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Accepted: 28 July 2016 In many cases, a X control chart based on a performance variable is used in industrial
fields. Typically, the control chart monitors the measurements of a performance variable
itself. However, if the performance variable is too costly or impossible to measure, and a less
expensive surrogate variable is available, the process may be more efficiently controlled using
surrogate variables. In this paper, we present a model for the economic statistical design of
a VSI (Variable Sampling Interval) X control chart using a surrogate variable that is linearly
correlated with the performance variable. We derive the total average profit model from an
economic viewpoint and apply the model to a Very High Temperature Reactor (VHTR)
nuclear fuel measurement system and derive the optimal result using genetic algorithms.
Compared with the control chart based on a performance variable, the proposed model gives
a larger expected net income per unit of time in the long-run if the correlation between the
performance variable and the surrogate variable is relatively high. The proposed model was
confined to the sample mean control chart under the assumption that a single assignable
cause occurs according to the Poisson process. However, the model may also be extended to
other types of control charts using a single or multiple assignable cause assumptions such
as VSS (Variable Sample Size) X control chart, EWMA, CUSUM charts and so on.
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Notations

X – surrogate variable,
Y – performance variable,

nx – sample size for surrogate variable,
ny – sample size for performance variable,
µx – mean of surrogate variable,

µx,0 – mean of surrogate variable when the process
is in control,

µx,1 – mean of surrogate variable when the process
is out of control,

µy – mean of performance variable,
µy,0 – mean of performance variable when the

process is in control,
µy,1 – mean of performance variable when the

process is out of control,
σx – standard deviation of surrogate variable,
σy – standard deviation of performance vari-

able,
c – magnitude of the shift in the process mean

measured in σy unit,
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λ – number of the occurrence of an assignable
cause,

ρ – correlation coefficient between a surrogate
variable and a performance variable,

m – number of different sampling interval
length, m ≥ 2,

hj – j-th smallest sampling interval lengths,
j = 1, 2, . . ., m,

kj – j-th threshold limit, 0≤km≤kj ≤ . . .≤k1,
Ij – j-th sampling interval region using hj ,

j = 1, 2, . . ., m,
IC – in control time,
OC – out of control time,
FA – time to owing to false alarm,
AC – time to owing to assignable cause,

SN0 – expected number of samples in in-control
period,

SN1 – expected number of samples in out-of-
control period,

q
(0)
s – probability thatX fall outside the 1st con-

trol limits when µy = µy,0,

q
(1)
s – probability thatX fall outside the 1st con-

trol limits when µy = µy,0 + cσy,

q
(0)
j – probability that X belongs to Ij when

µy = µy,0,

q
(1)
j – probability that X belongs to Ij when

µy = µy,0 + cσy,

q
(1)
2 – probability that X fall outside the 2nd

control limits when µy = µy,0 + cσy,
R0 – number of false alarms when the signal is

in action region,
R1 – number of false alarms when the signal is

in I1 region,
a1 – cost for finding and eliminating an

assignable cause,
a′

2 – cost for identifying a false alarm,
a′′

2 – cost incurred from the lost production due
to a false alarm,

a3 – fixed sampling cost,
a4 – variable sampling cost,
b′1 – time required to find an assignable cause,
b′′1 – time required to eliminate an assignable

cause,
b2 – time required to identify a false alarm,
b3 – time required to take and interpret a sam-

ple,
i1 – net income per unit time in in-control

state,
i2 – net income per unit time in out-of-control

state,
I – net income per cycle,
I ′ – total income per cycle,

C1 – sampling cost per cycle,

C2 – per-cycle cost for searching and elimi-
nating an assignable cause,

τ – expected time of occurrence of an
assignable cause between the two ad-
jacent samples,

T – length of a cycle,
ARL0 – average run length when the process is

in control,
ARL1 – average run length when the process is

out of control,
ARLL – lower bound on average run length

when the process is in control,
ARLU – upper bound on average run length

when the process is out of control.

Introduction

Control charts are widely used to monitor and
detect different process variations. Controlling the
process variations prevents the manufacturing of
poor products, the need to rework products, and
waste. Shewhart control charts with fixed parameters
are typically slow to detect signals of an assignable
cause. Consequently, new alternatives to the She-
whart charts have been proposed to make up for
this weakness. However, a traditional approach to
sampling for control charts is taken from a process
with a fixed size and fixed time interval between
samples, and the resulting control chart is called
a fixed sampling interval (FSI) control chart. Re-
cent studies have shown that adaptive charts have
superior statistical and economic performance com-
pared to FSI control charts. Recent studies have
shown that adaptive charts have superior statistical
and economic performance compared to FSI control
charts.

