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Abstract. In the paper a procedure for determining the observer parameters for selected types of electrical motors is discussed. The procedure is 
based on the identity observer developed by Luenberger. The paper presents determining the parameters using calculation examples for the DC 
motor and also for the permanent magnet synchronous motor (PMSM), which utilize the extended state vector to estimate the back electromotive 
force (BEMF). Presented observer for PMSM does not need to use the information about load torque. The main task of this study is to show 
how to utilize these general theory to a specified type of motors. Such procedure avoids the use of time-consuming methods of the parameters 
selection, which are based on random algorithms or the computational intelligence.
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BEMF values the position is calculated. This paper focuses 
on this first stage and especially on the determining the ob-
server parameters. An easy form of the procedure is presented 
including calculation examples.

2.	 The algorithm

To estimate the unknown variables of the state vector for system 
(1):
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1. Introduction

Many electrical drives operate in regime of position control,
speed control or current control. To take full advantage of po-
sition control or speed control, there is need to use the shaft
position sensor or/and speed sensor, especially in a vector con-
trol of AC drives. However, the usage of those sensors in gen-
eral increases weight, size and cost of the drive. The control
of electrical motors takes advantage of sensorless control in
wherever the compact design, high reliability, and damage re-
sistance are the important features of the drive. The sensorless
operation mode may be a goal in itself or may be the emer-
gency solution in a case of sensor malfunction. One of the
many methods to determine or control the speed and the posi-
tion is estimation of the unknown state variable or the use of the
dual observer [1][2]. For this purpose a various method may
be used, e.g. methods based on the Luenberger observer [1]
and modified Luenberger observer [3], sliding mode observer
[4], or methods which use Kalman filter [5][6]. Expansion of
the correction function of Luenberger observer from propor-
tional form into form of proportional–integral improves ob-
server’s performance in case of rapid changes of speed and im-
proves robustness on electromagnetic disturbances [7]. How-
ever, such structure of the observer is little more difficult for
theoretical analysis. In order to determine the observer pa-
rameters, various methods are presented in the literature: most
commonly are experimental methods of finding the parameters
or without information about method [8][9][10], using differ-
ent searching algorithms, e.g. random or genetic algorithm
[11] which are based on quality function or methods based
on Lyapunov function [12][13]. Typically, position estimation
methods are based on the BEMF estimation at the first stage,
and then, in a second stage, using obtained BEMF values the
position is calculated. This paper focuses on this first stage
and especially on the determining the observer parameters. An
easy form of the procedure is presented including calculation
examples.
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2. The algorithm
To estimate the unknown variables of the state vector for sys-
tem (1):

ẋ = A ·x+B ·u
y = C ·x

(1)

it may be used the Luenberger observer:

ˆ̇x = A · x̂+B ·u+G · (y−C · x̂) (2)

where symbol "^" means estimated variables. To get proper
operation (commonly understood as fast and stable) of the sen-
sorless drive, it is important to determine the suitable set of the
observer parameters - the observer input vector G. Based on
the procedure presented in [1], the process of determining the
observer parameters can be summarized up in a few simple
steps. First, to perform the observer parameters calculations
using these procedure, the system should be represented as a
state space model. It requires to determine system matrix A,
and output matrix C. Then, the observer input vector G is
determined. Next, the observer system matrix (OSM) is calcu-
lated using (3):

OSM = A−G ·C (3)

and characteristic polynomial of OSM is calculated using
well-known dependence:

POSM(s) = det |s · I−OSM| (4)

where I denotes the identity matrix, the same size as OSM.
Now, proposed dynamics of estimation error decay is declared
by reference polynomial Pre f (s). If (C,A) is completely ob-
servable, we can find the observer’s gain matrix G, which gives
possibility to get arbitrary determined the dynamics of the ob-
server by solving the relationship (5):

POSM(s) = Pre f (s) (5)

3. Calculation examples
Here are some examples of calculating the parameters of the
BEMF observer. Simulations were performed using Matlab-
Simulink environment and calculations using Mathcad Prime

1

� (1)

it may be used the Luenberger observer:
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where symbol ∧ means estimated variables. To get proper oper-
ation (commonly understood as fast and stable) of the sensorless 
drive, it is important to determine the suitable set of the observer 
parameters – the observer input vector G. Based on the proce-
dure presented in [1], the process of determining the observer 
parameters can be summarized up in a few simple steps. First, 
to perform the observer parameters calculations using these pro-
cedure, the system should be represented as a state space model. 
It requires to determine system matrix A, and output matrix 
C. Then, the observer input vector G is determined. Next, the 
observer system matrix (OSM) is calculated using (3):
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and characteristic polynomial of OSM is calculated using well-
known dependence:
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1.	 Introduction

Many electrical drives operate in regime of position control, 
speed control or current control. To take full advantage of po-
sition control or speed control, the shaft position sensor or/ and 
speed sensor has to be used, especially in a vector control of AC 
drives. However, the usage of those sensors in general increases 
weight, size and cost of the drive. The control of electrical 
motors takes advantage of sensorless control in wherever the 
compact design, high reliability, and damage resistance are the 
important features of the drive. The sensorless operation mode 
may be a goal in itself or may be the emergency solution in 
a case of sensor malfunction. One of the many methods to de-
termine or control the speed and the position is estimation of 
the unknown state variable or the use of the dual observer [1, 2]. 
For this purpose a various method may be used, e.g. methods 
based on the Luenberger observer [1] and modified Luenberger 
observer [3], sliding mode observer [4], or methods which use 
Kalman filter [5, 6]. Expansion of the correction function of 
Luenberger observer from proportional form into form of pro-
portional-integral improves observer’s performance in case of 
rapid changes of speed and improves robustness on electromag-
netic disturbances [7]. However, such structure of the observer 
is little more difficult for theoretical analysis. In order to deter-
mine the observer parameters, various methods are presented 
in the literature: most commonly are experimental methods of 
finding the parameters or without information about method 
[8–10], using different searching algorithms, e.g. random or 
genetic algorithm [11] which are based on quality function or 
methods based on Lyapunov function [12, 13]. Typically, po-
sition estimation methods are based on the BEMF estimation 
at the first stage, and then, in a second stage, using obtained 
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where I denotes the identity matrix, the same size as OSM. 
Now, proposed dynamics of estimation error decay is declared 
by reference polynomial Pref(s). If (C, A) is completely observ-
able, we can find the observer’s gain matrix G, which gives 
possibility to get arbitrary determined the dynamics of the ob-
server by solving the relationship (5):
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3.	 Calculation examples

Some examples of calculating the parameters of the BEMF 
observer will follow. Simulations were performed using Mat-
lab-Simulink environment and calculations using Mathcad 
Prime environment. The first example shows detailed proce-
dure to determine observer parameters for DC motor. The state 
vector contains, as usually, the armature current and the shaft 
speed. It is direct derivation from the Luenberger’s method; 
however, it is important to understand the method and also for 
understanding next step – reduction of the analyzed model to 
the only electrical part of the motor model. The state vector 
now contains the armature current and the BEMF. An observer 
estimates the BEMF (which gives directly the mechanical value 
– the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no 
need to measure or estimate the motor load. Such model may 
be finally converted to suitable structure corresponding to the 
permanent magnet synchronous motor. It is the most important 
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such 
modified object, the Luenberger observer may be used, basing 
on the analytical way of the calculating the observer’s gain 
matrix.

