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Abstract

The paper investigates Bayesian approach to estimate generalized true
random-effects models (GTRE). The analysis shows that under suitably defined
priors for transient and persistent inefficiency terms the posterior characteristics
of such models are well approximated using simple Gibbs sampling. No model
re-parameterization is required. The proposed modification not only allows
us to make more reasonable (less informative) assumptions as regards prior
transient and persistent inefficiency distribution but also appears to be more
reliable in handling especially noisy datasets. Empirical application furthers
the research into stochastic frontier analysis using GTRE models by examining
the relationship between inefficiency terms in GTRE, true random-effects,
generalized stochastic frontier and a standard stochastic frontier model.
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1 Introduction
Stochastic frontier application to panel data has led to a great deal of research
into ways of modelling inefficiency variation. In recent years Colombi, Martini and
Vittadini (2011) proposed a generalized true random-effects model (GTRE); see also
Kumbhakar, Lien and Hardaker (2014) and Colombi et al. (2014). The model
represents a very generalized form of a stochastic frontier model for panel data and
it has caught some attention (see, e.g., Tsionas and Kumbhakar, 2014; Filippini and
Greene, 2016; Badunenko and Kumbhakar, 2016). In the cost function framework it
can be written as:

yit = x′itβ + εit = x′itβ + ηi + uit + αi + vit (1)

where yit is the cost (in logs), x′it is a k-element vector of independent variables
(logs of prices, outputs etc.), β is a vector of model parameters, i (i = 1, . . . , n) and
t (t = 1, . . . , T ) are object and time indices. The composed error εit contains: i)
two types of symmetric disturbances (αi, vit), one “standard” random disturbance
vit (with mean 0 and standard deviation σv), one firm-specific random-effect αi to
reflect firm heterogeneity (mean 0 and standard deviation σα); and ii) two types of
nonnegative disturbances (ηi, uit), one transient inefficiency uit (mean 0 and standard
deviation σu), one firm-specific persistent inefficiency ηi (mean 0 and standard
deviation ση); traditionally based on these two we can acquire efficiency measures via
direct transformation: efficiency=exp(-inefficiency) where efficiency ∈ (0, 1]. Special
cases (simplifications) of the composed error term εit lead to models, which are
already well known in the literature (see, e.g., Colombi, Martini and Vittadini, 2011;
for a discussion). The stochastic components in εit are, in principle, statistically
identifiable. Intuitively, however, it can be virtually impossible to, e.g., obtain good
estimates of αi, if variance of vit is high and the other way around. Furthermore,
variances of symmetric disturbances, αi and vit, also impact our ability to make
precise inference about inefficiency component.
So far classical approach introduced by Filippini and Greene (2016) seems like a
preferred choice to estimate GTRE models, no doubt due to significant difficulties
with numerical implementation of the Bayesian model proposed by Tsionas and
Kumbhakar (2014). In this paper we show that Bayesian inference can be successfully
applied to GTRE models. Moreover, the sampling procedure for the modified model
has good numerical properties and is relatively easy to implement.
The remaining part of the paper is as follows. In Section 2 the Bayesian model by
Tsionas and Kumbhakar (2014) is discussed. We show that the model is based on
very restrictive assumptions as regards prior efficiency distribution. This is likely
to be the underlying cause of numerical problems Tsionas and Kumbhakar (2014)
have faced when trying to sample from the posterior using “naive” Gibbs sampling
(i.e., standard Gibbs sampling using the original model without re-parameterizations).
We present how the Bayesian GTRE model can be modified in order to provide
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more reasonable priors for persistent and transient efficiencies. We also present
other possible variations of Bayesian GTRE models based on popular normal-half-
normal and normal-exponential stochastic frontier (SF) specifications. In Section
3 we perform a series of simulations showing that the new Bayesian GTRE model
outperforms its predecessors. We also discuss cases of very “noisy” datasets, where
SF models find it difficult to yield satisfactory results and show that in all cases
considered the new model is more reliable. In Section 4 we present an empirical study
where we compare and contrast the results acquired using, among others, the newly
constructed model with the findings in Tsionas and Kumbhakar (2014). Section 5
concludes with a discussion.

