system governed by the equation:

d2

dt2 x(t)+δ
d
dt

x(t)+αx(t)+βx3(t) =

f (t,x(t),u(t)), for t ∈ [0,T ],
and functional inclusion:

d
dt

x(t) ∈ F(t,x(t),u(t)), a.e. on t ∈ [0,T ],

x(0) = x0, x(T ) = x1, u(0) = u0,

(32)

where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
law.
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Then, the system (30) is approximately controllable on [0,T ].
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where:

1. the functions x : [0,T ] → R and u : [0,T ] → R describe the
state of the system and the control, respectively,

2. parameters δ ,α,β are given constants β < 0 and x0,x1,u0 ∈
R,

3. the continuous function f : [0,T ]×R×R → R characterizes
the dynamics of the system,

4. the multimap F : [0,T ]×R×R → R represents the feedback
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where:
1.	 the functions x : [0, T ] ! R and u : [0, T ] ! R describe 

the state of the system and the control, respectively,
2.	 parameters δ, α, β are given constants β < 0 and 

x0, x1, u0 2 R,
3.	 the continuous function f : [0, T ]£R£R ! R charac-

terizes the dynamics of the system,
4.	 the multimap F : [0, T ]£R£R ! R represents the feed-

back law.

Definition 4.14. (Upper semicontinuous multimap [56]). Let 
X, Y be the metric spaces and P(Y) the collection of all non-
empty subset of Y. A multivalued map (multimap) F : X ! P(Y) 
is said to be upper semicontinuous, if for every open subset 
V ½ Y the set
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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To prove the Theorem 4.10 the facts from theory of multi-
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The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
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To prove Theorem 4.10 the facts from theory of multivalued 

maps and theory of differential inclusions as well as the method 
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4.5. Exact boundary controllability of coupled hyperbolic 
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .

Bull. Pol. Ac.: Tech. XX(Y) 2016 11

On controllability of second order dynamical systems

DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)





∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)





∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)





∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:





∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu
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uous in t in the norm on V .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

-basis in L2(0, T). The family 

On controllability of second order dynamical systems

DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:


∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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DEFINITION 4.14. (Upper semicontinuous multimap [56])
Let X ,Y be the metric spaces and P(Y ) the collection of all
nonempty subset of Y . A multivalued map (multimap) F : X →
P(Y ) is said to be upper semicontinuous, if for every open sub-
set V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x)⊂V}

is open in X .

DEFINITION 4.15. (Solution to the controllability problem
[56]) A pair consisting of a function x ∈C2[0,T ] and an abso-
lutely continuous function u satisfying all relations (32) is said
to be a solution to the controllability problem (32).

THEOREM 4.10 Controllability [56]. Suppose that:

H1) for every (z,w)∈ R×R the multifunction F(·,z,w) : [0,T ]→
Kv(R) has a measurable selection, where Kv(E) denotes the
collection of all nonempty, convex, compact subsets of E,

H2) for a.e. t ∈ [0,T ] the multimap F(t, ·, ·) : R×R → Kv(R) is
upper semicontinuous,

H3) the multimap F is uniformly continuous with respect to the
second argument in the following sense: fort every ε > 0
there is κ > 0 such that

F(t,z,w)⊂ Oε(F(t,z,w)), ∀(t,w) ∈ [0,T ]×R

whenever |z− z|< κ ,
H4) there exists L > 0 such that

‖F(t,z,w)‖ ≤ L(1+ |z|+ |w|),
| f (t,z,w)| ≤ L(1+ |z|+ |w|)

for all (z,w) ∈ R×R and a.e. t ∈ [0,T ], where

‖F(t,z,w)‖= max{|v| : v ∈ F(t,z,w)}.
Then, the controllability problem (32) has a solution.

To prove the Theorem 4.10 the facts from theory of multi-
valued maps and theory of differential inclusions as well as the
method of a priori bounds were used.

4.5. Exact boundary controllability of coupled hyperbolic
equations. The last two decades show the increase of inter-
est in the controllability of coupled equations of the same na-
ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
the properties of exponential families, such as minimality the
Riesz basis property and the L -basis property, all usually in
the space L2(0,T ). Recent investigations into new classes of
distributed systems, such as hybrid or damped, as well as into
coupled equations raised new problems in the moment theory.
See for example [64, 63].

Let Ω be an open bounded subset of Rn and nonempty
ω,O ⊂ Ω, T > 0. Consider the coupled system:



∂ 2

∂ t2 y−�y = hω in Q := Ω× (0,T ),
y = 0 on Σ := ∂Ω× (0,T ),
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,
(33)




∂ 2

∂ t2 q−�q = y1O in Q,

q = 0 on Σ,
q(x,T ) = 0, ∂

∂ t q(x,T ) = 0 in Ω.

(34)

The problem is to specify the conditions on ω,O and T > 0
to guarantee that for every (y0,y1) ∈ L2(Ω)×H−1(Ω) there
exists a control h in appropriate space, such that:

q(x,0) =
∂
∂ t

q(x,0) = 0.

The authors of [65] analyse the one-dimensional case, namely
Ω = (0,π),T > 0,Q = Ω× (0,T ) and α,β ∈ R. The system
which controllability is studied takes the form:




∂ 2

∂ t2 y− ∂ 2

∂x2 y+αq = 0 in Q,
∂ 2

∂ t2 q− ∂ 2

∂x2 q+βy = 0 in Q,

y(0, t) = u(t),y(π, t) = 0 t ∈ (0,T ),
q = 0 on Σ,
y(x,0) = y0(x), ∂

∂ t y(x,0) = y1(x) in Ω,

q(x,0) = q0, ∂
∂ t q(x,0) = q1 in Ω.

(35)

The method used in [65] is based on the transformation of the
controllability problem into a moment problem of the form of
the Initial Boundary Value Problem (IBVP)

∫ T

0
u(t) fn(t)dt = cn, n ∈ N. (36)

As shown in [63], the problem (36) has a solution u ∈ L2(0,T )
for any {cn}N ∈ l2(R) if and only if the family F = { fn}n∈N
forms an L -basis in L2(0,T ). The family F has different
forms in the case α = 0,αβ > 0 and αβ < 0. Authors of
[65] prove that in all these cases, when the condition (37) does
not hold, the corresponding family F forms a Riesz basis in
L2(0,T ) for T ≥ 4π .

Let u ∈ L2(0,T ) and set H0 = L2(0,π), H1 =
H1

0 (0,π), H−1 = H−1(0,π), V = H0 ×H 1 ×H−1 ×H0,
and (y0,q0,y1,q1) ∈ V . Let the solution to the IBVP (35) be
(y,q) = (yu(x, t),qu(x, t)).

DEFINITION 4.16 Exact controllability of the IBVP. The
system described by (35) is called exactly controllable in the
time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V there is

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V .

DEFINITION 4.17 Approximate controllability of the IBVP.
The system described by (35) is called exactly controllable in
the time interval [0,T ] if for any (y0,q0,y1,q1) ∈ V the set

{(yu(·,T ),qu(·,T ),yu
t (·,T ),qu

t (·,T )) : u ∈ L2(0,T )}= V

is dense in V .

The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu

t ,q
u
t ) ∈ C([0,T ],V ). This means that for any

t ∈ [0,T ], (yu(·, t),qu(·, t),yu
t (·, t),qu

t (·, t)) ∈ V and is contin-
uous in t in the norm on V .
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ture. Much has been done in the case of coupled parabolic
equations - see [57] and references therein. In terms of hyper-
bolic equations one can find few results in [58, 59, 60, 61]. In
the analysis of distributed parameter systems especially fruit-
ful is the method of moments [62, 63]. The method is based on
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

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


∂ 2
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∂ t q(x,T ) = 0 in Ω.
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∂
∂ t
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The main results of the authors of [65] can be summarized
in the following two theorems.

THEOREM 4.11 Existence of solution to IBVP [65]. Let
(y0,q0,y1,q1) ∈ V . The solution (y,q) = (yu(x, t),qu(x, t))
of the IBVP (35) exists, is unique and satisfies the inclu-
sion (yu,qu,yu
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Theorem 4.12. Exact controllability of IBVP [65]. Suppose 
β  6= 0, and consider the equality
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t

−∞
p(t,s,xs,x′(s))ds+Bu(t)

(38)

x0 = φ ,x′(0) = ζ , (39)

�x(tk) = Ik(xtk ,x
′
tk),k = 1,2, ...,m, (40)

�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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	 (i)	� If (37) never occurs for m  6= n, the system (35) is exactly 
controllable in the time interval [0, T ], T ¸ 4π.

	(ii)	� If (37) occurs for some n, m, the system (35) is not approx-
imately controllable for any T.