Reynolds et al. [1] introduced the idea of a vari-
able sampling interval during the production process
based on recent data obtained from this process.
VSI control charts have received much attention, for
example, Reynolds and Arnold, Runger and Mont-
gomery, Reynolds, Costa and Rahim, Lin et al.,
Chew et al. and Zhang Min et al. [2–8].

In all of these studies, an inspection is performed
on the quality characteristic of interest (performance
variable). In some situations, it is impossible or not
economical to directly inspect the performance vari-
able. In such cases, the use of a surrogate variable
that is highly correlated with a performance variable
is an attractive alternative, especially when inspect-
ing the surrogate variable is relatively less expensive
than inspecting the performance variable. In a mea-
surement system for VHTR tristructural-isotropic
(TRISO) fuel, for example, a direct method for mea-
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suring the TRISO fuel diameter, which is essential for
the fabrication of the reactor fuel, requires very so-
phisticated equipment and high costs. When a direct
measurement of the performance variable is too ex-
pensive, a surrogate variable that is linearly correlat-
ed with the performance variable but less expensive
to measure may be considered instead of the perfor-
mance variable. In the measurement system example,
a Particle Size and Shape Analyzer (PSA) measure-
ment method is generally less accurate but much less
expensive than the X-ray measurement method and
does not produce radiation because PSA uses laser
diffraction to analyze the size grade and shape of the
particles. Thus, the PSA measurement value might
be used as a surrogate variable. Lee et al. [9] con-
sidered an economic design for the X-control chart
using a surrogate variable under the assumption that
a performance variable might not be used. Addition-
ally, Lee et al. [10] proposed an economic design idea
for the VSI X control chart using a surrogate vari-
able.
In this paper, we developed an economic statisti-

cal design for a VSIX control chart using a surrogate
variable with a genetic algorithm under the assump-
tion that the performance variable might not be used
and compared its results with a fixed X control chart
design. In the next section, an outline of the econom-
ic statistical model for the X control chart and its
underlying assumptions are described. In the devel-
opment of profit function section, the expected cycle
time and expected net income per cycle for the pro-
posed model are derived. The cost function is then
obtained as the ratio of these two quantities. In the
numerical comparisons using genetic algorithms sec-
tion, the proposed model is used to obtain the opti-
mum designs using the test input values in Panagos
et al. [11, PHM hereafter], and is then applied to the
measurement system for the nuclear fuel. In the sen-
sitivity analysis section, a sensitivity analysis of the
proposed model is presented for changes in the input
parameters. The final section briefly summarizes the
results obtained in this paper.

Assumptions and model specifications

Assumptions

Assume that each product possesses a continuous
performance variable Y that measures the degree to
which a product satisfies the stated or implied ex-
pectations of customers. If we consider a situation
in which measuring the performance variable is ex-
pensive, time-consuming, or even destructive, it is
attractive to use a surrogate variable X that is lin-
early correlated with the performance variable but

less expensive to measure in this situation. In such
cases, we can monitor the production process using
a control chart for only the surrogate variable, based
on the correlation between the performance and sur-
rogate variables obtained from the experiment per-
formed prior to production.

With this situation in mind, we propose an X
control chart based on only the surrogate variable.
For a more specific presentation of the model, we de-
scribe the nature of the process conditions and the
underlying statistical assumptions as follows:

• The process begins in the in-control state, with
the mean and variance of the performance vari-
able being µy and σy , respectively. An assignable
cause occurs according to a Poisson process with
an intensity of λ occurrences per unit of time. If an
assignable cause of the magnitude c occurs, then
the process mean shifts from µx to µy ± cσx.

• The surrogate variable X given Y = y is normal-
ly distributed with the mean λ1 + λ2y and vari-
ance σ2, where λ1 and λ2 are known constants.
λ2 is assumed to be positive so that X and Y
have a positive linear relationship. It can be eas-
ily shown that (X , Y ) follows a bivariate normal
distribution with the means (λ1 +λ2µy, µy), vari-
ances (λ2σ

2
y + σ2, σ2

y), and correlation coefficient

ρ = λ2σy/(λ2σ
2
y + σ2)1/2 (see Tang and Lo [12]).