2 The modified Bayesian GTRE model
Let θ=(β, σv, σu, ση, σα, u, η, α) be a vector of structural parameters (β, σv, σu, ση, σα)
and latent variables (u, η, α). We assume that all random components are independent
of each other and of xit. Independency assumption between ηi and uit comes as
a natural consequence of the two measuring two different dimensions of efficiency
variation: ηi captures persistent cross-sectional efficiency variation between firms
while uit captures its fluctuation in time. We start with the model proposed by
Tsionas and Kumbhakar (2014):
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where fN (.|a, c−1) denotes density function of the Normal distribution with mean a
and precision c, f+

N (.|a, c−1) denotes density function of the half-Normal distribution,
based on the Normal distribution with mean a and precision c. Informative prior
on β is p (β) = fN

(
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we have that prior on the inverse variance σ−2
j , i.e. precision, is σ−2

j Qj ∼ χ2(Nj),
and that Qj = 10−4, Nj = 1 for j = v, u, η, α. Alternatively we can rewrite this as
p
(
σ−2
j

)
= fG(σ−2

j |0.5 · Nj , 0.5 · Qj), where fG(.|w, z) is the density function of the
gamma distribution with mean w

z and variance w
z2 . This formulation leads to a quite

informative prior on the symmetric disturbances. The resulting marginal prior on,
e.g., αi is p (αi) = fS(αi|1, 0, 104) where fS(.|v, a, c) is a Student’s t-distribution with
degrees of freedom v, location a, and precision c. Thus we have a considerably high
precision of the marginal prior on αi. The reader may find much less informative
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priors on the symmetric disturbances in the Bayesian stochastic frontier literature
(see, e.g., van den Broeck et al., 1994). Our preliminary analysis have indicated that
based on such less informative priors the model is unlikely to indicate any presence
of symmetric individual effects. However, since the prior proposed by Tsionas and
Kumbhakar (2014) does not seem to dominate the posterior (at least not within
reasonable limits of σj variation; see extreme cases analysis, Section 3) we leave this
prior unchanged. This comes with a note that by using this prior the researcher
puts a rather strong, though not unreasonable, belief in the existence of symmetric
individual effects (αi).
More importantly, however, the same prior also has been used for σ−2

u and σ−2
η , which

yields very restrictive and unreasonable marginal priors on (in)efficiency components.
In fact the median of the marginal prior distribution of efficiency in this model is
about 0.99, quantile 0.25 is 0.976, quantile 0.75 is 0.996, the interquartile range
(IQR) is only around 0.02 and the 95% highest prior density interval is (0.881,1];
corresponding characteristics of the marginal prior of inefficiency are: median=0.01,
quantile(0.25)= 0.004, quantile(0.75)= 0.024, 95% highest prior density interval is
about [0,0.127) (results acquired numerically via direct sampling from the prior).
Clearly, this very tight informative prior may be strongly against information in the
data leading to a very irregular (e.g., multimodal) posterior, which is difficult to
sample from. Van den Broeck et al. (1994) have already discussed the problem
of efficiency distribution and prior elicitation for model-specific parameters in SF
models. Hence, following van den Broeck et al. (1994: pp. 286-7) we propose
different priors on σ−2

u and σ−2
η in order to better reflect the initial knowledge about

efficiency. For transient inefficiency, half-Normal distribution of uit given precision τ ,
i.e. p (uit | τ) = 2f+

N (uit | τ) fG
(
τ
∣∣ v0

2 ,
b
2
)
, leads to a half-Student t marginal prior

on uit, i.e. p (uit) = 2fS(uit|v0, 0, v0
b )I(uit ≥ 0). Hence, using z that follows an

untruncated Student t distribution with location 0, scale 1 and degrees of freedom v0
we can elicit quantiles (r∗u) for the marginal prior transient efficiency. In particular,
prior median corresponds to 0.75 quantile of z. Taking r∗u equal to the prior median
efficiency gives z0.75(v0) = −lnr∗u/τ0 and since z0.75(v0) does not change much for
v0 > 5 we can set v0 = 10, which yields τ2