	(iii)	 The system (35) is not exactly controllable for T ¸ 4π.

Remark 5. If β = 0, the second equation is decoupled from the 
first one, where the control occurs. As a result, the system (35) 
is not approximately controllable for any T > 0.

The authors prove their results by means of applying the 
moments method.

4.6. Exact controllability of impulsive systems. Impulsive 
dynamical systems are characterized by the occurrence of 
abrupt changes in the state of the system, which occur at certain 
time instants over a period of negligible duration. The presence 
of impulse means that the state trajectory does not preserve 
the basic properties associated with a non-impulsive dynamical 
systems. The impulses are frequently modelled as jumps in 
parameters. The impulsive differential and integrodifferential 
systems has been used in modelling of population dynamics, 
ecology, biological systems, biotechnology, industrial robotics, 
pharmacokinetics, optimal control etc. For the general theory 
of impulsive differential equations, we refer the reader to the 
references [66–70]. The exemplary applications of impulsive 
differential systems may be found in [71–73].

Although the body of literature concerning the presence 
of delay in differential equations is extensive, the impulsive 
differential equations with delay seem to be rarely considered. 
Among the first works devoted to this subject are [74, 75], 
where the investigation of functional differential equations with 
infinite delay in an abstract admissible phase space is consid-
ered. For a detailed discussion on the method of admissible 
phase space, we refer the reader to [20].

Additionally one may come across the notion of neutral 
functional differential equations. This class of equations de-
pends on past as well as on present values which involve deriv-
atives with delays as well as the function itself. A good guide 
to the literature for neutral functional differential equations is 
[76] with references therein.

The recent publications [22, 77] deal with the combinations 
of the above types of second order systems. The former presents 
the approach based on evolution system while the latter refers 
to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the 
norm kxkPC = sups2Jkx(s)k. It is clear that (PC, k∙kPC) is 
a Banach space. In what follows, we put t0 = 0, tn+1 = T and, 
for x 2 PC we denote by x̃k for k = 1, 2, …, m the function 
x̃k 2 C([tk, tk+1], X) given by x̃k(t) = x(t) for t 2 (tk, tk+1] and 
x̃k(tk) = lim t!tk+ x(t).

In impulsive functional differential systems, the map 
[μ, μ + b] ! 
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:
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(B) The space B is complete.
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1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t

−∞
p(t,s,xs,x′(s))ds+Bu(t)

(38)

x0 = φ ,x′(0) = ζ , (39)

�x(tk) = Ik(xtk ,x
′
tk),k = 1,2, ...,m, (40)

�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t

−∞
p(t,s,xs,x′(s))ds+Bu(t)

(38)

x0 = φ ,x′(0) = ζ , (39)

�x(tk) = Ik(xtk ,x
′
tk),k = 1,2, ...,m, (40)

�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
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dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
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general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t

−∞
p(t,s,xs,x′(s))ds+Bu(t)

(38)

x0 = φ ,x′(0) = ζ , (39)

�x(tk) = Ik(xtk ,x
′
tk),k = 1,2, ...,m, (40)

�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
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equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
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ally nonlinear function f on the right-hand side of (1) differs
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is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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6.	throughout this paragraph the assumption is that A : 
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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Definition 4.18. (Mild solution of the system (38–41)). A func-
tion x : (–1, T ] ! X is called a mild solution of the abstract 
Cauchy problem (38–41), if x0 = ϕ 2 
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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k = 1, 2, …, m, are satisfied and the following integral equa-
tion:
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t

−∞
p(t,s,xs,x′(s))ds+Bu(t)

(38)

x0 = φ ,x′(0) = ζ , (39)

�x(tk) = Ik(xtk ,x
′
tk),k = 1,2, ...,m, (40)

�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
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defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t

−∞
p(t,s,xs,x′(s))ds+Bu(t)

(38)

x0 = φ ,x′(0) = ζ , (39)

�x(tk) = Ik(xtk ,x
′
tk),k = 1,2, ...,m, (40)

�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
S(t − s)[

∫ 0

−∞
p(s,τ,φ ,ζ )dτ]ds

+ ∑
tk<t

C(t − tk)Ik(xtk ,x
′
tk)+ ∑

tk<t
S(t − tk)Jk(xtk ,x

′
tk), t ∈ J

(42)

is verified.

In the above definition:
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THEOREM 4.12 Exact controllability of IBVP [65]. Sup-
pose β �= 0, and consider the equality
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√

αβ = m2 +
√

αβ , m,n ∈ N. (37)

(i) If (37) never occurs for m �= n, the system (35) is exactly
controllable in the time interval [0,T ], T ≥ 4π .

(ii) If (37) occurs for some n,m, the system (35) is not approxi-
mately controllable for any T .

(iii) The system (35) is not exactly controllable for T < 4π .

Remark 5. If β = 0 the second equation is decoupled from
the first one, where the control acts. As a result, the system
(35) is not approximately controllable for any T > 0.

The authors prove their results by means of applying the
moments method.

4.6. Exact controllability of impulsive systems. Impulsive
dynamical systems are characterized by the occurrence of an
abrupt changes in the state of the system, which occur at cer-
tain time instants over a period of negligible duration. The
presence of impulse means that the state trajectory does not
preserve the basic properties associated with a non-impulsive
dynamical systems. The impulses are frequently modelled as
jumps in parameters. The impulsive differential and integrod-
ifferential systems has been used in modelling of population
dynamics, ecology, biological systems, biotechnology, indus-
trial robotics, pharmacokinetics, optimal control etc. For the
general theory of impulsive differential equations we refer the
reader to the references [66, 67, 68, 69, 70]. The exemplary
applications of impulsive differential systems may be found in
[71, 72, 73].

Although the body of literature concerning the presence
of delay in differential equations is extensive, the impulsive
differential equations with delay seem to be rarely consid-
ered. Among the first works devoted to this subject are [74,
75], where the investigation of functional differential equations
with infinite delay in an abstract admissible phase space is con-
sidered. For a detailed discussion on the method of admissible
phase space we refere the reader to the book [20].

Additionally one may come across the notion of neutral
functional differential equations. This class of equations de-
pends on past as well as on present values which involve
derivatives with delays as well as the function itself. A good
guide to the literature for neutral functional differential equa-
tions is [76] with references therein.

The recent publications [22, 77] deal with the combina-
tions of the above types of second order systems. The for-
mer presents the approach based on evolution system while
the other refers to the integrodifferential system.

If not stated otherwise, a PC space is endowed with the norm
‖x‖PC = sups∈J ‖x(s)‖. It is clear that (PC,‖ · ‖PC) is a Ba-
nach space. In what follows, we put t0 = 0, tn+1 = T and,
for x ∈ PC we denote by x̃k for k = 1,2, ...,m the function
x̃k ∈ C([tk, tk+1],X) given by x̃k(t) = x(t) for t ∈ (tk, tk+1] and
x̃k(tk) = limt→t+k

x(t).
In impulsive functional differential systems, the map [µ,µ+

b]→B, t → xt is in general discontinuous. For this reason, this

property has been omitted from the description of the phase
space B.

Consider the following second order damped impulsive neu-
tral integrodifferential system with infinite delay of the form:

d
dt
[x′(t)−h(t,xt ,x′(t))] = Ax(t)+Qx′(t)+ f (t,xt ,x′(t))

+
∫ t
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p(t,s,xs,x′(s))ds+Bu(t)

(38)
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�x(tk) = Ik(xtk ,x
′
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�x′(tk) = Jk(xtk ,x
′
tk),k = 1,2, ...,m, (41)

where:

1. t ∈ J = [0,T ], t �= tk, φ ∈B and ζ ∈ X ,
2. the control function u(·) is given in L2(J,U), a Banach space

of admissible control functions with U as a Banach space
and B : U → X as a bounded linear operator,

3. for t ∈ J,xt represents the function xt : (−∞,0]→ X defined
by xt(θ) = x(t + θ),−∞ < θ ≤ 0 which belongs to some
abstract phase space B defined axiomatically,

4. f : J×B→ X , Ik : B→ X ,Jk : B→ X are appropriate func-
tions specified below,

5. 0 < t1 < ... < tn < T are fixed numbers and the symbol
�ξ (t) represents the jump of a function ξ at t, which is
defined by �ξ (t) = ξ (t+)−ξ (t−)

6. Throughout this paragraph the assumption is that A : D(A)⊂
X → X generates the cosine family of bounded linear opera-
tors {C(t)}t∈R defined on a Banach space X .