3.1. DC motor – full order observer. Let us consider the 
linear, time-invariant motor model, presented in Fig. 1. The 
part of the scheme selected by dashed line will be discussed in 
the next paragraph. Such structure – named here DC1 – cor-
responds to the system which may be presented as the state 
space model A, B, C (6), with state vector and input vector 
defined as (7):

	

K. Urbanski

kF

R

sJ
1

sL
1

kF

us wi
TL

e

Fig. 1. General view of the DC motor model
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permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
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and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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L − kΦ
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, B =
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]
, C =
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x =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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L − kΦ
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, B =
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]
, C =
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, u =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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, u =

[
us

TL

]
(7)

The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =

[
−R

L − kΦ
L

kΦ
J 0

]
, B =

[
1
L 0
0 − 1

J

]
, C =

[
1 0

]

(6)

x =

[
i
ω

]
, u =

[
us

TL

]
(7)

The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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, C =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0
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(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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L − kΦ
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, B =
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1
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, C =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =
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−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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L − kΦ
L
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J 0

]
, B =
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1
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0 − 1
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]
, C =
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(6)

x =
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]
, u =
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]
(7)

The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of

Fig. 2. Verifying model for the observer parameters calculations for
DC motor prepared in Matlab-Simulink

the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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, B =
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]
, C =
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x =
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, u =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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, B =
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, C =
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, u =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =

[
−R

L − kΦ
L

kΦ
J 0

]
, B =

[
1
L 0
0 − 1

J

]
, C =

[
1 0

]
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x =
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]
, u =

[
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TL

]
(7)

The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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]
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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, B =
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]
, C =
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x =
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]
, u =
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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L − kΦ
L
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J 0

]
, B =
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1
L 0
0 − 1

J

]
, C =

[
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]

(6)

x =
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]
, u =

[
us

TL

]
(7)

The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =

[
−R

L − kΦ
L

kΦ
J 0

]
, B =

[
1
L 0
0 − 1

J

]
, C =

[
1 0

]

(6)

x =

[
i
ω

]
, u =

[
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TL

]
(7)

The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):

A =
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L − kΦ
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]
, B =
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1
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0 − 1

J

]
, C =
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]

(6)

x =
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]
, u =
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]
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =

[
gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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environment. The first example shows detailed procedure to
determine observer parameters for DC motor. The state vector
contains, as usually, the armature current and the shaft speed.
It is direct derivation from the Luenberger’s method; however,
it is important to understand the method and also for under-
standing next step - reduction of the analyzed model to the
only electrical part of the motor model. The state vector now
contains the armature current and the BEMF. An observer es-
timates the BEMF (which gives directly the mechanical value
- the speed, using output matrix C) without using the mechan-
ical part of the motor model. It is advantageous because of no
need to measure or estimate the motor load. Such model may
be finally converted to suitable structure corresponding to the
permanent magnet synchronous motor. It is the most important
example. As in the previous case, there is a method which uti-
lizes the extension of the state vector by the BEMF. For such
modified object, the Luenberger observer may be used, bas-
ing on the analytical way of the calculating the observer’s gain
matrix.

3.1. DC motor - full order observer. Let’s consider the lin-
ear, time-invariant motor model, presented in Fig. 1. The part
of the scheme selected by dashed line will be discussed in the
next paragraph. Such structure - named here DC1 - corre-
sponds to the system which may be presented as the state space
model A,B,C (6), with state vector and input vector defined as
(7):
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The variables R,L,kΦ,J means armature resistance and induc-
tance, flux constant and total moment of inertia - respectively.
The x is the state vector which contains i - armature current, ω
- the shaft speed, u is the input vector where us is the supply
voltage and TL is load torque. To prepare properly the observer,
output vector of motor model contains only current, because in
assumption the speed is not available to the measurement. This
results in present form of matrix C. Now, the input vector G of
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the observer is specified as:

GDC1 =
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gi

gω

]
(8)

where gi and gω means observer gains for correcting loop of
current, and of speed (instead - in this example - of the BEMF),
accordingly. For parameter set:

R = 1.25 Ω L = 10 mH
J = 0.11 kg ·m2 kΦ = 2.23 Wb

(9)

according to (3)(6)(8), the resulting OSM has form:

OSMDC1 =

[
−gi −125 −223

−gω +20.27 0

]
(10)

and its characteristic polynomial has the following form:

POSMDC1(s) = s2 +(gi +125) · s+4520.2−223 ·gω (11)

Now, designed dynamics of the estimation error decay is cho-
sen. Let’s assume that the dynamics may be described by (12):

Pre f DC1(s) = s2 +400 · s+40000 (12)

Solving equation (5) substituting (11) and (12), yields:

gi = 275 gω =−159.1 (13)

Finally, the testing scheme is proposed in Fig. 2. The model
of DC motor (with structure as in Fig. 1) is shown; and the
observer, presented as the Simulink model. Calculated values
of matrices A,B and G, are shown in this figure. Simple test-
ing procedure is used: direct start of the motor and at time
0.15 s the load is attached. Only in order to verify operation
of the observer, an additional control path is used. It consist
of block "disruption", which generates step change of the dis-
rupting signal for estimated values. The other block named
"tester" is a switch, which control the presence and the sign of
the disruption, respectively for current correcting loop and for
speed correcting loop. Value [0 0] means "no disruption". In
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is a switch which controls the presence and the sign of the 
disruption, respectively for current correcting loop and for 
speed correcting loop. Value [0 0] means “no disruption”. In 
the example, the resultant waveforms for direct connection to 
supply are shown in Fig. 3, where a constant value of disruption 
(step 0 ! 10 A and 0 ! –10 rad

s ) is attached at the time 0.3 s. 

In general, in such case, estimated and measured waveforms 
overlap. The enlarged part of the observer performance with 
the disruption introduction is shown in Fig. 4. The referenced 
dynamics defined by Pref DC1 is visible as a step response printed 
as a solid line (waveform #1). The dashed and doted lines are 
the estimation error waveforms for current and speed. It is vis-
ible that designed dynamics of the observer is fulfilled and all 
three waveforms decay at the same (designed) time.