0 ≈ 2ln2r∗u and b = v0τ
2
0 ≈ 20ln2 (r∗u); see

van den Broeck et al. (1994). The same elicitation applies to ηi. This leads to the
following modified Bayesian GTRE model:
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The reader should note that in fact this formulation does not represent one particular
prior distribution but rather a range of possible priors more or less informative
dependently on r∗. For this reason, the new model requires additional hyper-
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parameters, r∗u and r∗η (prior medians), to be specified for transient and persistent
efficiency. Since it seems intuitive to expect that a greater portion (if not all) of
observed inefficiency is due to persistent differences between objects we may set,
e.g., r∗u = 0.85 and r∗η = 0.7 as we do in simulation experiments (Section 3). This
can be also interpreted that a priori we give slightly more chances for persistent
inefficiency to exist in relation to transient efficiency, which captures time-varying
component of total inefficiency variation. Prior simulation leads to the following
characteristics of marginal priors for transient and persistent efficiency distribution:
i) transient efficiency has median= 0.85, quantile(0.25)= 0.755, quantile(0.75)= 0.927,
IQR= 0.172, mean=0.83; std.=0.122, and 95% highest prior density interval is
(0.599,1]; 99% is (0.482,1]; persistent efficiency has median=0.7, quantile(0.25)=0.54,
quantile(0.75)= 0.848, IQR= 0.308, mean= 0.683, std.= 0.2, and 95% highest prior
density interval is (0.325, 1]; 99% is (0.202, 1]. Figure 1 shows plots of prior efficiency
distributions for the two above prior medians and the prior proposed by Tsionas and
Kumbhakar (2014: 3.2). It is now obvious that the proposed modification provides
much more reasonable prior on efficiency, which can be additionally fine-tuned to
better fit different applications (i.e., since we control location parameter of the prior
efficiency we can easily try different values of r∗).

Figure 1: Prior efficiency distributions
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Similarly to Tsionas and Kumbhakar (2014) conditional distributions are relatively
straightforward to derive in this model and Gibbs sampling procedure can be used.
We start with the conditional for a k-element vector β of the cost function parameters:

p (β | y,X, θ−β) = fkN

((
C + σ−2

v X ′X
)−1 (

Cb+ σ−2
v X ′ỹ

)
,
(
C + σ−2

v X ′X
)−1
)

(4)
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or in case of a reference uniform prior:

p (β | y,X, θ−β) = fkN
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(X ′X)−1 (X ′ỹ) , σ2
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(5)
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Moving on to latent variables, the conditional for an nT -element vector of transient
inefficiencies is:
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η. The reader should note that InT is an

nT -by-nT identity matrix and that I
(
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truncates the normal distribution

to only nonnegative values of uit. This implicates that fnTN (.|b, C−1)I(u ∈ RnT+ ) is
an nT -dimension truncated normal distribution function (with mean vector b and
diagonal precision matrix C for the underlying untruncated distribution). This is a
slightly different conditional than the one reported in Tsionas and Kumbhakar (2014;
p. 119). Our analytical derivations have shown, however, that this is the appropriate
formula for the conditional on uit in the half-normal case; compare van den Broeck
et al. (1994; p. 281), Makieła (2014; p. 198) and Tsionas (2002: 3.7). For n-element
vector of persistent inefficiencies we have:

p (η|y,X, θ−η) ∝ fnN

η| σ2
η

σ2
v

T
+ σ2

η

η̃,

σ2
vσ

2
η

T
σ2
v

T
+ σ2

η

In

 I
(
η ∈ Rn+

)
(11)

where η̃ = y−Xβ−α−u and symbol “ ” denotes an n-element vector of n firm-wise
averages for y, X, and u. The last but not least is the conditional for an n-element
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vector of firm-specific random effects (αi):