The mild solution to the system (38)-(41) is given by the
following

DEFINITION 4.18 Mild solution of the system (38)-(41).
A function x : (−∞,T ] → X is called a mild solution of
the abstract Cauchy problem (38)-(41), if x0 = φ ∈ B,x|I ∈
PC1, the impulsive conditions �x(tk) = Ik(xtk ,x

′
tk),�x′(tk) =

Jk(xtk ,x
′
tk),k = 1,2, ...,m, are satisfied and the following inte-

gral equation:

x(t) =C(t)φ(0)+S(t)[ζ −h(o,φ ,ζ )]

+
∫ t

0
C(t − s)h(s,xs,x′(s))ds

+
∫ t

0
S(t − s)[Qx′(s)+Bu(s)+ f (s,xs,x′(s))

+
∫ s

0
p(s,τ,xτ ,x′(τ))dτ]ds

+
∫ t

0
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is verified.

In the above definition:
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is verified.

In the above definition:
1. �{S(t)}t2ℝ is the associated sine function family, defined by 

S(t)x = f0
tC(s)xds for x 2 X and t 2 ℝ

2. �M̃  and Ñ is a pair of positive constants such that kC(t)k ∙ M̃ 
and kS(t)k ∙ Ñ for every t 2 J.

The Cauchy problem (38–41) is by far, according to the 
authors knowledge, the most general form of the impulsive 
system analysed in the literature with constructive controlla-
bility results. It contains the damping ingredient and infinite 
delay. Its analysis, performed in [77], gives the conditions for 
exact controllability expressed in the form of the following 
theorem.

Theorem 4.13. Controllability of impulsive system [77]. De-
note by KT = 

On controllability of second order dynamical systems

1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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0
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
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Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+L f +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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ÑL̃1)
)
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last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have
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‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have
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1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ
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T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
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KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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ÑL̃1)

)
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imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:
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which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
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admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
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DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
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µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an
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of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
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vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.
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tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
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ally nonlinear function f on the right-hand side of (1) differs
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der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
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The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:
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0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following
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RT (x(0)) ⊆ X is the set of all values which are reachable
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x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.
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(H3) For each φ ∈B,
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∫ 0
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exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
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has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have
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and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J
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(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
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‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT
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γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +
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k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
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results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.
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k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
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T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m
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k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
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ator W : L2(J,U)→ X, defined by

Wu =
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has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.
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k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′
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]

and
ρ̃ = γ

(
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Banach fixed point theorem.
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Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:
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dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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lyze approximate controllabillity for semilinear impulsive sys-
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sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.
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and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have
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exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist
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and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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one, equation (38) takes the form:
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are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.
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ÑL̃1)
)
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one, equation (38) takes the form:
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are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.
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ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
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(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
following axioms hold:

(A) If x : (−∞,µ + b] → X ,b > 0 is such that xµ ∈ B and
x|[µ,µ+b] ∈ PC([µ,µ + b],X), then for every t ∈ [µ,µ + b),
the following hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − µ)sup{‖x(s)‖ : µ ≤ s ≤ t}+ M(t −
µ)‖xµ‖B, where H > 0 is a constant; K,M : [0,∞)→
[1,∞),K is continuous, M is locally bounded and
H,K,M are independent of x(·).

(B) The space B is complete.

Consider also the following definition of an evolution sys-
tem.

DEFINITION 2.6 Evolution system [22]. A family S of
bounded linear operators S(t,s) : J × J → L (X)1 is called an

1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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1. {S(t)}t∈R is the associated sine function family, defined by
S(t)x =

∫ t
0 C(s)xds for x ∈ X and t ∈ R

2. M̃ and Ñ is a pair of positive constants such that ‖C(t)‖ ≤ M̃
and ‖S(t)‖ ≤ Ñ for every t ∈ J.

The Cauchy problem (38)-(41) is by far, according to the au-
thors knowledge, the most general form of the impulsive sys-
tem analysed in the literature with constructive controllability
results. It contains the damping ingredient and infinite delay.
Its analysis, performed in [77], gives the conditions for exact
controllability expressed in the form of the following theorem.

THEOREM 4.13 Controllability of impulsive system [77].
Denote by KT = sup

0≤t≤T
K(t) and suppose that the eight hypothe-

ses below are satisfied:

(H1) The function f : J ×B×X → X is continuous and there ex-
ist constants L f > 0, L̃ f > 0 such that for all ψ j ∈ B,ϕ j ∈
X , j = 1,2 we have

‖ f (t,ψ1,ϕ1)− f (t,ψ2,ϕ2)‖ ≤ L f [‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃ f = sup
t∈J

‖ f (t,0,0)‖.

(H2) The function p : J× J×B×X → X is continuous and there
exist constants Lp > 0, L̃p > 0 such that for all ψ j ∈B,ϕ j ∈
X , j = 1,2 we have

‖p(t,s,ψ1,ϕ1)− p(t,s,ψ2,ϕ2)‖≤Lp[‖ψ1−ψ2‖B+‖ϕ1−ϕ2‖]

and L̃p = sup
t∈J

‖p(t,s,0,0)‖.

(H3) For each φ ∈B,

v(t) = lim
r→∞

∫ 0

−r
p(t,s,φ(s),x′(s))ds

exists, is continuous and there exists a positive constant N1
such that ‖v(t)‖ ≤ N1.

(H4) B is a continuous operator from U to X and the linear oper-
ator W : L2(J,U)→ X, defined by

Wu =
∫ T

0
S(T − s)Bu(s)ds,

has a bounded inverse W−1 which takes values in
L2(J,U)/kerW and there exist positive constants M1 and
M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤ M2.

(H5) The maps Ik,Jk : B×B → X ,k = 1,2, ...m are continuous
and there exist constants L j > 0, L̃ j > 0, j = 1,2 such that
for all ψ j,ϕ j ∈B, j = 1,2 we have

‖Ik(ψ1,ϕ1)− Ik(ψ2,ϕ2)‖ ≤ L1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

‖Jk(ψ1,ϕ1)− Jk(ψ2,ϕ2)‖ ≤ L̃1[‖ψ1 −ψ2‖+‖ϕ1 −ϕ2‖]

and L2 = ‖Ik(0,0)‖, L̃2 = ‖Jk(0,0)‖.
(H6) The function h : J×B×X → X is continuous and there exist

constants Lh > 0, L̃h > 0 such that for all ψ j ∈B,ϕ j ∈X , j =
1,2 we have

‖h(t,ψ1,ϕ1)−h(t,ψ2,ϕ2)‖ ≤ Lh[‖ψ1 −ψ2‖B+‖ϕ1 −ϕ2‖]

and
‖h(t,ψ,ϕ)‖ ≤ Lh[‖ψ‖+‖ϕ‖]+ L̃h

where L̃h = max
t∈J

‖h(t,0,0)‖.

(H7) Let
(Ñ + M̃)[‖ζ‖ + Lh(‖φ | + ‖ζ‖) + L̃h] + (1 + T (M̃ +
Ñ1))[Lh((1+KT )r+ c1 +‖φ̃ ′‖T )+ L̃h]+ (Ñ + M̃)

[
‖Q‖(r+

‖φ̃ ′‖T )+ (L f +T Lp)((1+KT )r+ c1 + ‖φ̃ ′‖T )+ L̃ f + B̃0 +
N1 + T L̃p

]
+ ∑m

k=1(M̃ + Ñ1)[L1(2KT r + ‖φ̃tk‖ + ‖φ̃ ′
tk‖ +

L2)]+∑m
k=1 Ñ + M̃[L̃1(2KT r+‖φ̃tk‖+‖φ̃ ′

tk‖)+ L̃2]≤ r,
for some r > 0.

(H8) Let ρ = KT

[
γ
(
T M̃Lh + T Ñ(L f + T Lp) + ∑m

k=1(M̃L1 +

ÑL̃1)
)
+ (1 + T (M̃ + Ñ1))Lh + T (Ñ + M̃)(L f + T Lp) +

∑m
k=1(M̃+ Ñ1)L1 +∑m

k=1(M̃+ Ñ)L̃1

]

and
ρ̃ = γ

(
T M̃Lh + T Ñ(‖Q‖ + L f + T Lp) + KT ∑m

k=1(M̃L1 +
ÑL̃1)

)
+(1+T (M̃+Ñ1))Lh+T (Ñ+M̃)(‖Q‖+Lf +T Lp)+

KT ∑m
k=1[(M̃+ Ñ1)L1 +(M̃+ Ñ)L̃1],

where γ = T (M̃+ Ñ)M1M2 and max{ρ, ρ̃}< 1.

Then the system (38)-(41) is controllable on J.

Proof of the above theorem is based on the application of the
Banach fixed point theorem.