• The time taken to find an assignable cause is b′1,
and the time required to eliminate it is b′′1 . The
time taken to identify a false alarm is b2, and the
time required to take and interpret a sample is b3.

• The cost for finding and eliminating an assignable
cause is a1, while the cost for identifying a false
alarm is a′

2 and the cost incurred from the lost
production due to a false alarm is a′′

2 . In addition,
the cost of sampling and testing for X variables is
a3 + a4nx, where a3 and a4 are fixed and variable
sampling costs, respectively, and nx is the sample
size. The net incomes per unit time of operation
in the in-control and out-of-control states are i1
and i2, respectively.

Model specification

Based on the previous assumptions, we developed
a model for an X control chart using a surrogate
variable. Let hj denote the time interval between X
samples, where the sampling interval is varied based
on the value of the preceding sample mean. In this
article, we assume that the VSI X control charts use
a finite number of interval lengths h1, . . ., hm, where
h1 ≥ . . . ≥ hm and m ≥ 2. The choice of a sam-
pling interval length can be represented by a sam-
pling interval, and let kj denote the j-th threshold
limit factors for an X control chart. Let the region
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between the two control limits be portioned into m
sub-regions as follows:

(

µ0 − kj
σX√

n
, µ0 − kj+1

σX√
n

)

∪
(

µ0 + kj+1
σX√

n
, µ0 + kj

σX√
n

)

for j = 1, 2, . . . , m − 1,
(

µ0 − kj
σX√

n
, µ0 + kj

σX√
n

)

for j = m,

(1)

where

0 ≤ km ≤ km−1 ≤ . . . ≤ k1,

σX = σx/
√

nx.

If we define ZX =
√

nx(X − µx)/σx, then the pro-
posed model can be summarized as follows:

Step 1. Take a sample of size nx after an interval
of hj time units (j >= 2).

Step 2. If |ZX | < k2 (if sampling falls in the sec-
ond outermost control lines), go to step 1. Otherwise,
go to step 3.

Step 3. If |ZX | < k1 (if sampling falls between
the first outermost control lines and second outer-
most control lines), go to step 4. Otherwise, stop the
process and go to step 4.

Step 4. If the alarm is false, go to step 1. Other-
wise, go to step 5.

Step 5. Identify and eliminate the assignable
cause. Go to step 1.

Figure 1 shows the monitoring procedures of the
proposed model.

An economic model can be formulated by intro-
ducing the total cost function, which reflects the rela-
tionships between the design parameters of the con-
trol charts and the several types of costs previously
discussed. Because the underlying process for the X
control chart using a surrogate variable is a renew-
al reward process, the long-run expected net income
per unit of time is given by

E(A) = lim
t→∞

E [TI(t)] /t = E(I)/E(T ), (2)

where TI(t) is the total net income until time t; I is
the net income per cycle, and T is the length of the
cycle. Thus, an economic design of the X control
chart using a surrogate variable is to determine the
values of hj , nx, and kj (j = 1, . . ., m) such that they
maximize the long-run expected net income per unit
of time.

Fig. 1. The monitoring procedures.

Although the economic design is most effective
from a purely economic point of view, it might have
undesirable statistical properties such as high type I
and/or type II error probabilities. To make the re-
sulting design satisfy both the cost effectiveness and
certain statistical requirements, we may add the de-
sired statistical constraints to the optimization pro-
cedure for the design parameters of the proposed
model. We now define the economic statistical de-
sign of the control charts as the design in which the
long-run expected net income per unit time is max-
imized subject to a lower bound on the in-control
ARL (ARLL) and an upper bound on the out-of-
control ARL (ARLU ), as in Montgomery et al. [13].
A model for the economic statistical design can be
formulated as follows:

Maximize E (A)

Subject to ARL0 > ARLL

ARL1 < ARLU ,

(3)

where ARL0 and ARL1 are the average run lengths
while in control and out of control, respectively.
These constraints on ARL can add sensitivity to the
shifts in the process mean to the economic model.
Note that ARL0 and ARL1 are the means of the geo-

metric distributions with parameters q
(0)
s and q

(1)
s ,

respectively. The constraints in (3) can be equiva-
lently expressed as follows:

k1 > Φ−1

(

1

1 − 1/2ARLL

)

, (4)
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1

(1 − Φ(k1 − λ2c
σy

σx

√
nx) + Φ(−k1 − λ2c

σy

σx

√
nx)

< ARLU ,

(5)

where Φ(·) and Φ−1(·) denote the standard normal
distribution function and the inverse standard nor-
mal distribution function, respectively.