p (α | y,X, θ−α) = fnN
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where this time α̃ = y−Xβ − η− u. Although the changes may seem small they are
in fact groundbreaking. Unlike in Tsionas and Kumbhakar (2014), a straightforward
(or “naive” as the authors refer to it) Gibbs sampling procedure constructed based
on (4)-(12) has very good mixing properties.
The above discussed specification is a modification of the model proposed by
Tsionas and Kumbhakar (2014), which generalizes normal-half-normal SF type models
(Aigner, Lovell and Schmidt, 1977). Alternatively one can also wish to build a
different Bayesian GTRE model, e.g., by generalizing the normal-exponential SF
model proposed by Meeusen and van den Broeck (1977), i.e.,:
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Furthermore, one can mix the different distributional assumptions about inefficiency
terms in (3) and (3a), and construct “mixed” GTRE models. For example, we can
assume ηi to be half-normal and uit to be exponential:
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or the other way around:
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Construction of Gibbs sampler for such models only amounts to substituting blocks
of posterior conditional distributions provided earlier.
On condition that we reasonably set the hyper-parameters (r∗u, r∗η), assigning an
exponential distribution to ηi and uit, or “mixing” the two SF types also leads to
models with good properties as regards their computational applications. Moreover,
in practice assigning different types of priors can potentially make it easier to separate
the two inefficiency terms (perhaps due to slightly better identification of latent
variables, ηi in particular).

3 Results based on simulation experiments
In order to analyse behaviour of the Gibbs sampler for the new half-normal GTRE
model in (3) we generate datasets similar to the ones in Tsionas and Kumbhakar
(2014: 4.2). Specifically, we set the number of observations as n = 100 and number
of time periods as T = 10. We have a constant term and a covariate that is generated
as independent standard normal and we set σv = 0.1, σu = 0.2, σα = 0.2, ση = 0.5.
The starting values are equal to the true parameter values (we would also initiate the
sampler from the prior means to ensure that the results are not dependent on the
starting points, i.e., too short burn-in phase). We run 150,000 Gibbs iterations, the
first 50,000 being discarded. Following Tsionas and Kumbhakar (2014) proposition
we then take every tenth draw to decrease autocorrelation in the chain and then
calculate the posterior characteristics of model parameters and latent variables. The
reader should note, however, that according to O’Hagan (1994) information about
posterior characteristics of the model based on the full MCMC chain will always
be higher than information based on any of its sub-chains. Even if autocorrelation
between subsequent MCMC states is very high, a new state always yields some
additional new information about the posterior. For this reason in the empirical
application we use the whole MCMC chain. The last thing left to determine is the
prior on β. Tsionas and Kumbhakar (2014) discuss both, informative as well as
uninformative priors and note that they use an informative prior in their applications
(with b = 0k×1 and C = 10−4Ik). Our preliminary results have indicated that
numerically the biggest obstacle in using a “naive” Gibbs sampler (i.e., the standard
Gibbs sampler for the original parametrization) for model in (2) is the prior on the
intercept. If the prior is very informative (has very tight distribution around the
true value) then “naive” Gibbs handles very well. This, however, is not a reasonable
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assumption and once we move towards less informative prior we run into numerical
difficulties when trying to sample from the posterior. For this reason we have decided
to use the reference (uninformative) prior on β in our simulation experiments because
numerically it represents the most challenging case for the Gibbs sampler to handle
(in the empirical study we return to informative prior on β). Also, unlike Tsionas and
Kumbhakar (2014: 4.2) we do not “re-generate” datasets of the same characteristics
in this section (e.g., datasets generated M -times using the same values of T , n, β,
and σj ’s). When estimating such M -times generated datasets (generated using the
same data generating process, DGP hereafter) we have found that for a numerically
stable sampling procedure with long MCMC runs the posterior characteristics exhibit
hardly any differences showing thatM different posteriors are very similar and centred
around true values, even when MCMC chain autocorrelation is very high. For this
reason we have decided to generate several datasets of slightly different characteristics
each time (slightly different DGP) and use long MCMC runs. This has also allowed us
to explore samplers’ mixing properties under different conditions (experiments based
on datasets re-generated 100 times are provided in Table 11 but are not discussed
here). We do find particularly important, however, to check if the simulated values
of the stochastic components (u, η, α, v) and explanatory variables (in X) that
we generate are not “accidentally” empirically correlated. This could have some
impact and incidentally change the posterior characteristics of the model. Fortunately
none of the datasets we generated exhibits this problem. Numerical properties of
the Gibbs sampler (stability, mixing speed etc.) have been monitored using cusum
path plots (Yu and Mykland, 1998), multivariate potential scale reduction factors
(MPSRF; see Brooks and Gelman, 1998) and autocorrelation functions. All datasets
discussed in this section have been generated in MATLAB with restarted random
number generator (zero seed), which allows their replication. Additional simulations
have been made using randomized datasets (random seed) to check if the results are
stable. Tables 1-3 show experiment results for Gibbs samplers constructed for 5 types
of models:

1. Bayesian GTRE model based on equation (3) – labelled “new GTRE”,

2. Bayesian GTRE model based on equation (2) and reparametrized as proposed in
Tsionas and Kumbhakar (2014) – labelled “TK GTRE”. We use slightly different
conditionals for δi and uit than the ones reported in the original paper. For
δi = αi + ηi we take

exp
(
− (Ri − δiιT )′ (Ri − δiιT )

2σ2
v

− δ2
i

2σ2
δ

)
Φ
(
λδ
δi
σδ

)
,

where λδ = ση
σα

, Ri = [Ri1, . . . , RiT ]′, and Rit = yit − x′itβ − uit; for uit
see equation 10. Analytical derivation indicates that these are appropriate
conditionals for this model.
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3. Bayesian stochastic frontier true random-effects model, acquired as a
simplification of model in (1) so that εit = uit + αi + vit – labeled “TRE”,

4. standard Bayesian SF model, which is a simplification of model in (1) so that
εit = uit+vit (see, e.g., Koop, Osiewalski and Steel, 1999, 2000a; Makieła 2009,
2014) – labelled “standard SF”,

5. Bayesian GTRE model based on equation (2) with no re-parameterization (i.e.,
based on “naive” Gibbs sampling) – labelled “original TK GTRE”.

For models in 3) and 4) we set r∗ = 0.7 throughout the study (this also applies to
the models used in the empirical study). Following propositions in Greene (2005,
2008) we have reported results for true random-effects model (TRE). This model,
however, does not perform as well as a standard SF in identifying overall inefficiency
(ωit = ηi+uit) and thus we do not report its results further in this section. We return
to this model in the empirical section where we show that TRE inefficiency estimates
are closely related to transient inefficiency from GTRE. The reader should note
that our report on simulation experiments could be extended by 3 other Bayesian
GTRE models proposed in (3a)-(3c). However, we have found that results obtained
with these models are very similarly to the model in (3), which also indicates that
Bayesian inference in stochastic frontier models is not determined by the prior
structure (which is often the critique).

Table 1: Basic results for new GTRE, TK GTRE, TRE and standard SF

True values new GTRE TK GTRE TRE standard SF
Value Std E(m) D(m) E(m) D(m) E(m) D(m) E(m) D(m)

β0 1 1.023 0.053 0.890 0.130 1.401 0.034 1.244 0.035
β1 1 1.003 0.005 1.003 0.005 1.004 0.005 1.004 0.012
σα 0.2 0.190 0.039 0.201 0.037 0.333 0.024
ση 0.5 0.481 0.059 0.628 0.098
σv 0.1 0.109 0.008 0.125 0.021 0.100 0.007 0.271 0.021
σu 0.2 0.190 0.015 0.136 0.073 0.212 0.011 0.406 0.042
α 0.000 0.200 0.004 0.156 0.030 0.186 0.000 0.058
η 0.408 0.274 0.387 0.162 0.537 0.200
u 0.160 0.120 0.152 0.080 0.109 0.090 0.167 0.080 0.325 0.176
ω 0.569 0.297 0.539 0.178 0.646 0.229 0.167 0.080 0.325 0.176

MPSRF 1.0244 1.3969 1.0143 1.0019
Time 152 1207 103 85

Note: β0 is the intercept; β1 is slope parameter; Std is the standard deviation calculated based on true
values; E(m) is posterior mean of m; D(m) is posterior standard deviation of m; for αi, ηi, uit and
ωit we report an average of individual posterior mean and an average of individual posterior standard
deviation; MPSRF is multivariate potential scale reduction factor; time is simulation duration given in
seconds. Source: author’s calculations.