The authors of [22] utilise the evolution system framework
to show the results for the special case of the system (38)-(41).
Namely, they show the controllability results in two cases. In
the first one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+ f (t,xt) (43)

where A(t) : D(A(t))⊂ X → X is densely defined infinites-
imal generator of the evolution system S(t,s). In the second
one, equation (38) takes the form:

d2

dt2 x(t) = A(t)x(t)+Bu(t)+
∫ t

0
e(t − s)g(s,xs)ds (44)

where t ∈ J, t �= tk and g : J×B→ X ,e : J → X ,0 ≤ s ≤ t ≤ T
are appropriate functions. It is again the semilinear evolution
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems The
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In
[78] the authors study the approximate controllability of im-
pulsive semilinear evolution equations with nonlocal condi-
tions, using the measure of noncompactness and Mönch fixed
point theorem, under assumption that the nonlinear terms f , Ik
do not depend on the control variable. In [79] the authors ana-
lyze approximate controllabillity for semilinear impulsive sys-
tem representing strongly damped wave equation. The analy-
sis is performed by means of Rothe’s fixed point theorem. This
last work is especially interesting as it presents controllability
results for mathematical model of a physical system.

Consider the following semilinear impulsive strongly
damped wave equation with Dirichlet boundary conditions:
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(e.g. Kalman, Jordan, Luenberger forms).

In this article, an overview of the current state of control-
lability analysis for the second order linear and semilinear in-
finite dimensional dynamical systems is given. Paper is fo-
cused on various types of controllability which suit the types
of systems they describe. In doing so it is possible to give
an overview of various approaches and techniques used in
this problem. Among the considered controllability types and,
what follows, types of systems analysed, there are approxi-
mate controllability of second order linear infinite dimensional
systems, approximate controllability of second order semilin-
ear finite dimensional systems with delay in control, trajectory
controllability of second order semilinear integro-differential
systems, approximate controllability of a second order neu-
tral stochastic differential equations with state dependent de-
lay, nonlocal conditions and Poisson jumps, exact controllabil-
ity of Duffing equation, exact boundary controllability of cou-
pled hyperbolic equations and exact controllability of neutral
integrodifferential impulsive systems with infinite delay and
damping.

The paper is organized as follows. In the Preliminaries sec-
tion we give the basic definitions, together with necessary nota-
tion, to form a common basis to which other section refer. The
Controllability Results section forms the main part of this sur-
vey. Each of the system types is described there together with
appropriate comments on its controllability results. The con-
cluding section gives a notion about the direction of research in
the field of controllability of second order dynamical systems.

2. Preliminaries
As stated in the introduction, this section contains common no-
tions used throughout the article. To maintain the appropriate
level of generality, the definitions below are given with refer-
ence to Banach spaces.

Consider a dynamical system described by the general state
equation defined on the closed time interval J = [0,T ] as:

d
dt

x(t) = f(t,x(t),u(t)), (1)

that is the equation describing the dependance between the
time change of a state of system x(t) ∈ X under the influence
of the admissible control signal u(t) ∈ U and possibly other
arguments where X and U are Banach spaces. The gener-
ally nonlinear function f on the right-hand side of (1) differs
in nature and the list of arguments in each of the cases un-
der discussion due to what it defines the system character. It
is generally assumed that function f is such that equation (1)
has solution (not necessary unique) for suitably defined initial
condition x(0) ∈ X .

The solution to (1) mostly takes the form of an integral equa-
tion, referred to as a mild solution [18]:

x(t) =
∫ t

0
F(t,u(t))ds, t ∈ [0,T ], (2)

which is a starting point to the analysis of controllability
[19].

The term reachable set (or attainable set) is closely con-
nected with (2) and is given by the following

DEFINITION 2.1 Reachable set. The reachable set
RT (x(0)) ⊆ X is the set of all values which are reachable
from initial state x(0) by the system state x(t) with the use of
admissible controls u(t) in a given time interval [0,T ]. For
x(0) = 0 the set RT (x(0)) is denoted shortly as RT .

With the notion of reachable set one can formulate the fol-
lowing

DEFINITION 2.2 Approximate controllability. The system
described by (2) is called approximately controllable on [0,T ]
when the reachable set RT (x(0)) is dense in X .

DEFINITION 2.3 Exact controllability. The system de-
scribed by (2) is called exactly controllable on [0,T ] when the
reachable set RT (x(0)) in equal to X .

Apart from the above definitions, the following are also
common for some of the system types described below.

DEFINITION 2.4 Space of piecewise continuous functions.(i)
A function x : [σ ,τ] → X is said to be a normalized piece-
wise continuous function on [σ ,τ] if x is a piecewise
continuous and left continuous on (σ ,τ].

(ii) The space PC([σ ,τ],X) is referred to as the space of nor-
malized piecewise continuous functions from [σ ,τ] into X .
In particular, the space PC is formed by all normalized
piecewise continuous functions x : J → X such that x(·)
is continuous at t �= tk,x(t−) = x(tk) and x(t+k ) exists for
k = 1,2,3, ...,m.

The abstract phase space B is defined axiomatically [20,
21].

DEFINITION 2.5 Phase space B [22]. The phase space B
is the vector space of functions defined from (−∞,0] into X
endowed with a seminorm denoted ‖ · ‖B and such that the
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1L (X ,Y ) is the space of all bounded operators from X into Y , simply
L (X) if X = Y .
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are appropriate functions. It is again a semilinear evolution 
system, but with the integrodifferential part.

4.7. Approximate controllability of impulsive systems. The 
approximate controllability of second order impulsive differ-
ential systems is discussed rather scarcely in the literature. In 
[78] the authors study the approximate controllability of impul-
sive semilinear evolution equations with nonlocal conditions, 
using the measure of noncompactness and Mönch fixed point 
theorem, under assumption that the nonlinear terms f, Ik do 

not depend on the control variable. In [79] the authors analyse 
approximate controllabillity for semilinear impulsive system 
representing strongly damped wave equation. The analysis is 
performed by means of Rothe՚s fixed point theorem. This last 
work is especially interesting as it presents controllability re-
sults for mathematical model of a physical system.

Consider the following semilinear impulsive strongly 
damped wave equation with Dirichlet boundary conditions:
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

∂ 2

∂ t2 w+η(−∆)1/2 ∂
∂ t w+ γ(−∆)w =

= 1wu(t,x)+ f (t,w, ∂
∂ t w,u(t)) in (0,T )×Ω,

w = 0 in (0,T )×∂Ω,

w(0,x) = w0(x), ∂
∂ t w(0,x) = w1(x) in Ω,

∂
∂ t w(t+k ,x) = ∂

∂ t w(t−k ,x)+
+Ik(tk,w(tk,x), ∂

∂ t w(tk,x),u(tk,x)),
(45)

in the space Z1/2 = D((−∆)1/2) × L2(Ω),k = 1,2, ...,m,
where:

1. Ω is a bounded domain in Rn,(n ≥ 1), ω is an open
nonempty subset of Ω,

2. 1ω denotes the characteristic function of the set ω ,
3. the distributed control signal u ∈C([0,T ],L2(Ω)),
4. η ,γ are positive numbers
5. f , Ik ∈C([0,T ]×R×R,R),k = 1,2, ...,m are such that:

| f (t,w,v,u)|< a0(|w|α0 + |v|α0)+b0|u|β0 +c0, u,w,v ∈R,
(46)

|Ik(t,w,v,u)|< ak(|w|αk + |v|αk)+bk|u|βk +ck, u,w,v ∈R,
(47)

where 1
2 ≤ αk < 1, 1

2 ≤ βk < 1 and

w(tk,x) = w(t+k ,x) = lim
t→t+k

w(t,x), w(t−k ,x) = lim
t→t−k

w(t,x),

∂
∂ t w(tk,x) = ∂

∂ t w(t+k ,x) =
= limt→t+k

∂
∂ t w(t,x), ∂

∂ t w(t−k ,x) = limt→t−k
∂
∂ t w(t,x).

To write the abstract formulation of (45) let X = L2(Ω,R)
and consider the linear unbounded operator A : D(A)⊂ X → X
defined by Aφ = −∆φ , where D(A) = H2(Ω,R)∩H1

0 (Ω,R).
With the change of variables ∂

∂ t w = v, authors of [79] reformu-
late (45) into a first order system with the state being a member
of Z = X1/2 ×X , namely:




∂
∂ t z = A z+Bwu+F(t,z,u(t)), t ∈ (0,T ], t �= tk,
z(0) = z0,

z(t+k ) = z(t−k )+ Jk(tk,z(tk),u(tk)), k = 1,2, ...,m
(48)

where:

z =

[
w
v

]
, Bw =

[
0

1wI

]
and A =

[
0 IX

−γA −ηA1/2

]

is an ubounded linear operator with domain D(A ) = D(A)×
D(A1/2) and Jk,F : [0,T ] × Z × U → Z are defined by

F(t,z,u) =

[
0

f (t,w,v,u)

]
and Jk(t,z,u) =

[
0

Ik(t,w,v,u)

]
.