Fig. 3. The waveforms of measured and estimated current and speed 
using presented observer parameters – test DC1
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Fig. 2. Verifying model for the observer parameters calculations for DC motor prepared in Matlab-Simulink
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3.2. DC motor – reduced order. As it was mentioned in the 
previous paragraph, in order to use of the full order observer, the 
information about torque load is required for proper operation. 
It is possible to eliminate the mechanical part of the motor in 
the observer structure, which reduces number of the inputs of 
that observer to the electrical variables only. Neither the load 
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line 
in Fig. 1) is to be used in the observer structure, they must be 
properly interpreted. It is proposed that in place of calculated 
BEMF from the speed through kΦ gain, the BEMF is calculated 

only using the correction loop of the observer. It means, that at 
considered calculation step, the BEMF derivative is equal zero 
– the BEMF at considered calculation step is the constant. So, 
the model, which is used to design the observer, has the form 
presented in Fig. 5. The E value means constant at considered 
calculation step the BEMF value. Such structure corresponds 
to the system which may be presented as the state space model 
described by the matrices A, B, C (14):
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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Fig. 5. General view of the electrical part of DC motor model used to
design the observer

the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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design the observer

the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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Now, the state vector and input vector have the following form:
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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Fig. 5. General view of the electrical part of DC motor model used to
design the observer

the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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where e means back electromotive force. It is noticeable that 
second row in matrices A and B, which is responsible for 
changing the e value, is set to zero, and according to (2) only 

Fig. 5. General view of the electrical part of DC motor model used to 
design the observer
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Fig. 6. Verifying model for the observer parameters calculations for DC motor prepared in Matlab-Simulink in a case of reduced model
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non-zero gain of input vector G may produce the estimated 
value of e ̂ . The system has been named DC2. Suppose that the 
G is specified as:
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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Fig. 5. General view of the electrical part of DC motor model used to
design the observer

the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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where gi and ge means observer gains for correcting loop of cur-
rent, and of BEMF, accordingly. Using the same parameters set 
as in previous example (9), the OSM is determined according 
to (3, 14, 16):
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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Fig. 5. General view of the electrical part of DC motor model used to
design the observer

the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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Determining the observer parameters...

0 0.05 0.1 0.15 0.2 0.25 0.3

0

20

40 measured current
estimated current

Time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3

0

10

20

30

measured speed
estimated speed

Fig. 3. The waveforms of measured and estimated current and speed
using presented observer parameters - test DC1

Time [s]
0.29 0.295 0.3 0.305 0.31 0.315 0.32 0.325 0.33 0.335 0.34

-10

-5

0

5

10

ref. dynamics Pref DC1
current error
speed error

Fig. 4. The step response waveforms, on estimation disruption for
designed the observer - test DC1

the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
forms overlap. The enlarged part of the observer performance
with the disruption introduction is shown in Fig. 4. The refer-
enced dynamics defined by Pre f DC1 is visible as a step response
printed as a solid line (waveform #1). The dashed and doted
lines are the estimation error waveforms for current and speed.
It is visible that designed dynamics of the observer is fulfilled
and all three waveforms decay at the same (designed) time.

3.2. DC motor - reduced order. As it was mentioned in pre-
vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is

R

sL
1

E

us i

Fig. 5. General view of the electrical part of DC motor model used to
design the observer

the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =
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Now, the state vector and input vector have form:

x =

[
i
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, u =
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where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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Let’s assume that the dynamics may be the same as previous, 
Pref DC2 = Pref DC1 (12). Solving equation (5) substituting (18) 
and (12), yields:
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the example, the resultant waveforms for direct connection to
supply are shown in Fig. 3, where a constant value of disrup-
tion (step 0 → 10 A and 0 →−10 rad

s ) is attached at the time
0.3 s. In general, in such case, estimated and measured wave-
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with the disruption introduction is shown in Fig. 4. The refer-
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vious paragraph, in order to use of the full order observer, the
information about torque load is required for proper operation.
It is possible to eliminate the mechanical part of the motor in
the observer structure, what reduces number of the inputs of
that observer, to the electrical variables only. Neither the load
torque nor the moment of inertia does not have to be identi-
fied. If such separated electrical part of the motor (dashed line
in Fig. 1) is to be used in the observer structure, they must
be properly interpreted. It is proposed that in place of calcu-
lated BEMF from the speed through kΦ gain, the BEMF is
calculated only using the correction loop of the observer. It
means, that at considered calculation step, the BEMF deriva-
tive is equal zero - the BEMF at considered calculation step is
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the constant. So, the model, which is used to design the ob-
server, has the form presented in Fig. 5. The E value means
constant at considered calculation step the BEMF value. Such
structure corresponds to the system which may be presented as
the state space model described by the matrices A,B,C (14):

A =

[
−R

L − 1
L

0 0

]
, B =

[
1
L
0

]
, C =

[
1 0

]
(14)

Now, the state vector and input vector have form:

x =

[
i
e

]
, u =

[
us

]
(15)

where e means back electromotive force. It is noticeable that
second row in matrices A and B, which is responsible for
changing the e value, is set to zero, and according to (2) only
non-zero gain of input vector G may produce the estimated
value of ê. Now, the system has been named DC2. Suppose
that the G is specified as:

GDC2 =

[
gi

ge

]
(16)

where gi and ge means observer gains for correcting loop of
current, and of BEMF, accordingly. Using the same param-
eters set as in previous example (9), the OSM is determined
according to (3)(14)(16):

OSMDC2 =

[
−gi −125 −100

−ge 0

]
(17)

and its characteristic polynomial has the following form:

POSMDC2(s) = s2 +(gi +125) · s−100 ·ge (18)

Let’s assume that the dynamics may be the same as previous,
Pre f DC2 = Pre f DC1 (12). Solving equation (5) substituting (18)
and (12), yields:

gi = 275 ge =−400 (19)

Similar to previous example the testing scheme (Fig. 6) and
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size
of input vector u, other parameters of the observer’s model,
and the observer’s input matrix G. The resulting waveforms
are presented in figures 7 and 8. Now, the situation is different.
The measured and estimated waveforms of current and speed
(speed is calculating by divide the ê by kΦ) are not overlapped
at transients, even in a case of zero initial error of current and
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Similar to previous example the testing scheme (Fig. 6) and 
testing procedure is used in this case. The DC motor parame-
ters are the same as previous, the differences are smaller size 
of input vector u, other parameters of the observer’s model, 
and the observer’s input matrix G. The resulting waveforms 
are presented in Figs. 7 and 8. Now, the situation is different. 
The measured and estimated waveforms of current and speed 
(speed is calculating by divide the e ̂  by kΦ) are not overlapped 
at transients, even in a case of zero initial error of current and 
speed. It is noticeable that the decay of the estimation error has 
different character than previously; however, the decay time of 
errors is equal to designed value (Fig. 8).

3.3. Observer for PMSM using extended state vector. To 
simplify the model, it is assumed that there is no windings in 
rotor, eddy currents and the effect of temperature is neglected, 
the flux produced by the rotor is constant [14]. It is assumed 
also the magnetic symmetry of the motor. In a case of motor 
model form, which is prepared to use in design the observer, 
it is convenient to use such form, which may be used without 
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor 
model is written in stationary αβ coordinates system. It ensures 
reliable conversion from three phase abc system to observer’s 
coordinates system, by means of Clarke transformation [15]. 
So, the PMSM model chosen to use in the observer has the 
following form (20–23):
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speed. It is noticeable that the decay of the estimation error has
different character than previously; however, the decay time of
errors is equal to designed value (Fig. 8).