As we can see in Table 1 Gibbs sampler for the new GTRE model handles better
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Table 2: Basic results; correlations between posterior means and true values of latent
variables; posterior means and standard deviations of the correlation coefficient

new GTRE TK GTRE naive GTRE
ρm̂ ρm D(ρm) ρm̂ ρm D(ρm) ρm̂ ρm D(ρm)

α 0.544 0.313 0.089 0.539 0.198 0.110 0.558 0.535 0.056
η 0.800 0.658 0.071 0.805 0.664 0.064 0.796 0.088 0.190
u 0.752 0.528 0.040 0.752 0.387 0.209 0.752 0.497 0.061
ω 0.792 0.647 0.061 0.690 0.637 0.064 0.487 0.252 0.113

TRE standard SF
ρm̂ ρm D(ρm) ρm̂ ρm D(ρm)

α 0.555 0.550 0.012
η

u 0.752 0.569 0.030 0.283 0.194 0.029
ω 0.320 0.242 0.030 0.781 0.534 0.052

Note: ρm̂ is the correlation coefficient between posterior mean of “m” (m̂) and true value of “m”, i.e.,
ρm̂ = ρm(m̂,mtrue); ρm is the average value of the correlation coefficient between true value of “m” and
each draw from the simulation, i.e., ρm = 1

S

∑S

s=1
ρm(ms,mtrue) and S is the number of draws; D (ρm)

is the standard deviation of the correlation coefficient between true value of “m” and each draw of “m”
from the simulation. Source: author’s calculations.

Table 3: Results for original TK GTRE under Qη = 10−4 and Qη = 10−2

True Qη = 10−4 Qη = 10−4 Qη = 10−2 Qη = 10−2

values 150 000 draws 300 000 draws 150 000 draws 300 000 draws
Value Std E(m) D(m) E(m) D(m) E(m) D(m) E(m) D(m)

β0 1 1.382 0.098 1.405 0.048 1.224 0.134 1.047 0.089
β1 1 1.003 0.005 1.003 0.005 1.003 0.005 1.003 0.005
σα 0.2 0.322 0.040 0.331 0.025 0.275 0.063 0.209 0.057
ση 0.5 0.061 0.113 0.028 0.037 0.254 0.160 0.435 0.109
σv 0.1 0.115 0.011 0.115 0.010 0.115 0.011 0.110 0.009
σu 0.2 0.175 0.022 0.176 0.021 0.175 0.022 0.181 0.018
α 0.000 0.200 -0.001 0.091 -0.002 0.065 -0.001 0.151 0.001 0.162
η 0.408 0.274 0.049 0.106 0.022 0.039 0.203 0.180 0.348 0.177
u 0.160 0.120 0.140 0.079 0.141 0.079 0.140 0.079 0.144 0.078
ω 0.569 0.297 0.188 0.136 0.163 0.089 0.343 0.198 0.493 0.192

MPSRF 1.063 1.005 1.083 1.002
Time 183 322 163 326

Note: For 150 000 draws we discard first 50 thousand, for 300 thousand we discard first 100 thousand; see
notes in Table 1 for notation. Source: author’s calculations.