Therefore, the economic statistical design is one
that maximizes E(A) subject to the constraints given
in (4) and (5). Note that k1 should be determined us-
ing computational iterations because (5) cannot be
explicitly solved with respect to k1 because of two
standard normal distribution functions.

Development of the profit function

In this section, we derive the expected cycle time
and expected net income per cycle for the proposed
model. The cost function, which is the long-run ex-
pected net income per unit of time, is then obtained
as the ratio of these two quantities.

Expected cycle time

In the proposed model, the process begins in the
in-control state and shifts from the in-control state to
the out-of-control state by an assignable cause. When
a signal is detected, the process is stopped immedi-
ately, and a search for an assignable cause is under-
taken to see whether it really exists. If an assignable
cause exists, it is eliminated and the process restarts.
Figure 2 shows the process cycle assumed in the pro-
posed model.

Fig. 2. The process cycle.

The cycle time for the discontinuous process con-
sists of four periods: an in-control period, an out-of-
control period, a period during which the process is
stopped due to a false alarm and a period for find-
ing and eliminating an assignable cause. From the
assumptions in the previous section, the expected
length of the in-control period is 1/λ. We next derive
the lengths of the three other periods.

(1) Expected length of the out-of-control period

Note that D takes one of h1, . . ., hm and that the
distribution of D is determined when the process
is in-control because the sampling interval is de-

termined by a previous sampling statistics value.
Reynolds et al. [1] assumed that

P (D = hj) =
hjq

(0)
j

m
∑

l=1

hlq
(0)
l

, j = 1, 2, . . ., m. (6)

Based on the conditional probability, the expect-
ed value of D, given that D = hj , is

E(D) =
m
∑

j=1

hjP (D = hj). (7)

Because we investigate the process state only if
X falls in the I1 region, the expected value of the
out-of-control period, E(OC), can be expressed as

E(OC) =

m
∑

j=2

hj

(

1

1 − r
(1)
2

− 1

)

q
(1)
j

1 − r
(1)
2

+E(D)−τ.

(8)

Under the assumption that an assignable cause
occurs according to a Poisson process, the expect-
ed time of τ , which is the time lag between the last
preceding sampling point and the time at which an
assignable cause occurs, can be expressed as

τ =
m
∑

j=1

P (D = hj)E(τ |D = hj). (9)

According to Duncan [14], τ is well approximated
as

E(τ |D = hj) =
1 − (1 + λhj)e

−λhj

λ(1 − e−λhj )
, j = 1, 2, . . ., m.

(2) Expected duration elapsed due to false alarms

Let R0 be the number of false alarm signals in an
action region before the process goes out of control.
We then obtain the expected number of samples in
the in-control period as follows

E(R0) = q(0)
s

m
∑

j=1

q
(0)
j e−λhj

(

1 − q
(0)
s −

m
∑

k=1

q
(0)
k e−λhk

)2

·
η
∑

l=1

q
(0)
l (1 − eλhj ).

(10)

A detailed derivation is given in Bai and Lee [15].

The expected duration elapsed due to false
alarms is then b2 times the expected number of X
samples taken before the shift. That is,
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E(FA) = b2q
(0)
s

m
∑

j=1

q
(0)
j e−λhj

(

1 − q
(0)
s −

m
∑

k=1

q
(0)
k e−hk

)2

·
m
∑

l=1

q
(0)
l (1 − e−λhl).

(11)

In this model, we investigate the process state by
performing the process if X falls in the I1 region, and
the expected duration is zero.

(3) Expected duration for finding and eliminating
an assignable cause

When the process is out of control, b′1 + b′′1 is tak-
en to find and eliminate an assignable cause. The
expected duration for finding and eliminating an
assignable cause is therefore

E(AC) = b3nx + b′1 + b′′1 . (12)

Adding up these four periods, we obtain the ex-
pected cycle time for the process as

E(T ) = E(IC) + E(OC) + E(FA) + E(AC). (13)

Expected net income

The expected net income per cycle for the dis-
continuous process can be written as

E(I) = E(I ′) − E(C1) − E(C2), (14)

where I ′ is the total income per cycle; C1 is the sam-
pling cost per cycle, and C2 is the per-cycle cost as-
sociated with finding, investigating, and if necessary,
eliminating an assignable cause when an X sample
mean falls outside the action or warning limits. We
next derive the expressions for the expected values
of these costs.