3.3. Observer for PMSM using extended state vector. To
simplify the model, it is assumed that there is no windings in
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Fig. 9. Part of PMSM model used to prepare BEMF observer

rotor, eddy currents and the effect of temperature is neglected,
the flux produced by the rotor is constant [14]. It is assumed
also the magnetic symmetry of the motor. In a case of motor
model form, which is prepared to use in design the observer,
it is convenient to use such form, which may be used without
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor
model is written in stationary αβ coordinates system. It en-
sures reliable conversion from three phase abc system to ob-
server’s coordinates system, by means of Clarke transforma-
tion [15]. So, the PMSM model chosen to use in the observer
has the following form (20-23):

diα
dt

=−Rs

Ls
· iα − 1

Ls
· eα +

1
Ls

·uα

diβ
dt

=−Rs

Ls
· iβ − 1

Ls
· eβ +

1
Ls

·uβ

(20)

eα =−ke ·Ψ f ·ω · sin(Θ)

eβ = ke ·Ψ f ·ω · cos(Θ)
(21)

Ψα = Ls · iα +Ψ f · cos(Θ)

Ψβ = Ls · iβ −Ψ f · sin(Θ)
(22)

dω
dt

=
1
J
·
(
Ψβ · iα −Ψα · iβ −TL

)

dΘ
dt

= ω
(23)

where uα , uβ , means the components of input voltage, iα , iβ ,
the components of currents, Ψα , Ψβ , eα and eβ , means flux
and BEMF in the αβ axis respectively, and Ψ f means flux ex-
cited by permanent magnet. The load torque is represented by
symbol TL, ω is the mechanical speed. The Rs means the wind-
ings resistance, Ls means the windings inductance, Θ means
shaft position, and J is the total moment of inertia. The mo-
tor model with state variables iα , iβ , ω and Θ is non–linear.
However, all state variables are measurable, to avoid the use
of mechanical sensor, the speed and position should be esti-
mated. For instance, it is possible to estimate the BEMF and
then calculate the shaft position and/or speed. According to the
method presented in [16] it is convenient to use only first two
electrical equations (20), in which the BEMF components are
considered as disturbances. It results that there is no need to
identify J, Ψ f and also the TL. The part of the PMSM model,
which is used to prepare the BEMF observer, has the form pre-
sented in Fig. 9. It can be noticed, that this structure is similar
to structure presented in Fig. 5. In such approach, the state
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speed. It is noticeable that the decay of the estimation error has
different character than previously; however, the decay time of
errors is equal to designed value (Fig. 8).

3.3. Observer for PMSM using extended state vector. To
simplify the model, it is assumed that there is no windings in
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rotor, eddy currents and the effect of temperature is neglected,
the flux produced by the rotor is constant [14]. It is assumed
also the magnetic symmetry of the motor. In a case of motor
model form, which is prepared to use in design the observer,
it is convenient to use such form, which may be used without
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor
model is written in stationary αβ coordinates system. It en-
sures reliable conversion from three phase abc system to ob-
server’s coordinates system, by means of Clarke transforma-
tion [15]. So, the PMSM model chosen to use in the observer
has the following form (20-23):
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1
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(20)

eα =−ke ·Ψ f ·ω · sin(Θ)

eβ = ke ·Ψ f ·ω · cos(Θ)
(21)

Ψα = Ls · iα +Ψ f · cos(Θ)

Ψβ = Ls · iβ −Ψ f · sin(Θ)
(22)

dω
dt

=
1
J
·
(
Ψβ · iα −Ψα · iβ −TL

)

dΘ
dt

= ω
(23)

where uα , uβ , means the components of input voltage, iα , iβ ,
the components of currents, Ψα , Ψβ , eα and eβ , means flux
and BEMF in the αβ axis respectively, and Ψ f means flux ex-
cited by permanent magnet. The load torque is represented by
symbol TL, ω is the mechanical speed. The Rs means the wind-
ings resistance, Ls means the windings inductance, Θ means
shaft position, and J is the total moment of inertia. The mo-
tor model with state variables iα , iβ , ω and Θ is non–linear.
However, all state variables are measurable, to avoid the use
of mechanical sensor, the speed and position should be esti-
mated. For instance, it is possible to estimate the BEMF and
then calculate the shaft position and/or speed. According to the
method presented in [16] it is convenient to use only first two
electrical equations (20), in which the BEMF components are
considered as disturbances. It results that there is no need to
identify J, Ψ f and also the TL. The part of the PMSM model,
which is used to prepare the BEMF observer, has the form pre-
sented in Fig. 9. It can be noticed, that this structure is similar
to structure presented in Fig. 5. In such approach, the state
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speed. It is noticeable that the decay of the estimation error has
different character than previously; however, the decay time of
errors is equal to designed value (Fig. 8).

3.3. Observer for PMSM using extended state vector. To
simplify the model, it is assumed that there is no windings in
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rotor, eddy currents and the effect of temperature is neglected,
the flux produced by the rotor is constant [14]. It is assumed
also the magnetic symmetry of the motor. In a case of motor
model form, which is prepared to use in design the observer,
it is convenient to use such form, which may be used without
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor
model is written in stationary αβ coordinates system. It en-
sures reliable conversion from three phase abc system to ob-
server’s coordinates system, by means of Clarke transforma-
tion [15]. So, the PMSM model chosen to use in the observer
has the following form (20-23):

diα
dt

=−Rs

Ls
· iα − 1

Ls
· eα +

1
Ls

·uα

diβ
dt

=−Rs
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· iβ − 1

Ls
· eβ +

1
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·uβ

(20)

eα =−ke ·Ψ f ·ω · sin(Θ)

eβ = ke ·Ψ f ·ω · cos(Θ)
(21)

Ψα = Ls · iα +Ψ f · cos(Θ)

Ψβ = Ls · iβ −Ψ f · sin(Θ)
(22)

dω
dt

=
1
J
·
(
Ψβ · iα −Ψα · iβ −TL

)

dΘ
dt

= ω
(23)

where uα , uβ , means the components of input voltage, iα , iβ ,
the components of currents, Ψα , Ψβ , eα and eβ , means flux
and BEMF in the αβ axis respectively, and Ψ f means flux ex-
cited by permanent magnet. The load torque is represented by
symbol TL, ω is the mechanical speed. The Rs means the wind-
ings resistance, Ls means the windings inductance, Θ means
shaft position, and J is the total moment of inertia. The mo-
tor model with state variables iα , iβ , ω and Θ is non–linear.
However, all state variables are measurable, to avoid the use
of mechanical sensor, the speed and position should be esti-
mated. For instance, it is possible to estimate the BEMF and
then calculate the shaft position and/or speed. According to the
method presented in [16] it is convenient to use only first two
electrical equations (20), in which the BEMF components are
considered as disturbances. It results that there is no need to
identify J, Ψ f and also the TL. The part of the PMSM model,
which is used to prepare the BEMF observer, has the form pre-
sented in Fig. 9. It can be noticed, that this structure is similar
to structure presented in Fig. 5. In such approach, the state
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speed. It is noticeable that the decay of the estimation error has
different character than previously; however, the decay time of
errors is equal to designed value (Fig. 8).