According to [80] the operator A generates a strongly contin-
uous semigroup {T (t)}t≥0 in the space Z. Denote the control-
lability map G : L2([0,T ),U) → Z given by Gu =

∫ T
0 T (T −

s)Bwu(s)ds whose adjoint G∗ : Z → L2([0,T ],U) is given by
(G∗z)(s) = B∗

wT ∗(T − s)z for every s ∈ [0,T ] and every z ∈ Z.

The mild solution in this case takes the form:

zα(t) = T (t)z0 +
∫ t

0
T (T − s)Bwuα(s)ds

+
∫ t

0
T (T − s)F(s,zα(s)uα(s))ds

+ ∑
0<tk<t

T (t − tk)Jk(tk,zα(tk),uα(tk)).

(49)

In the above setting the following theorem is true.

THEOREM 4.14 Approximate controllability of the abstract
damped wave equation [79]. The nonlinear system (48) is
approximately controllable on [0,T ], and a sequence of con-
trols steering this system from the initial state z0 to an ε-
neighbourhood of the final stata z1 at time T > 0 is given by:

uα(t) = B∗
wT ∗(T − s)(αI +GG∗)−1L (zα ,uα)

and the error Eα z of this approximation is given by:

Eα z = α(αI +GG∗)−1L (zα ,uα).

The proof of the above theorem is based on Rothe’s fixed
point theorem [81].

5. Related problems
It is a well known fact that there exists strong relationship
between concepts of controllability and stabilizability for fi-
nite dimensional time-invariant undelayed systems that can
be stated as follows: A finite dimensional time-invariant
continuous-time undelayed dynamical system is stabilizable
if and only if all unstable modes of this system are control-
lable [7, 82]. However, it has to be emphasized that for in-
finite dimensional systems the problem of establishing such
relationships is much more difficult. It is mainly related with
the fact that there exist different definitions of stability for in-
finite dimensional systems that depend strongly on the cho-
sen topology. There exist also a great number of publications
devoted to the controllability of discrete-time and discrete-
continuous dynamical systems [7, 82, 83]. Control problems of
finite-dimensional discrete-time systems are discussed in [84].
An overview of results related to controllability of discrete-
time systems defined both, in finite-dimensional and infinite-
dimensional spaces may be found in [85]. There is a treat-
ment of problems for discrete-time systems related to station-
ary and nonstationary systems, systems with multiple delays in
control and state, systems with additive disturbances, descrip-
tor systems and constrained controllability of nonlinear sys-
tems. In addition, there are derived sufficient conditions for
weak asymptotic stabilizability of discrete-time convex pro-
cesses expressed in terms of constrained controllability con-
ditions. For a detailed analysis of these aspects we refer the
reader to references mentioned above.

6. Conclusions
In this article a survey on the newest controllability results
for various types of second order dynamical systems has been
given. A variety of criteria for recognizing systems control-
lability have been presented. Some of them have the form of
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

((–∆)1/2)£L2(Ω), k = 1, 2, …, m, where:
1. �Ω is a bounded domain in ℝn, (n ¸ 1), ω is an open non-

empty subset of Ω,
2. �1ω denotes the characteristic function of the set ω,
3. �the distributed control signal u 2 C([0, T ], L2(Ω)),
4. �η, γ are positive numbers
5. �f, Ik 2 C([0, T ]£ℝ£ℝ, ℝ), k = 1, 2, …, m are such that:

J. Klamka, J. Wyrwał and R. Zawiski




∂ 2

∂ t2 w+η(−∆)1/2 ∂
∂ t w+ γ(−∆)w =

= 1wu(t,x)+ f (t,w, ∂
∂ t w,u(t)) in (0,T )×Ω,

w = 0 in (0,T )×∂Ω,

w(0,x) = w0(x), ∂
∂ t w(0,x) = w1(x) in Ω,

∂
∂ t w(t+k ,x) = ∂

∂ t w(t−k ,x)+
+Ik(tk,w(tk,x), ∂

∂ t w(tk,x),u(tk,x)),
(45)

in the space Z1/2 = D((−∆)1/2) × L2(Ω),k = 1,2, ...,m,
where:

1. Ω is a bounded domain in Rn,(n ≥ 1), ω is an open
nonempty subset of Ω,

2. 1ω denotes the characteristic function of the set ω ,
3. the distributed control signal u ∈C([0,T ],L2(Ω)),
4. η ,γ are positive numbers
5. f , Ik ∈C([0,T ]×R×R,R),k = 1,2, ...,m are such that:

| f (t,w,v,u)|< a0(|w|α0 + |v|α0)+b0|u|β0 +c0, u,w,v ∈R,
(46)

|Ik(t,w,v,u)|< ak(|w|αk + |v|αk)+bk|u|βk +ck, u,w,v ∈R,
(47)

where 1
2 ≤ αk < 1, 1

2 ≤ βk < 1 and

w(tk,x) = w(t+k ,x) = lim
t→t+k

w(t,x), w(t−k ,x) = lim
t→t−k

w(t,x),

∂
∂ t w(tk,x) = ∂

∂ t w(t+k ,x) =
= limt→t+k

∂
∂ t w(t,x), ∂

∂ t w(t−k ,x) = limt→t−k
∂
∂ t w(t,x).

To write the abstract formulation of (45) let X = L2(Ω,R)
and consider the linear unbounded operator A : D(A)⊂ X → X
defined by Aφ = −∆φ , where D(A) = H2(Ω,R)∩H1

0 (Ω,R).
With the change of variables ∂

∂ t w = v, authors of [79] reformu-
late (45) into a first order system with the state being a member
of Z = X1/2 ×X , namely:




∂
∂ t z = A z+Bwu+F(t,z,u(t)), t ∈ (0,T ], t �= tk,
z(0) = z0,

z(t+k ) = z(t−k )+ Jk(tk,z(tk),u(tk)), k = 1,2, ...,m
(48)

where:

z =

[
w
v

]
, Bw =

[
0

1wI

]
and A =

[
0 IX

−γA −ηA1/2

]

is an ubounded linear operator with domain D(A ) = D(A)×
D(A1/2) and Jk,F : [0,T ] × Z × U → Z are defined by

F(t,z,u) =

[
0

f (t,w,v,u)

]
and Jk(t,z,u) =

[
0

Ik(t,w,v,u)

]
.

According to [80] the operator A generates a strongly contin-
uous semigroup {T (t)}t≥0 in the space Z. Denote the control-
lability map G : L2([0,T ),U) → Z given by Gu =

∫ T
0 T (T −

s)Bwu(s)ds whose adjoint G∗ : Z → L2([0,T ],U) is given by
(G∗z)(s) = B∗

wT ∗(T − s)z for every s ∈ [0,T ] and every z ∈ Z.

The mild solution in this case takes the form:

zα(t) = T (t)z0 +
∫ t

0
T (T − s)Bwuα(s)ds

+
∫ t

0
T (T − s)F(s,zα(s)uα(s))ds

+ ∑
0<tk<t

T (t − tk)Jk(tk,zα(tk),uα(tk)).

(49)

In the above setting the following theorem is true.

THEOREM 4.14 Approximate controllability of the abstract
damped wave equation [79]. The nonlinear system (48) is
approximately controllable on [0,T ], and a sequence of con-
trols steering this system from the initial state z0 to an ε-
neighbourhood of the final stata z1 at time T > 0 is given by:

uα(t) = B∗
wT ∗(T − s)(αI +GG∗)−1L (zα ,uα)

and the error Eα z of this approximation is given by:

Eα z = α(αI +GG∗)−1L (zα ,uα).

The proof of the above theorem is based on Rothe’s fixed
point theorem [81].

5. Related problems
It is a well known fact that there exists strong relationship
between concepts of controllability and stabilizability for fi-
nite dimensional time-invariant undelayed systems that can
be stated as follows: A finite dimensional time-invariant
continuous-time undelayed dynamical system is stabilizable
if and only if all unstable modes of this system are control-
lable [7, 82]. However, it has to be emphasized that for in-
finite dimensional systems the problem of establishing such
relationships is much more difficult. It is mainly related with
the fact that there exist different definitions of stability for in-
finite dimensional systems that depend strongly on the cho-
sen topology. There exist also a great number of publications
devoted to the controllability of discrete-time and discrete-
continuous dynamical systems [7, 82, 83]. Control problems of
finite-dimensional discrete-time systems are discussed in [84].
An overview of results related to controllability of discrete-
time systems defined both, in finite-dimensional and infinite-
dimensional spaces may be found in [85]. There is a treat-
ment of problems for discrete-time systems related to station-
ary and nonstationary systems, systems with multiple delays in
control and state, systems with additive disturbances, descrip-
tor systems and constrained controllability of nonlinear sys-
tems. In addition, there are derived sufficient conditions for
weak asymptotic stabilizability of discrete-time convex pro-
cesses expressed in terms of constrained controllability con-
ditions. For a detailed analysis of these aspects we refer the
reader to references mentioned above.