(1) Expected total income per cycle

The expected total income for an in-control pe-
riod is i1/λ, while that for an out-of-control period
is i2 times the expected length of the out-of-control
period. The expected total income per cycle is thus

E(I ′) = i1 ∗ E(IC) + i2 ∗ E(OC)

=
i1
λ

+ i2





m
∑

j=2

hj

(

1

1 − r
(1)
2

− 1

)

·
q
(1)
j

1 − r
(1)
2

+ E(D) − τ

)

.

(15)

(2) Expected sampling cost per cycle

Let SN be the expected number of samples in the
in-control period. We then get

SN0 =

m
∑

j=1

q
(0)
j e−λhj

(

1 − q
(0)
s −

m
∑

k=1

q
(0)
k e−λhk

)2

·
η
∑

l=1

q
(0)
l (1 − e−λhj ).

(16)

However, when the process is out-of-control, the
number of samples required to produce a signal is
a geometric random variable, and the corresponding
expected number of sampling is given by

SN1 =
1

(

1 − r
(1)
2

) . (17)

Therefore, the expected sampling cost per cycle
is given by

E(C1) = (a3 + a4nx)(SN + SN1)

= (a3 + a4nx)











m
∑

j=1

q
(0)
j e−λhj

(

1 − q
(0)
s −

m
∑

k=1

q
(0)
k e−λhk

)2

·
η
∑

l=1

q
(0)
l (1 − e−λhj ) +

1

(1 − r
(1)
2 )

)

.

(18)

Expected cost associated with an assignable cause and
false alarms per cycle

The expected cost incurred from false alarms is
given by

(a′

2 + a′′

2 )E(R0) + (a′

2)E(R1), (19)

where R1 is the number of false alarms when the
signal is in the I1 region. Because the expected cost
incurred from an assignable cause is a1, the corre-
sponding expected cost per cycle is given by

E(C2) = (a′

2 + a′′

2)E(R0)+(a′

2)E(R1)+
q
(1)
s

r
(1)
2

a1

+
q
(1)
1

r
(1)
1

a1 = (a′

2 + a′′

2)E(R0) + (a′

2)E(R1) + a1,

(20)

where

E(R1) = q
(0)
1

m
∑

j=1

q
(0)
j e−λhj

(

1 − q
(0)
s −

m
∑

k=1

q
(0)
k e−λhk

)2

·
η
∑

l=1

q
(0)
l (1 − eλhj ).
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The expected net income per cycle can be ob-
tained by subtracting (18) and (20) from (15).

Numerical comparisons

using genetic algorithms

The proposed model is applied to the test ex-
ample considered in PHM for comparison with the
economic model based on the performance variable.
It is assumed that ρ = 0.6 or 0.9, and the variable
sampling cost (a4) is one-tenth of the original values
in PHM because the process is monitored by a sur-
rogate variable, which is usually much cheaper to
measure. The values of the corresponding input pa-
rameters are given in Table 1. We perform a sensi-
tivity analysis for m = 2 and m = 3 but describe
only for m = 2 because we observed similar results
for m = 3. The optimal values of the design para-
meters h, nx, kw, and ka for m = 2 that maximize
E(A) subject to the constraints in (4) and (5) with
ARLL = 4 and ARLU = 500 were determined with
Evolver, a genetic algorithm optimization tool. Ge-
netic algorithms have been used in many engineering
areas such as industrial engineering, mechanical en-
gineering, aerospace engineering, etc., including sta-
tistical process control in Lin et al. [6]. The compu-
tational results are shown in Table 2. Based on the
results presented in Table 2, we may observe the fol-
lowing:
• When the correlation is high (ρ = 0.9), the pro-
posed economic model yields a higher income than
that of the PHM model for all cases. However,
when the correlation is low (ρ = 0.6), the proposed

economic model yields a higher income than that
of the PHM model. Thus, the proposed economic
model seems to be effective when ρ is relatively
large.