3.3. Observer for PMSM using extended state vector. To
simplify the model, it is assumed that there is no windings in
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rotor, eddy currents and the effect of temperature is neglected,
the flux produced by the rotor is constant [14]. It is assumed
also the magnetic symmetry of the motor. In a case of motor
model form, which is prepared to use in design the observer,
it is convenient to use such form, which may be used without
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor
model is written in stationary αβ coordinates system. It en-
sures reliable conversion from three phase abc system to ob-
server’s coordinates system, by means of Clarke transforma-
tion [15]. So, the PMSM model chosen to use in the observer
has the following form (20-23):

diα
dt

=−Rs

Ls
· iα − 1

Ls
· eα +

1
Ls

·uα

diβ
dt

=−Rs

Ls
· iβ − 1

Ls
· eβ +

1
Ls

·uβ

(20)

eα =−ke ·Ψ f ·ω · sin(Θ)

eβ = ke ·Ψ f ·ω · cos(Θ)
(21)

Ψα = Ls · iα +Ψ f · cos(Θ)

Ψβ = Ls · iβ −Ψ f · sin(Θ)
(22)

dω
dt

=
1
J
·
(
Ψβ · iα −Ψα · iβ −TL

)

dΘ
dt

= ω
(23)

where uα , uβ , means the components of input voltage, iα , iβ ,
the components of currents, Ψα , Ψβ , eα and eβ , means flux
and BEMF in the αβ axis respectively, and Ψ f means flux ex-
cited by permanent magnet. The load torque is represented by
symbol TL, ω is the mechanical speed. The Rs means the wind-
ings resistance, Ls means the windings inductance, Θ means
shaft position, and J is the total moment of inertia. The mo-
tor model with state variables iα , iβ , ω and Θ is non–linear.
However, all state variables are measurable, to avoid the use
of mechanical sensor, the speed and position should be esti-
mated. For instance, it is possible to estimate the BEMF and
then calculate the shaft position and/or speed. According to the
method presented in [16] it is convenient to use only first two
electrical equations (20), in which the BEMF components are
considered as disturbances. It results that there is no need to
identify J, Ψ f and also the TL. The part of the PMSM model,
which is used to prepare the BEMF observer, has the form pre-
sented in Fig. 9. It can be noticed, that this structure is similar
to structure presented in Fig. 5. In such approach, the state
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Fig. 6. Verifying model for the observer parameters calculations for
DC motor prepared in Matlab-Simulink in a case of reduced model
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speed. It is noticeable that the decay of the estimation error has
different character than previously; however, the decay time of
errors is equal to designed value (Fig. 8).
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simplify the model, it is assumed that there is no windings in
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rotor, eddy currents and the effect of temperature is neglected,
the flux produced by the rotor is constant [14]. It is assumed
also the magnetic symmetry of the motor. In a case of motor
model form, which is prepared to use in design the observer,
it is convenient to use such form, which may be used without
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor
model is written in stationary αβ coordinates system. It en-
sures reliable conversion from three phase abc system to ob-
server’s coordinates system, by means of Clarke transforma-
tion [15]. So, the PMSM model chosen to use in the observer
has the following form (20-23):
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eα =−ke ·Ψ f ·ω · sin(Θ)

eβ = ke ·Ψ f ·ω · cos(Θ)
(21)

Ψα = Ls · iα +Ψ f · cos(Θ)

Ψβ = Ls · iβ −Ψ f · sin(Θ)
(22)

dω
dt

=
1
J
·
(
Ψβ · iα −Ψα · iβ −TL

)

dΘ
dt

= ω
(23)

where uα , uβ , means the components of input voltage, iα , iβ ,
the components of currents, Ψα , Ψβ , eα and eβ , means flux
and BEMF in the αβ axis respectively, and Ψ f means flux ex-
cited by permanent magnet. The load torque is represented by
symbol TL, ω is the mechanical speed. The Rs means the wind-
ings resistance, Ls means the windings inductance, Θ means
shaft position, and J is the total moment of inertia. The mo-
tor model with state variables iα , iβ , ω and Θ is non–linear.
However, all state variables are measurable, to avoid the use
of mechanical sensor, the speed and position should be esti-
mated. For instance, it is possible to estimate the BEMF and
then calculate the shaft position and/or speed. According to the
method presented in [16] it is convenient to use only first two
electrical equations (20), in which the BEMF components are
considered as disturbances. It results that there is no need to
identify J, Ψ f and also the TL. The part of the PMSM model,
which is used to prepare the BEMF observer, has the form pre-
sented in Fig. 9. It can be noticed, that this structure is similar
to structure presented in Fig. 5. In such approach, the state
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Fig. 6. Verifying model for the observer parameters calculations for
DC motor prepared in Matlab-Simulink in a case of reduced model
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speed. It is noticeable that the decay of the estimation error has
different character than previously; however, the decay time of
errors is equal to designed value (Fig. 8).

3.3. Observer for PMSM using extended state vector. To
simplify the model, it is assumed that there is no windings in
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rotor, eddy currents and the effect of temperature is neglected,
the flux produced by the rotor is constant [14]. It is assumed
also the magnetic symmetry of the motor. In a case of motor
model form, which is prepared to use in design the observer,
it is convenient to use such form, which may be used without
converting the coordinates systems using just estimated posi-
tion (which is calculated from BEMF). That’s why the motor
model is written in stationary αβ coordinates system. It en-
sures reliable conversion from three phase abc system to ob-
server’s coordinates system, by means of Clarke transforma-
tion [15]. So, the PMSM model chosen to use in the observer
has the following form (20-23):

diα
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Ls
· iα − 1

Ls
· eα +

1
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diβ
dt
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Ls
· iβ − 1

Ls
· eβ +

1
Ls

·uβ

(20)

eα =−ke ·Ψ f ·ω · sin(Θ)

eβ = ke ·Ψ f ·ω · cos(Θ)
(21)

Ψα = Ls · iα +Ψ f · cos(Θ)