6. Conclusions
In this article a survey on the newest controllability results
for various types of second order dynamical systems has been
given. A variety of criteria for recognizing systems control-
lability have been presented. Some of them have the form of
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0 IX
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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∂ t2 w+η(−∆)1/2 ∂
∂ t w+ γ(−∆)w =

= 1wu(t,x)+ f (t,w, ∂
∂ t w,u(t)) in (0,T )×Ω,

w = 0 in (0,T )×∂Ω,

w(0,x) = w0(x), ∂
∂ t w(0,x) = w1(x) in Ω,

∂
∂ t w(t+k ,x) = ∂

∂ t w(t−k ,x)+
+Ik(tk,w(tk,x), ∂

∂ t w(tk,x),u(tk,x)),
(45)

in the space Z1/2 = D((−∆)1/2) × L2(Ω),k = 1,2, ...,m,
where:

1. Ω is a bounded domain in Rn,(n ≥ 1), ω is an open
nonempty subset of Ω,

2. 1ω denotes the characteristic function of the set ω ,
3. the distributed control signal u ∈C([0,T ],L2(Ω)),
4. η ,γ are positive numbers
5. f , Ik ∈C([0,T ]×R×R,R),k = 1,2, ...,m are such that:

| f (t,w,v,u)|< a0(|w|α0 + |v|α0)+b0|u|β0 +c0, u,w,v ∈R,
(46)

|Ik(t,w,v,u)|< ak(|w|αk + |v|αk)+bk|u|βk +ck, u,w,v ∈R,
(47)

where 1
2 ≤ αk < 1, 1

2 ≤ βk < 1 and

w(tk,x) = w(t+k ,x) = lim
t→t+k

w(t,x), w(t−k ,x) = lim
t→t−k

w(t,x),

∂
∂ t w(tk,x) = ∂

∂ t w(t+k ,x) =
= limt→t+k

∂
∂ t w(t,x), ∂

∂ t w(t−k ,x) = limt→t−k
∂
∂ t w(t,x).

To write the abstract formulation of (45) let X = L2(Ω,R)
and consider the linear unbounded operator A : D(A)⊂ X → X
defined by Aφ = −∆φ , where D(A) = H2(Ω,R)∩H1

0 (Ω,R).
With the change of variables ∂

∂ t w = v, authors of [79] reformu-
late (45) into a first order system with the state being a member
of Z = X1/2 ×X , namely:




∂
∂ t z = A z+Bwu+F(t,z,u(t)), t ∈ (0,T ], t �= tk,
z(0) = z0,

z(t+k ) = z(t−k )+ Jk(tk,z(tk),u(tk)), k = 1,2, ...,m
(48)

where:

z =

[
w
v

]
, Bw =

[
0

1wI

]
and A =

[
0 IX

−γA −ηA1/2

]

is an ubounded linear operator with domain D(A ) = D(A)×
D(A1/2) and Jk,F : [0,T ] × Z × U → Z are defined by

F(t,z,u) =

[
0

f (t,w,v,u)

]
and Jk(t,z,u) =

[
0

Ik(t,w,v,u)

]
.

According to [80] the operator A generates a strongly contin-
uous semigroup {T (t)}t≥0 in the space Z. Denote the control-
lability map G : L2([0,T ),U) → Z given by Gu =

∫ T
0 T (T −

s)Bwu(s)ds whose adjoint G∗ : Z → L2([0,T ],U) is given by
(G∗z)(s) = B∗

wT ∗(T − s)z for every s ∈ [0,T ] and every z ∈ Z.

The mild solution in this case takes the form:

zα(t) = T (t)z0 +
∫ t

0
T (T − s)Bwuα(s)ds

+
∫ t

0
T (T − s)F(s,zα(s)uα(s))ds

+ ∑
0<tk<t

T (t − tk)Jk(tk,zα(tk),uα(tk)).

(49)

In the above setting the following theorem is true.

THEOREM 4.14 Approximate controllability of the abstract
damped wave equation [79]. The nonlinear system (48) is
approximately controllable on [0,T ], and a sequence of con-
trols steering this system from the initial state z0 to an ε-
neighbourhood of the final stata z1 at time T > 0 is given by:

uα(t) = B∗
wT ∗(T − s)(αI +GG∗)−1L (zα ,uα)

and the error Eα z of this approximation is given by:

Eα z = α(αI +GG∗)−1L (zα ,uα).

The proof of the above theorem is based on Rothe’s fixed
point theorem [81].

5. Related problems
It is a well known fact that there exists strong relationship
between concepts of controllability and stabilizability for fi-
nite dimensional time-invariant undelayed systems that can
be stated as follows: A finite dimensional time-invariant
continuous-time undelayed dynamical system is stabilizable
if and only if all unstable modes of this system are control-
lable [7, 82]. However, it has to be emphasized that for in-
finite dimensional systems the problem of establishing such
relationships is much more difficult. It is mainly related with
the fact that there exist different definitions of stability for in-
finite dimensional systems that depend strongly on the cho-
sen topology. There exist also a great number of publications
devoted to the controllability of discrete-time and discrete-
continuous dynamical systems [7, 82, 83]. Control problems of
finite-dimensional discrete-time systems are discussed in [84].
An overview of results related to controllability of discrete-
time systems defined both, in finite-dimensional and infinite-
dimensional spaces may be found in [85]. There is a treat-
ment of problems for discrete-time systems related to station-
ary and nonstationary systems, systems with multiple delays in
control and state, systems with additive disturbances, descrip-
tor systems and constrained controllability of nonlinear sys-
tems. In addition, there are derived sufficient conditions for
weak asymptotic stabilizability of discrete-time convex pro-
cesses expressed in terms of constrained controllability con-
ditions. For a detailed analysis of these aspects we refer the
reader to references mentioned above.

6. Conclusions
In this article a survey on the newest controllability results
for various types of second order dynamical systems has been
given. A variety of criteria for recognizing systems control-
lability have been presented. Some of them have the form of
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evolution operator with an infinitesimal closed densely defined
generator A(t) : D(A(t))⊆ X → X , t ∈ J, if the following con-
ditions are satisfied:

(Z1) For each x ∈ X the mapping J × J � (t,s)→S(t,s)x ∈ X is
of C1 class and:

(i) for each t ∈ J,S(t, t) = 0,

(ii) for all t,s ∈ J and for each x ∈ X ,

∂
∂ t

S(t,s)x|t=s = x,
∂
∂ s

S(t,s)x|t=s =−x.

(Z2) For all t,s ∈ J, if x ∈ D(A), then S(t,s)x ∈ D(A), the map-
ping
J× J � (t,s)→S(t,s)x ∈ X is of C2 class and:

(i) ∂ 2

∂ t2 S(t,s)x = A(t)S(t,s)x

(ii) ∂ 2

∂ s2 S(t,s)x =S(t,s)A(s)x,

(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.

(Z3) For all t,s ∈ J, if x ∈ D(A), then ∂
∂ sS(t,s)x ∈ D(A), there

exist ∂ 2

∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,

(ii) ∂ 2

∂ s2
∂
∂ tS(t,s)x = ∂

∂ tS(t,s)A(s)x,
and the mapping J×J � (t,s)→ A(t) ∂

∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems

Up to the present time the problem of controllability of con-
tinuous and discrete time linear dynamical systems has been
extensively investigated in many papers [7, 23, 24, 25, 26,
27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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∂
∂ s
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(iii) ∂
∂ s

∂
∂ tS(t,s)x|t=s = 0.
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∂ t2
∂
∂ sS(t,s)x, ∂ 2

∂ s2
∂
∂ tS(t,s)x and:

(i) ∂ 2

∂ t2
∂
∂ sS(t,s)x = A(t) ∂

∂ sS(t,s)x,
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∂ s2
∂
∂ tS(t,s)x = ∂
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∂ sS(t,s)x is con-
tinuous.