• When the correlation is high, the sample size nx

is smaller than or equal to ny for all cases.
• In all of the cases when the correlation is high, k1

is higher than 4.5, which is close to the bounds
set for the algorithm. This effectively means that
a minimal sample needs be taken just every once
in a while without stopping the process. The rea-
son for this result might be due to higher sampling
costs and a lower cost for identifying a false alarm,
comb ined with a smaller difference in the net in-
come per unit time between the in-control state
and out-of-control state.

• The higher the correlation is, the narrower the
warning region (k1 − k2) is. This implies that the
process needs to not stop to investigate a signal be-
cause the income earned from the process is larger
than the cost for identifying a false alarm.

• In a high correlation case, the yield of the pro-
posed economic model improves that of the PHM
model by about 14.9%, and the yield of the eco-
nomic statistical model is lower than that of the
proposed economic model by about 5%. In a low
correlation case, however, the proposed economic
model improved that of the PHM model by about
14%. This suggests that the statistical constraints
on ARL tend to have a greater influence on the
economic model when the correlation is high. As
a result, the higher the correlation is, the more
efficient the proposed economic model is.

Table 1
Cost and process parameters for the test examples.

Example Λ c i1 i2 a1 a′

2
a′′

2
a3 a4 b′

1
b′′
1

b2 b3

1 0.01 1 50 45 25 25 0.5 0.1 1.53 1.53 4.05 0.05

2 0.01 1 150 50 350 250 250 5.0 1.0 1.53 1.53 4.05 0.05

3 0.01 2 50 1 260 25 25 5.0 1.0 2.00 2.00 41.00 0.05

4 0.01 2 150 50 135 250 250 0.5 0.1 2.00 2.00 41.00 0.05

5 0.05 1 150 100 45 250 250 5.0 0.1 2.00 2.00 41.00 0.05

6 0.05 1 50 −50 350 25 25 0.5 1.0 2.00 2.00 41.00 0.05

7 0.05 2 150 100 260 250 250 0.5 1.0 1.53 1.53 4.05 0.05

8 0.05 2 50 −50 135 25 25 5.0 0.1 1.53 1.53 4.05 0.05

9 0.01 1 50 135 250 250 0.5 1.0 2.00 2.00 5.00 0.50

10 0.01 1 150 50 260 25 25 5.0 0.1 2.00 2.00 5.00 0.50
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Table 2
Optimum designs for the test examples.

Example
The PHM Model Proposed Economic Model Economic Statistical Model

ny h k E(A) ρ nx h1 h2 k2 k1 E(A) nx h1 h2 k2 k1 E(A)

1 17 2.75 3.14 45.91
0.6 3 1.2260 1.5702 3.4577 4.7195 47.3098 No optimal solutions to satisfy

the statistical constraints

0.9 3 1.1677 1.4638 4.5006 5.0000 47.3190 15 2.3632 2.6993 4.0520 4.1177 46.8807

2 17 6.33 2.95 134.11
0.6 5 4.9267 5.3084 3.1699 3.5047 138.3531 No optimal solutions to satisfy

the statistical constraints

0.9 3 3.0265 3.3633 4.4980 4.9346 138.9331 10 4.0523 4.5867 3.5890 3.5894 138.1326

3 6 6.46 3.46 42.08
0.6 2 4.5738 4.9087 3.9109 5.0000 43.4797 14 4.7446 5.4723 4.9185 5.0000 43.0161

0.9 1 4.5467 4.8543 4.2178 4.9999 43.5203 5 4.3012 5.0266 4.7329 4.7967 43.3611

4 8 1.54 4.31 140.89
0.6 3 2.8098 3.0576 3.4878 4.5272 155.2805 14 0.8120 1.1877 4.9606 4.9822 140.9394

0.9 1 0.7591 1.2287 3.8348 4.8121 156.0762 3 2.5539 3.1589 3.8639 3.8673 140.9695

5 26 2.41 3.76 117.73
0.6 2 2.7464 3.0693 3.3833 5.0000 143.7728 No optimal solutions to satisfy

the statistical constraints

0.9 1 2.7759 3.0776 4.6407 4.9998 144.1059 9 4.4247 4.6776 3.4390 3.4398 117.6276

6 12 2.48 2.75 14.04
0.6 9 0.1338 0.5577 3.3537 4.9849 23.6282 No optimal solutions to satisfy

the statistical constraints

0.9 4 1.1914 1.4230 3.3796 4.9733 24.1031 10 5.21824 5.4498 1.6464 3.3440 17.9919