Ψβ = Ls · iβ −Ψ f · sin(Θ)
(22)

dω
dt

=
1
J
·
(
Ψβ · iα −Ψα · iβ −TL

)

dΘ
dt

= ω
(23)

where uα , uβ , means the components of input voltage, iα , iβ ,
the components of currents, Ψα , Ψβ , eα and eβ , means flux
and BEMF in the αβ axis respectively, and Ψ f means flux ex-
cited by permanent magnet. The load torque is represented by
symbol TL, ω is the mechanical speed. The Rs means the wind-
ings resistance, Ls means the windings inductance, Θ means
shaft position, and J is the total moment of inertia. The mo-
tor model with state variables iα , iβ , ω and Θ is non–linear.
However, all state variables are measurable, to avoid the use
of mechanical sensor, the speed and position should be esti-
mated. For instance, it is possible to estimate the BEMF and
then calculate the shaft position and/or speed. According to the
method presented in [16] it is convenient to use only first two
electrical equations (20), in which the BEMF components are
considered as disturbances. It results that there is no need to
identify J, Ψ f and also the TL. The part of the PMSM model,
which is used to prepare the BEMF observer, has the form pre-
sented in Fig. 9. It can be noticed, that this structure is similar
to structure presented in Fig. 5. In such approach, the state
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TL, ω is the mechanical speed. The Rs means the windings resis-
tance, Ls means the windings inductance, Θ means shaft posi-
tion, and J is the total moment of inertia. The motor model with 
state variables iα, iβ, ω and Θ is non-linear. However, all state 
variables are measurable, to avoid the use of mechanical sensor, 
the speed and position should be estimated. For instance, it is 
possible to estimate the BEMF and then calculate the shaft po-
sition and/or speed. According to the method presented in [16] 
it is convenient to use only first two electrical equations (20), 
in which the BEMF components are considered as disturbances. 
Hence there is no need to identify J, Ψf  and also the TL. The 
part of the PMSM model, which is used to prepare the BEMF 
observer, has the form presented in Fig. 9. It can be noticed that 
this structure is similar to structure presented in Fig. 5. The state 
vector and input vector have been presented below accordingly:

	

Determining the observer parameters...

vector and input vector has been presented below:

xα/β =

[
iα/β

eα/β

]
, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):

dîα
dt

=−Rs

Ls
· îα − 1

Ls
· êα +

1
Ls

·uα +gi
(
iα − îα

)
(25)

dîβ
dt

=−Rs

Ls
· îβ − 1

Ls
· êβ +

1
Ls

·uβ +gi

(
iβ − îβ

)
(26)

dêα

dt
= ge

(
iα − îα

)
(27)

dêβ

dt
= ge

(
iβ − îβ

)
(28)

where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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For that system the Luenberger observer is used. In presented 
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the 
currents. In a case of the assumption of the magnetic symmetry, 
the observer may have the same form for both – α and β coor-
dinate axes, and is easily realized as two independent observers 
for every axis. Such form, without joining the axis matrices 
together into one bigger matrix, may be easier in some ap-
plications in a case of programing for microprocessor systems 
without matrix maths. Assuming that at considered calculation 

step, the BEMF derivative is equal zero (as was made in sec-
tion 3.2), one can write the observer equations as (25–28):
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vector and input vector has been presented below:

xα/β =

[
iα/β

eα/β

]
, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):
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)
(25)

dîβ
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where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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vector and input vector has been presented below:

xα/β =
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iα/β

eα/β
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, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):

dîα
dt

=−Rs

Ls
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where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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vector and input vector has been presented below:

xα/β =

[
iα/β

eα/β

]
, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):

dîα
dt

=−Rs

Ls
· îα − 1

Ls
· êα +

1
Ls

·uα +gi
(
iα − îα

)
(25)

dîβ
dt

=−Rs

Ls
· îβ − 1

Ls
· êβ +

1
Ls

·uβ +gi

(
iβ − îβ

)
(26)

dêα

dt
= ge

(
iα − îα

)
(27)

dêβ

dt
= ge

(
iβ − îβ

)
(28)

where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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vector and input vector has been presented below:

xα/β =

[
iα/β

eα/β

]
, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):

dîα
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(26)

dêα
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(
iα − îα
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dêβ
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(
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where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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where gi is the estimated currents gain, and ge is the estimated 
BEMF gain. This set of equations (25–28) may be presented in 
the form of matrix equation:
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vector and input vector has been presented below:

xα/β =

[
iα/β

eα/β

]
, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):

dîα
dt

=−Rs

Ls
· îα − 1
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· êα +

1
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·uα +gi
(
iα − îα

)
(25)

dîβ
dt
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· îβ − 1
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1
Ls
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(
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)
(26)

dêα
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(
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)
(27)

dêβ
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(
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)
(28)

where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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where G is an array of the correction gains (observer’s input 
vector), and ∆i = i ¡ i ̂ . Considering this configuration as 
a modification of system from section 3.2, for every axis of 
the coordinates system, it is possible to create the independent 
state space model to use as the observer in form (14). The 
observer parameters depend only on the PMSM parameters, 
and observer’s performance is independent of the control 
methods of the PMSM. However, it should be mentioned that 
the sensorless drive working quality may depend on type of 
controllers or their settings, due to estimation error depen-
dency to the dynamics of the BEMF. As used in an example, 
the control structure is typical for vector control method, 
with inner current control loop in dq coordinates system and 
with outer speed control loop. The waveforms show the ob-
server the performance in a case of parameter selection using 
proposed method. The part of the control structure used for 
BEMF estimation is shown in Fig. 10, where obs_alpha and 

Fig. 10. Part of the control structure of PMSM with estimation structure of BEMF, which consist of two independent observeres for α and β axis

Fig. 9. Part of PMSM model used to prepare BEMF observer
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obs_beta have inner structure presented in Fig. 11. Signals at 
inputs 1 and 2 (Fig. 10) are measured voltages and currents, 
signals at outputs 1‒4 are the estimated (marked as ∧) values 
of current and BEMF in axes α and β. Similar to Section 3.2, 
the observer has the same form (Fig. 11) in both axis α and β. 
To verify the decay of the estimation error, similar to previous 
example the testing scheme, and similar testing procedure is 
used.

Consider the PMSM drive, where maximal speed is equal 
100 rad

s . It follows that in assumption the one pair of poles, the 
fastest BEMF period (the worst case from the point of view of 
the observer operation) covers about 63 ms. The proper design 
of the observer’s dynamics is a very important stage in case of 
use the observer as a part of sensorless control in the closed 
mode, where estimated values are used in the control chain. The 
open mode in the context of sensorless operation means that 
the estimated values are used only to view the not measured 
state variables. Presented below waveforms were prepared in 
open mode, in order to preserve clean operation of an observer. 
The control system which is used, it is the typical field oriented 
control (FOC) method for the PMSM. It covers cascade control 
structure, using closed speed control loop with inner current 
control loops. They contain separate controllers in d and q axis, 
and also a PWM inverter with carrier frequency equal 10 kHz. 
Drive model was prepared using SimPowerSystems library of 
Matlab-Simulink.