3. Controllability results for second-order linear
infinite-dimensional dynamical systems
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27, 28, 29]. Different types of linear systems have been in-
vestigated including time-invariant and time-varying systems,
finite-dimensional and infinite dimensional systems as well as
systems with unconstrained and constrained controls. In case
of most of semilinear dynamical systems controllability crite-
ria are formulated in such a way that an overall system may be
controllable only if the linear part of semilinear system is con-
trollable. To verify controllability for a class of linear second
order systems criteria presented in this Section may be used.

Consider linear infinite-dimensional control system de-
scribed by the following abstract second-order differential
equation: (

e2A+ e1A
1
2 + e0I

) d2

dt2 v(t)+

2
(

c2A+ c1A
1
2 + c0I

) d
dt

v(t)+
(

d2A+d1A
1
2 +d0I

)
v(t) = Bu(t)

v(0) ∈ D(A),
d
dt

v(0) ∈V

(3)

where:

1. V and U denote separable Hilbert spaces,

2. e2 ≥ 0, e1 ≥ 0, e0 ≥ 0, e2+e1+e0 > 0, c2 ≥ 0, c1 ≥ 0, c0 ≥ 0,
d1 and d0 unrestricted in sign, d2 > 0 are given constants,

3. operator A : V ⊃ D(A)→V is a linear generally unbounded
self-adjoint and positive-definite linear operator with domain
D(A) dense in V and compact resolvent,

4. operator B is linear and bounded from the space U into the
space V ,

5. controls u belong to the set of admissible controls
L2

loc([0,∞),U),

Introduce the product space W = D(A
1
2 )×V with the inner

product:
〈
v,w

〉
W =

〈
[v1,v2], [w1,w2]

〉
W =

〈
A

1
2 v1,A

1
2 w1

〉
V +

〈
v2,w2

〉
V .

Using standard substitution:

v(t) =

[
w1(t)
w2(t)

]
=

[
v(t)
v̇(t)

]
(4)

system (3) may be rewritten as the equivalent first order dy-
namical system in the product space W described by the fol-
lowing first order differential equation:

d
dt

w(t) = Fw(t)+Gu(t), (5)

where:

F =

[
0 I

F21 F22

]
,

F21 =−
(

e2A+ e1A
1
2 + e0I

)−1(
d2A+d1A

1
2 +d0I

)

F22 =−2
(

e2A+ e1A
1
2 + e0I

)−1(
c2A+ c1A

1
2 + c0I

)

G =


 0(

e2A+ e1A
1
2 + e0I

)−1
B


 .

(6)

Remark 1. From assumptions on operator A it follows that

the operator
(

e2A+ e1A
1
2 + e0I

)−1
is sef-adjoint, positive and

bounded on V.

In addition to the second-order equation (3) consider a sim-
plified first-order differential equation:

d
dt

v(t) = Aα v(t)+Bu(t) (7)

where α ∈ (0,∞).

DEFINITION 3.1. (Approximate controllability) Dynamical
system (5) is said to be approximately controllable at the time
interval [0,T ] if for any initial condition w(0) ∈ W , any given
final condition w f ∈W and each positive real number ε , there
exists an admissible control u ∈ L2

loc((0,T ],U) such that:

‖w(T ;w(0),u)−w f ‖W ≤ ε. (8)
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
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

∂ 2

∂ t2 w+η(−∆)1/2 ∂
∂ t w+ γ(−∆)w =

= 1wu(t,x)+ f (t,w, ∂
∂ t w,u(t)) in (0,T )×Ω,

w = 0 in (0,T )×∂Ω,

w(0,x) = w0(x), ∂
∂ t w(0,x) = w1(x) in Ω,

∂
∂ t w(t+k ,x) = ∂

∂ t w(t−k ,x)+
+Ik(tk,w(tk,x), ∂

∂ t w(tk,x),u(tk,x)),
(45)

in the space Z1/2 = D((−∆)1/2) × L2(Ω),k = 1,2, ...,m,
where:

1. Ω is a bounded domain in Rn,(n ≥ 1), ω is an open
nonempty subset of Ω,

2. 1ω denotes the characteristic function of the set ω ,
3. the distributed control signal u ∈C([0,T ],L2(Ω)),
4. η ,γ are positive numbers
5. f , Ik ∈C([0,T ]×R×R,R),k = 1,2, ...,m are such that:

| f (t,w,v,u)|< a0(|w|α0 + |v|α0)+b0|u|β0 +c0, u,w,v ∈R,
(46)

|Ik(t,w,v,u)|< ak(|w|αk + |v|αk)+bk|u|βk +ck, u,w,v ∈R,
(47)

where 1
2 ≤ αk < 1, 1

2 ≤ βk < 1 and

w(tk,x) = w(t+k ,x) = lim
t→t+k

w(t,x), w(t−k ,x) = lim
t→t−k

w(t,x),

∂
∂ t w(tk,x) = ∂

∂ t w(t+k ,x) =
= limt→t+k

∂
∂ t w(t,x), ∂

∂ t w(t−k ,x) = limt→t−k
∂
∂ t w(t,x).

To write the abstract formulation of (45) let X = L2(Ω,R)
and consider the linear unbounded operator A : D(A)⊂ X → X
defined by Aφ = −∆φ , where D(A) = H2(Ω,R)∩H1

0 (Ω,R).
With the change of variables ∂

∂ t w = v, authors of [79] reformu-
late (45) into a first order system with the state being a member
of Z = X1/2 ×X , namely:




∂
∂ t z = A z+Bwu+F(t,z,u(t)), t ∈ (0,T ], t �= tk,
z(0) = z0,

z(t+k ) = z(t−k )+ Jk(tk,z(tk),u(tk)), k = 1,2, ...,m
(48)

where:

z =

[
w
v

]
, Bw =

[
0

1wI

]
and A =

[
0 IX

−γA −ηA1/2

]

is an ubounded linear operator with domain D(A ) = D(A)×
D(A1/2) and Jk,F : [0,T ] × Z × U → Z are defined by

F(t,z,u) =

[
0

f (t,w,v,u)

]
and Jk(t,z,u) =

[
0

Ik(t,w,v,u)

]
.

According to [80] the operator A generates a strongly contin-
uous semigroup {T (t)}t≥0 in the space Z. Denote the control-
lability map G : L2([0,T ),U) → Z given by Gu =

∫ T
0 T (T −

s)Bwu(s)ds whose adjoint G∗ : Z → L2([0,T ],U) is given by
(G∗z)(s) = B∗

wT ∗(T − s)z for every s ∈ [0,T ] and every z ∈ Z.

The mild solution in this case takes the form:

zα(t) = T (t)z0 +
∫ t

0
T (T − s)Bwuα(s)ds

+
∫ t

0
T (T − s)F(s,zα(s)uα(s))ds

+ ∑
0<tk<t

T (t − tk)Jk(tk,zα(tk),uα(tk)).

(49)

In the above setting the following theorem is true.

THEOREM 4.14 Approximate controllability of the abstract
damped wave equation [79]. The nonlinear system (48) is
approximately controllable on [0,T ], and a sequence of con-
trols steering this system from the initial state z0 to an ε-
neighbourhood of the final stata z1 at time T > 0 is given by:

uα(t) = B∗
wT ∗(T − s)(αI +GG∗)−1L (zα ,uα)

and the error Eα z of this approximation is given by:

Eα z = α(αI +GG∗)−1L (zα ,uα).

The proof of the above theorem is based on Rothe’s fixed
point theorem [81].

5. Related problems
It is a well known fact that there exists strong relationship
between concepts of controllability and stabilizability for fi-
nite dimensional time-invariant undelayed systems that can
be stated as follows: A finite dimensional time-invariant
continuous-time undelayed dynamical system is stabilizable
if and only if all unstable modes of this system are control-
lable [7, 82]. However, it has to be emphasized that for in-
finite dimensional systems the problem of establishing such
relationships is much more difficult. It is mainly related with
the fact that there exist different definitions of stability for in-
finite dimensional systems that depend strongly on the cho-
sen topology. There exist also a great number of publications
devoted to the controllability of discrete-time and discrete-
continuous dynamical systems [7, 82, 83]. Control problems of
finite-dimensional discrete-time systems are discussed in [84].
An overview of results related to controllability of discrete-
time systems defined both, in finite-dimensional and infinite-
dimensional spaces may be found in [85]. There is a treat-
ment of problems for discrete-time systems related to station-
ary and nonstationary systems, systems with multiple delays in
control and state, systems with additive disturbances, descrip-
tor systems and constrained controllability of nonlinear sys-
tems. In addition, there are derived sufficient conditions for
weak asymptotic stabilizability of discrete-time convex pro-
cesses expressed in terms of constrained controllability con-
ditions. For a detailed analysis of these aspects we refer the
reader to references mentioned above.