7 5 2.01 3.32 114.93
0.6 3 5.0897 5.3126 2.6068 3.5264 127.2332 14 1.6124 2.2941 5.0000 5.0000 113.8980

0.9 4 2.6827 3.0249 4.5342 4.6057 128.0696 2 4.4780 5.0428 2.8505 3.1483 116.0133

8 6 1.50 3.12 30.04
0.6 2 1.2096 1.5477 2.9989 4.9942 31.6383 14 2.9391 3.1433 2.7453 4.4531 29.4865

0.9 1 1.0666 1.5449 4.1875 4.5799 31.7448 9 1.3453 1.6045 2.9197 4.5305 31.1335

9 9 5.03 2.72 39.96
0.6 8 1.3102 1.5591 3.7949 4.6062 43.9274 No optimal solutions to satisfy

the statistical constraints

0.9 3 1.3313 1.6128 3.7694 4.9975 45.2688 10 4.0351 4.4225 3.5884 3.5893 43.3801

1 10 2.79 2.90 132.08
0.6 2 3.4543 3.8727 2.9144 4.7249 137.4769 No optimal solutions to satisfy

the statistical constraints

0.9 2 3.1157 3.3624 3.8695 4.9988 137.5249 9 4.8482 5.1698 3.4006 3.4398 132.8578

Application to a nuclear fuel

measurement system

In this section, the proposed model is applied to
the VHTR TRISO fuel measurement system, previ-
ously described by Kim et al. [16], for a comparison
with the economic model based on a performance
variable. TRISO fuel is a type of micro fuel particle.
It consists of a kernel, low-density pyrocarbon, inner
high-density pyrocarbon, silicon carbide, and outer
high-density pyrocarbon. It is important to obtain
the exact figure of the fuel size for uniform produc-
tion. When we measure the outer diameter of the
VHTR fuel, we can use methods such as a PSA, mi-
crometer, and X-ray. Of the three methods, the use
of X-ray (Y , performance variable) is the most ac-
curate; however, the measurement equipment is too
expensive to purchase. On the other hand, the PSA
(X , surrogate variable) method is less precise due to
a scattering of light; however, it is easier to obtain
data without emitting dangerous radiation.

From the actual data analysis, it is known that
the mean and variance of Y are µy = 1099.32 and
σ2

y = (32.18 µm)2, respectively, and the variance of

X is σ2
x = (34.75 µm)2. It is also known that X for

the given Y = y is normally distributed with a mean
of 100.41 + 0.86y and a variance of (12.57 µm)2 and
that the correlation coefficient between X and Y is
ρ = 0.799. Table 3 shows the TRISO fuel sizes mea-
sured using the PSA and X-ray methods.
The optimum values of the design parameters are

obtained in Table 4 for both the economic model
and the economic statistical model based on the sur-
rogate variable, along with those for the economic
model based on the performance variable. The fol-
lowing values for the cost and process parameters
are assumed to be λ = 0.05, c = 2, i1 = 100, i2 = 0,
a1 = 200, a′

2 = 200, a′′

2 = 200, a3 = 3, a4 = 1.5,
b′1 = 10, b′′1 = 10, b2 = 25, and b3 = 0.3.
Table 4 shows that the economic model using the

surrogate variable yields a 2% higher expected net
income per hour than the economic model using the
performance variable. It also shows that the econom-
ic statistical model yields the optimum design, which
is only slightly different from that for the economic
model with a minimal decrease in the expected per-
hour net income. We note that the parameter values
of the economic statistical model are very robust to
changes in both ARLU and ARLL.
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Table 3
TRISO fuel sizes measured by the PSA method and X-ray method.

Obs PSA X-rays Obs PSA X-rays Obs PSA X-rays

1 1081 1047 18 1105 1047 35 1104 1042

2 1156 1116 19 1088 1027 36 1023 979

3 1094 1046 20 1073 1019 37 1129 1090

4 1084 1037 21 1102 1066 38 1116 1063

5 1072 1021 22 1090 1041 39 1192 1138

6 1133 1089 23 1122 1066 40 1169 1123

7 1116 1078 24 1061 1024 41 1093 1048

8 1091 988 25 1090 1050 42 1116 1083

9 1029 987 26 1117 1075 43 1106 1057

10 1114 1086 27 1082 1029 44 1105 1037

11 1119 1074 28 1069 1007 45 1103 1068

12 1082 1049 29 1066 1022 46 1116 1090

13 1118 1070 30 1070 1039 47 1063 1011

14 1113 1071 31 1043 1009 48 1111 1001

15 1100 1063 32 1104 1048 49 1158 1005

16 1126 1072 33 1060 999 50 1104 1052

17 1083 1039 34 1105 1064

Table 4
Results of the VSI X control chart using surrogate variables.