Suppose also that about 1/20 of BEMF period (3 ms) 
gives enough time to get acceptable accuracy of BEMF esti-
mation at steady state of the drive. For the considered system, 
the simplified method to find the characteristic polynomial, 
involves finding the parameter a of equation (s ¡ a)2 which 
gives the settling time as close as possible to designed value 

(3 ms). In a case of a = –3200, the designed dynamics may 
be described as:

	 Pref
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vector and input vector has been presented below:

xα/β =

[
iα/β

eα/β

]
, uα/β =

[
uα/β

]
(24)

For that system the Luenberger observer is used. In presented
realization, the proportional type of correction is used. It uti-
lizes the error between measured and estimated value of the
currents. In a case of the assumption of the magnetic symme-
try, the observer may have the same form for both - α and β
coordinate axes, and is easily realized as two independent ob-
servers for every axis. Such form, without joining the axis ma-
trices together into one bigger matrix, may be easier in some
applications in a case of programing for microprocessor sys-
tems without matrix maths. Assuming that at considered cal-
culation step, the BEMF derivative is equal zero (as was made
in section 3.2), one can write the observer equations as (25-28):

dîα
dt

=−Rs

Ls
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1
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·uα +gi
(
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)
(25)
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(26)
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(27)

dêβ
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(
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)
(28)

where gi is the estimated currents gain, and ge is the estimated
BEMF gain. This set of equations (25-28) may be presented in
the form of matrix equation:

ˆ̇x = A · x̂ +B ·u+G [∆ i] (29)

where G is an array of the correction gains (observer’s in-
put vector), and ∆ i = i− î. Considering this configuration as
a modification of system from section 3.2, for every axis of
the coordinates system, it is possible to create the independent
state space model to use as the observer in form (14). The ob-
server parameters depend only on the PMSM parameters, and
observer’s performance is independent of the control methods
of the PMSM. However, it should be mentioned that the sensor-
less drive working quality may depend on type of controllers
or their settings, due to estimation error dependency to the dy-
namics of the BEMF. As used in an example, the control struc-
ture is typical for vector control method, with inner current
control loop in dq coordinates system and with outer speed
control loop. The waveforms show the observer the perfor-
mance in a case of parameter selection using proposed method.
The part of the control structure used for BEMF estimation is
shown in Fig. 10, where ”obs_al pha” and ”obs_beta” has in-
ner structure presented in figure 11. Signals at inputs 1 and 2
(Fig. 10) are measured voltages and currents, signals at outputs
1− 4 are the estimated (marked as "^") values of current and
BEMF in axes α and β . Similar to section 3.2, the observer
has the same form (Fig. 11) in both axis α and β . To verify the
decay of the estimation error, similar to previous example the
testing scheme, and similar testing procedure is used.

Consider the PMSM drive, where maximal speed is equal
100 rad

s . It follows that in assumption the one pair of poles, the

Fig. 10. Part of the control structure of PMSM with estimation struc-
ture of BEMF, which consist of two independent observeres for α and
β axis

Fig. 11. Verifying model for the observer parameters calculations for
PMSM prepared in Matlab-Simulink for one axis

fastest BEMF period (the worst case from the point of view of
the observer operation) covers about 63 ms. The proper de-
sign of the observer’s dynamics is a very important stage in
case of use the observer as a part of sensorless control in the
closed mode, where estimated values are used in the control
chain. The open mode in the context of sensorless operation
means that the estimated values are used only to view the not
measured state variables. Presented below waveforms were
prepared in open mode, in order to preserve clean operation
of an observer. The control system which is used, it is the
typical field oriented control (FOC) method for the PMSM.
It covers cascade control structure, using closed speed control
loop with inner current control loops. They contain separate
controllers in d and q axis, and also a PWM inverter with car-
rier frequency equal 10 kHz. Drive model was prepared using
SimPowerSystems library of Matlab-Simulink.
Suppose also that about 1/20 of BEMF period (3 ms) gives
enough time to get acceptable accuracy of BEMF estimation
at steady state of the drive. For the considered system, the sim-
plified method to find the characteristic polynomial, involves
finding the parameter a of equation (s− a)2 which gives the
settling time as close as possible to designed value (3 ms). In
a case of a =−3200, the designed dynamics may be described
as:

Pre f PMSM(s) = s2 +6400 · s+10240000 (30)

and its step response is presented in Fig. 14 ("norm ref. dy-
namics" - waveform #1) where step change of estimation error
is involved at time t = 0.1 s (Fig. 13, 14, 15).
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and its step response is presented in Fig. 14 (“norm ref. dy-
namics” – waveform #1) where step change of estimation error 
is involved at time t = 0.1 s (Fig. 13–15).

For considered parameter set:

	

K. Urbanski

Time [s]
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ω

Fig. 12. Measured speed ω waveform obtained for set of step change
of reference speed ωre f : 0 → 40 → 100 → 0 → 60 [ rad

s ]. This figure
is the reference for Fig. 13. Test PMSM

For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-100

0

100 e
β

e
β  est

Fig. 13. Waveforms of BEMF and theirs estimated values according
to Fig. 12: up - BEMF in α axis and its estimated value, down -
BEMF in β axis and its estimated value - test PMSM
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Fig. 14. Zoomed and normalized view for step response waveforms
on estimation disruption, for one phase (α) - simulation
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Fig. 15. Zoomed and normalized view for step response waveforms
on estimation disruption, for one phase (α) - experiment

In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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the calculated matrices have form:
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Fig. 12. Measured speed ω waveform obtained for set of step change
of reference speed ωre f : 0 → 40 → 100 → 0 → 60 [ rad

s ]. This figure
is the reference for Fig. 13. Test PMSM

For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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Fig. 12. Measured speed ω waveform obtained for set of step change
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s ]. This figure
is the reference for Fig. 13. Test PMSM

For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-100

0

100

e
α

e
α est

Time [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-100

0

100 e
β

e
β  est

Fig. 13. Waveforms of BEMF and theirs estimated values according
to Fig. 12: up - BEMF in α axis and its estimated value, down -
BEMF in β axis and its estimated value - test PMSM

Time [s]
0.0995 0.1 0.1005 0.101 0.1015 0.102 0.1025 0.103

-1

-0.5

0

0.5

1

norm. ref. dynamics Pref PMSM
norm. estimation current error
norm. estimation BEMF error

Fig. 14. Zoomed and normalized view for step response waveforms
on estimation disruption, for one phase (α) - simulation

Time [s]
0.0995 0.1 0.1005 0.101 0.1015 0.102 0.1025 0.103

-1

-0.5

0

0.5

1

norm. ref. dynamics Pref PMSM
norm. estimation current error
norm. estimation BEMF error

Fig. 15. Zoomed and normalized view for step response waveforms
on estimation disruption, for one phase (α) - experiment

In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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of reference speed ωre f : 0 → 40 → 100 → 0 → 60 [ rad
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For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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Fig. 12. Measured speed ω waveform obtained for set of step change
of reference speed ωre f : 0 → 40 → 100 → 0 → 60 [ rad

s ]. This figure
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For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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Fig. 11. Verifying model for the observer parameters calculations for PMSM prepared in Matlab-Simulink for one axis
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Fig. 12. Measured speed ω waveform obtained for set of step change
of reference speed ωre f : 0 → 40 → 100 → 0 → 60 [ rad
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is the reference for Fig. 13. Test PMSM

For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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Solving equation (5) substituting (35) and (30), yelds:
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Fig. 12. Measured speed ω waveform obtained for set of step change
of reference speed ωre f : 0 → 40 → 100 → 0 → 60 [ rad

s ]. This figure
is the reference for Fig. 13. Test PMSM

For considered parameter set:

Rs = 0.7 Ω Ls = 5.7 mH (31)

the calculated matrices have form:

Aα/β =

[
−122.1 −174.4

0 0

]
, Bα/β =

[
174.4

0

]

Cα/β =
[

1 0
] (32)

Now, because of assumption of magnetic symmetry in α and
β axes, the G matrix is specified similar as (16):

GPMSM =

[
gi

ge

]
(33)

and according to (3)(32)(33), the resulting OSM has form:

OSMPMSM =

[
−gi −122.1 −174.4

−ge 0

]
(34)

Characteristic polynomial of OSMPMSM is presented below:

POSMPMSM(s) = s2 +(gi +122.1) · s−174.4 ·ge (35)

Solving equation (5) substituting (35) and (30) , yelds:

gi = 6278 ge =−58709 (36)

In this case, testing procedure includes operation of PMSM
using FOC and the set of reference speed step changes, as is
shown in Fig. 12. At time equaled 0.1 s a step disturbance in
current correcting loop and also in BEMF correcting loop was
introduced as is shown in Fig. 11. In Fig. 13 waveforms of
BEMF and their estimated values are shown, according to the
speed trajectory from Fig. 12. It is visible that the proper es-
timation of BEMF and its accuracy strongly depends on speed
and the designed dynamics of the observer. This is because ob-
served values still follow the constantly changing BEMF val-
ues. It is constantly transient state in a case of non-zero speed
value. In order to get clean view on decay of the estimation
error, a zero speed term was chosen. This introduced disrup-
tion at time 0.1 s in form of step from 0 to −10 [A,V ] results
with initial error of estimated BEMF equal −10 [V ] however,
in a case of such combination of disruption, this error increases
temporary, while decreasing the current does not crossing zero
error. It is visible in Fig. 14, where all waveforms were normal-
ized in order to get clear view. Then, estimating BEMF start to
approach the real value. Despite this, estimated BEMF decays
but with the designed dynamics (Fig. 14, waveform #1).
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Fig. 13. Waveforms of BEMF and theirs estimated values according
to Fig. 12: up - BEMF in α axis and its estimated value, down -
BEMF in β axis and its estimated value - test PMSM
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Fig. 14. Zoomed and normalized view for step response waveforms
on estimation disruption, for one phase (α) - simulation
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Fig. 15. Zoomed and normalized view for step response waveforms
on estimation disruption, for one phase (α) - experiment

In order to confirm propriety of presented considerations an
experimental test was performed. It was used 1.23 kW PMSM,
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dynam-
ics of estimation error decay is the same as in (30). The exper-
iment was carried out for reference speed ωre f = 1 rad

s (sensor
mode). The disruption in form of step from 0 to −10 [A,V ]
was introduced. In contrast to continuous form of the observer
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.� (36)

In this case, testing procedure includes operation of PMSM 
using FOC and the set of reference speed step changes, as is 
shown in Fig. 12. At time equal 0.1 s a step disturbance in cur-
rent correcting loop and also in BEMF correcting loop was 
introduced as shown in Fig. 11. In Fig. 13 waveforms of BEMF 
and their estimated values are shown, according to the speed 
trajectory from Fig. 12. It is visible that the proper estimation 
of BEMF and its accuracy strongly depends on speed and the 
designed dynamics of the observer. This is because observed 
values still follow the constantly changing BEMF values. It is 

constantly transient state in a case of non-zero speed value. In 
order to obtain a clean view of decay of the estimation error, 
a zero speed term was chosen. This introduced disruption at 
time 0.1 s in form of step from 0 to –10 [A, V ] results with ini-
tial error of estimated BEMF equal –10 [V ] however, in a case 
of such combination of disruption, this error increases tempo-
rarily, while decreasing the current may only result in zero error. 
It is visible in Fig. 14, where all waveforms were normalized 
in order to obtain clear view. Then, estimating BEMF start to 
approach the real value. Despite this, estimated BEMF decays 
but with the designed dynamics (Fig. 14, waveform #1).

In order to confirm propriety of presented considerations an 
experimental test was performed. It was used 1.23 kW PMSM, 
where Rs = 3 Ω and Ls = 3.6 mH. This motor has clearly dif-
ferent parameters than presented in (31) but the desired dy-
namics of estimation error decay is the same as in (30). The 
experiment was carried out for reference speed ωref  = 1  rad

s   
(sensor mode). The disruption in form of step from 0 to 
–10 [A, V ] was introduced. In contrast to continuous form of 
the observer (Fig. 11) which is used in previous examples, now 
a discrete form is used, with calculation period 100 μs. Obtained 
results are shown in Fig. 15. It is clear that the referenced dy-
namics of estimation error decay is achieved.

Fig. 15. Zoomed and normalized view for step response waveforms on 
estimation disruption, for one phase (α) – experiment
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Fig. 14. Zoomed and normalized view for step response waveforms on 
estimation disruption, for one phase (α) – simulation
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Fig. 13. Waveforms of BEMF and theirs estimated values according to 
Fig. 12: up – BEMF in α axis and its estimated value, down – BEMF 

in β axis and its estimated value – test PMSM
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Fig. 12. Measured speed ω waveform obtained for set of step change 
of reference speed ωref  : 0 ! 40 ! 100 ! 0 ! 60  rad

s . This figure is 
the reference for Fig. 13. Test PMSM
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4.	 Conclusions

In the paper, a method of determining the parameters of BEMF 
observer was presented, in case of DC motor and PMSM. The 
calculation procedure of the observer parameters is directly 
derived from the primary materials presented by Luenberger 
adapted to a case of the observer for DC motor. However, to 
achieve the proper observer operation, this approach requires 
information on load torque. Its actual value must, however, be 
measured or estimated. In some applications it may be difficult 
or impossible to obtain. In such approach it is important to no-
tice the difference in C matrix, in a case of model of DC motor 
to use in simulating (identity matrix 2£2), and in case of DC 
motor model in form to use in the observer (size 1£2). In ad-
dition, a whole model of object must be known, both electrical 
parameters and mechanical. That is why the simpler model for 
DC motor is prepared to build the observer. Such model does 
not require identifying mechanical parameters, and in particular, 
it does not require the information on the actual load torque. The 
cost of that simplification is bigger (in comparison to previous 
implementation) estimation errors in transients of estimated 
signals, in the case of the same designed dynamics. Expanding 
this structure to two axes, we obtain a BEMF observer which 
estimates BEMF in two axes independently. Such a structure 
becomes the observer of BEMF in α and β axes for PMSM pre-
serving the simplicity of determination the observer parameters.

Obtaining a properly working observer in open mode is 
a relatively simple task. It is much more difficult to obtain 
a properly working sensorless drive in a closed mode. Expert 
knowledge is needed to accomplish this stage in order to prop-
erly choose the observer dynamics and dynamics of the con-
trollers for control chain of the drive, but that is another issue.
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