6. Conclusions
In this article a survey on the newest controllability results
for various types of second order dynamical systems has been
given. A variety of criteria for recognizing systems control-
lability have been presented. Some of them have the form of
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∂ t w+ γ(−∆)w =

= 1wu(t,x)+ f (t,w, ∂
∂ t w,u(t)) in (0,T )×Ω,

w = 0 in (0,T )×∂Ω,

w(0,x) = w0(x), ∂
∂ t w(0,x) = w1(x) in Ω,

∂
∂ t w(t+k ,x) = ∂

∂ t w(t−k ,x)+
+Ik(tk,w(tk,x), ∂

∂ t w(tk,x),u(tk,x)),
(45)

in the space Z1/2 = D((−∆)1/2) × L2(Ω),k = 1,2, ...,m,
where:

1. Ω is a bounded domain in Rn,(n ≥ 1), ω is an open
nonempty subset of Ω,

2. 1ω denotes the characteristic function of the set ω ,
3. the distributed control signal u ∈C([0,T ],L2(Ω)),
4. η ,γ are positive numbers
5. f , Ik ∈C([0,T ]×R×R,R),k = 1,2, ...,m are such that:

| f (t,w,v,u)|< a0(|w|α0 + |v|α0)+b0|u|β0 +c0, u,w,v ∈R,
(46)

|Ik(t,w,v,u)|< ak(|w|αk + |v|αk)+bk|u|βk +ck, u,w,v ∈R,
(47)

where 1
2 ≤ αk < 1, 1

2 ≤ βk < 1 and

w(tk,x) = w(t+k ,x) = lim
t→t+k

w(t,x), w(t−k ,x) = lim
t→t−k

w(t,x),

∂
∂ t w(tk,x) = ∂

∂ t w(t+k ,x) =
= limt→t+k

∂
∂ t w(t,x), ∂

∂ t w(t−k ,x) = limt→t−k
∂
∂ t w(t,x).

To write the abstract formulation of (45) let X = L2(Ω,R)
and consider the linear unbounded operator A : D(A)⊂ X → X
defined by Aφ = −∆φ , where D(A) = H2(Ω,R)∩H1

0 (Ω,R).
With the change of variables ∂

∂ t w = v, authors of [79] reformu-
late (45) into a first order system with the state being a member
of Z = X1/2 ×X , namely:




∂
∂ t z = A z+Bwu+F(t,z,u(t)), t ∈ (0,T ], t �= tk,
z(0) = z0,

z(t+k ) = z(t−k )+ Jk(tk,z(tk),u(tk)), k = 1,2, ...,m
(48)

where:

z =

[
w
v

]
, Bw =

[
0

1wI

]
and A =

[
0 IX

−γA −ηA1/2

]

is an ubounded linear operator with domain D(A ) = D(A)×
D(A1/2) and Jk,F : [0,T ] × Z × U → Z are defined by

F(t,z,u) =

[
0

f (t,w,v,u)

]
and Jk(t,z,u) =

[
0

Ik(t,w,v,u)

]
.

According to [80] the operator A generates a strongly contin-
uous semigroup {T (t)}t≥0 in the space Z. Denote the control-
lability map G : L2([0,T ),U) → Z given by Gu =

∫ T
0 T (T −

s)Bwu(s)ds whose adjoint G∗ : Z → L2([0,T ],U) is given by
(G∗z)(s) = B∗

wT ∗(T − s)z for every s ∈ [0,T ] and every z ∈ Z.

The mild solution in this case takes the form:

zα(t) = T (t)z0 +
∫ t

0
T (T − s)Bwuα(s)ds

+
∫ t

0
T (T − s)F(s,zα(s)uα(s))ds

+ ∑
0<tk<t

T (t − tk)Jk(tk,zα(tk),uα(tk)).

(49)

In the above setting the following theorem is true.

THEOREM 4.14 Approximate controllability of the abstract
damped wave equation [79]. The nonlinear system (48) is
approximately controllable on [0,T ], and a sequence of con-
trols steering this system from the initial state z0 to an ε-
neighbourhood of the final stata z1 at time T > 0 is given by:

uα(t) = B∗
wT ∗(T − s)(αI +GG∗)−1L (zα ,uα)

and the error Eα z of this approximation is given by:

Eα z = α(αI +GG∗)−1L (zα ,uα).

The proof of the above theorem is based on Rothe’s fixed
point theorem [81].

5. Related problems
It is a well known fact that there exists strong relationship
between concepts of controllability and stabilizability for fi-
nite dimensional time-invariant undelayed systems that can
be stated as follows: A finite dimensional time-invariant
continuous-time undelayed dynamical system is stabilizable
if and only if all unstable modes of this system are control-
lable [7, 82]. However, it has to be emphasized that for in-
finite dimensional systems the problem of establishing such
relationships is much more difficult. It is mainly related with
the fact that there exist different definitions of stability for in-
finite dimensional systems that depend strongly on the cho-
sen topology. There exist also a great number of publications
devoted to the controllability of discrete-time and discrete-
continuous dynamical systems [7, 82, 83]. Control problems of
finite-dimensional discrete-time systems are discussed in [84].
An overview of results related to controllability of discrete-
time systems defined both, in finite-dimensional and infinite-
dimensional spaces may be found in [85]. There is a treat-
ment of problems for discrete-time systems related to station-
ary and nonstationary systems, systems with multiple delays in
control and state, systems with additive disturbances, descrip-
tor systems and constrained controllability of nonlinear sys-
tems. In addition, there are derived sufficient conditions for
weak asymptotic stabilizability of discrete-time convex pro-
cesses expressed in terms of constrained controllability con-
ditions. For a detailed analysis of these aspects we refer the
reader to references mentioned above.

6. Conclusions
In this article a survey on the newest controllability results
for various types of second order dynamical systems has been
given. A variety of criteria for recognizing systems control-
lability have been presented. Some of them have the form of
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The proof of the above theorem is based on Rothe՚s fixed 
point theorem [81].

5.	 Related problems

It is a well known fact that there is a strong relationship be-
tween concepts of controllability and stabilizability for finite 
dimensional time-invariant undelayed systems that can be stated 
as follows: A finite dimensional time-invariant continuous-time 
undelayed dynamical system is stabilizable if and only if all 
unstable modes of this system are controllable [7, 82]. However, 
it has to be emphasized that for infinite dimensional systems the 
problem of establishing such relationships is much more diffi-
cult. It is mainly related to the fact that there are different defi-
nitions of stability for infinite dimensional systems that depend 
strongly on the chosen topology. There is also a great number 
of publications devoted to the controllability of discrete-time 
and discrete-continuous dynamical systems [7, 82, 83]. Control 
problems of finite-dimensional discrete-time systems are dis-
cussed in [84]. An overview of results related to controllability 
of discrete-time systems defined both, in finite-dimensional and 
infinite-dimensional spaces may be found in [85]. There, prob-

lems for discrete-time systems are discussed, including those 
related to stationary and nonstationary systems, systems with 
multiple delays in control and state, systems with additive dis-
turbances, descriptor systems and constrained controllability of 
nonlinear systems. In addition, sufficient conditions are derived 
for weak asymptotic stabilizability of discrete-time convex pro-
cesses expressed in terms of constrained controllability con-
ditions. For a detailed analysis of these aspects, we refer the 
reader to references mentioned above.

6.	 Conclusions

In this paper, a survey on the newest controllability results for 
various types of second order dynamical systems has been given. 
A variety of criteria for recognizing systems controllability have 
been presented. Some of them have the form of easy-to-test 
conditions that are significant both from practical and theoretical 
point of view. The exposition of results has been focused on 
a presentation of different approaches to the problem of control-
lability analysis. As this subject is already a mature discipline, 
its body of literature is considerable. For this reason it was not 
feasible to tackle every aspect of it. In particular, the paper is not 
focused on any specific method of controllability analysis. How-
ever, it is inevitable that some methods are more versatile than 
others and bring constructive results more often. Apart from the 
moments method, mentioned for coupled hyperbolic equations 
system, special attention is drawn to analysis methods based on 
fixed point approach. The fixed point method, mostly in com-
bination with measures of noncompactness, finds its application 
in analysis of approximate and exact controllability problem for 
nonlinear deterministic as well as stochastic dynamical systems 
(see for example [50, 79, 51, 77, 86] and references therein, to-
gether with references we provided throughout Section 4). Re-
sults presented within this paper have shown the complexity of 
controllability analysis for the systems under discussion. There-
fore, it should be pointed out that there are many open problems 
for controllability concepts for special types of dynamical sys-
tems (especially nonlinear systems) that can be easily stated but 
the answer to them is unknown up to the present time.
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