Parameters Economic Design (Performance var.) Economic Design (Surrogate var.) Statistical Economic Design

nx (ny) 5 2 3

h1 6.1382 4.6418 4.7150

h2 6.3844 4.9145 5.1759

k2 4.2050 4.9620 3.6526

k1 4.9945 4.9928 3.6540

E(T ) 107.4766 106.5779 106.9600

E(I′)/E(T ) 46.5518 46.9372 46.7708

E(C1)/E(T ) 1.5044 1.0173 0.9823

E(C2)/E(T ) 2.4192 2.4495 2.4331

E(A) 42.6282 43.4804 43.3554

Sensitivity analysis

The sensitivity of the design is important to find
an optimal plan because it is difficult to exactly spec-
ify the values of the process parameters. In this sec-
tion, we find how sensitive the optimum values of the
design parameters (h1, h2, k2 and k1) are to changes
in certain input parameter values using example 6 in
Sec. 5. The values of the input parameters are varied
±30% from the base value. Based on the results of
the sensitivity analysis, we observed the following:

• Effects of λ and c: Fig. 3 shows that the optimum
values of h1 and h2 decrease as the failure rate
(λ) increases. This conforms to our intuition that
the process needs to be controlled more tightly
because it tends to fail more frequently as λ in-
creases. An increase in the shift size of the process

mean (c) results in an increase in the warning re-
gion (k1 − k2) in the optimum value of h shown in
Fig. 4.

Fig. 3. Sensitivity of h1, h2, k2, and k1 to λ.
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Fig. 4. Sensitivity of h1, h2, k2, and k1 to c.

• Effects of i1 and i2: Fig. 5 shows that an increase in
the per-hour net income in the in-control state (i1)
leads to a decrease in h1 and h2, whereas the op-
timum values of k2 increase as the net income per
unit time in the out-of-control state (i2) increas-
es shown in Fig. 6. The reason for the increasing
trend in the warning region in Fig. 6 is that it is
more efficient and more economical to check the
process state instead of a process stop.

Fig. 5. Sensitivity of h1, h2, k2, and k1 to i1.

Fig. 6. Sensitivity of h1, h2, k2, and k1 to i2.

• Effects of a1, a
′

2 and a′′

2 : An increase in a1 caus-
es a decrease in the optimum value of h1 and h2

shown in Fig. 7. Figure 8 shows both an increase
in h1 and h2 and a decrease in the warning re-
gion as the cost for identifying a false alarm (a′

2)
increases.

Fig. 7. Sensitivity of h1, h2, k2, and k1 to a1.

Fig. 8. Sensitivity of h1, h2, k2, and k1 to a′

2.

The rest of the parameters including a′′

2 , b
′

1 and
b′′1 show a similar trend to those of the above para-
meters in the sensitivity analysis.

Conclusions

We proposed an economic design of a VSI X con-
trol chart based on a surrogate variable for a case in
which using the performance variable is impossible
or inappropriate. Compared with the control chart
based on a performance variable, the proposed mod-
el gives a larger expected net income per unit of time
in the long-run if the correlation between the perfor-
mance variable and the surrogate variable is relative-
ly high.
When the proposed VSI X control chart was ap-

plied to a nuclear fuel measurement system, the nu-
merical comparison results show that the VSI model
using a surrogate variable is more efficient than the
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VSI model using a performance variable or FSI mod-
el from a net income point of view. Additionally, if
the correlation coefficient between the surrogate vari-
able and performance variable is higher, it was found
that the long-run expected net income per unit of
time is also increased.
Conversely, for a low level of the correlation co-

efficient, it can be more useful to use a VSI model
using a performance variable. The proposed model
was confined to the sample mean control chart un-
der the assumption that a single assignable cause oc-
curs according to the Poisson process. However, the
model may also be extended to other types of con-
trol charts using a single or multiple assignable cause
assumptions such as VSS X control chart, EWMA,
and CUSUM charts.
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