than TK GTRE in our simulations. Posterior means obtained using new GTRE
are centred closely around the true values assumed in the DGP, while TK GTRE
slightly overestimates ση and underestimates σu (see Table 1). More importantly,
however, implementation of the new model is numerically much more efficient. The
time needed to acquire results in MATLAB is nearly ten times shorter and the
new sampler appears to have much better mixing properties, as measured by the
multivariate potential scale reduction factor (MPRSF= 1.3969 vs. 1.0244; see Brooks
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and Gelman, 1998). Other methods to compare samplers’ performances (i.e. mixing
speeds) are provided in Figure 2, which shows cusum path plots and autocorrelation
functions of the intercept from the two simulations. We can clearly see that cusum
in new GTRE stabilizes more quickly, has lower excursions and a more oscillatory
path (less smooth) than its predecessor. Moreover, cusum path based on TK GTRE
model shows a clear upward trend between 20 000 – 45 000 iteration and the MCMC
autocorrelation is much higher. This means that if the TK GTRE sampler was to
yield reliable results the simulation would require much longer MCMC runs with
more iterations discarded in the burn-in stage.

Figure 2: CUSUM path plots and autocorrelation functions for new GTRE model
(solid line) and TK GTRE (dashed line)
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Note: CUSUM paths (left plot) and autocorrelation function (for 50 lags, right plot) are made for the
intercept based on 100 000 iterations (with every 10th taken). Solid line: new GTRE model; dashed line:
TK GTRE model; dotted line (CUSUM graph only): benchmark path based on independent sampler.
Source: author’s calculations.

We now turn to simulation results from Gibbs sampler based on original TK GTRE
with no re-parameterizations (Table 3). When we set Qη = 10−4, as in Tsionas
and Kumbhakar (2014: p. 116), several marginal posteriors are nowhere near the
values assumed in the simulation. The intercept estimate is too high, ηi estimate is
very low and dispersion of posterior distribution of αi is much larger than we would
expect given the known DGP. Considering very tight informative prior on ηi this
result should not be that surprising. In fact, once we set Qη = 10−2 and double the
sampling run the marginal posterior distributions are considerably closer to values
assumed in the simulation (see last column in Table 3; the reader should note that
Qη = 10−2 still implicates a fairly tight informative prior with prior median efficiency
about 0.9, quantile(0.25)= 0.78, quantile(0.75)= 0.96). This exercise shows that
due to tight, unreasonable priors on transient and persistent efficiencies we may be
dealing here with a very irregular posterior, one which is difficult to sample from (see
cusum path plot in Figure 3).

K. Makieła
CEJEME 9: 69-95 (2017)

80



Bayesian Inference and Gibbs Sampling . . .

Figure 3: CUSUM path plot for original TK GTRE model (Qη = 10−2); CUSUM
path plot is for the intercept; the other (almost flat) line is a benchmark path based
on independent sampler with the same mean and standard deviation
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Prior medians of transient (r∗u) and persistent (r∗η) efficiency are additional hyper-
parameters that need to be specified in the new GTRE model. In a standard
Bayesian stochastic frontier analysis r∗ is usually from 0.5-0.95 interval. Its value has
only a marginal impact on the level of posterior mean efficiency in the sample and
virtually no influence on relative differences in efficiency levels between observations
(Makieła, 2014). Up to this point our prior assumption about transient and persistent
efficiency distribution in the GTRE model was that transient efficiency is higher
and less likely to exist than persistent (thus r∗u > r∗η). Although this seems like a
reasonable assumption, we now set both prior medians equal and change them from
0.5 to 0.9. Table 4 presents estimation results for such cases. The results do not
change significantly for fairly reasonable values of r∗u and r∗η that oscillate within
0.5-0.9 interval. Once r∗u and r∗η exceed 0.9 the priors on σ−2

u and σ−2
η become very

diffused and thus the sampler’s mixing speed may be low because high values of r∗
(close to 1) give little prior chances that inefficiency terms exist (Koop, Steel and
Osiewalski, 1995; Fernandez, Osiewalski and Steel, 1997; Ritter 1993). This also
seems to be the case with the model proposed by Tsionas and Kumbhakar (2014).
The overall conclusion and recommendation for r∗u and r∗η does not change in relation
to standard Bayesian SF models. Values for r∗u and r∗η should be reasonably set within
0.5-0.95 interval bearing in mind that values close to 0.95 implicate considerably tight
informative prior and may cause numerical problems if information in the dataset
does not support this idea. If we set highly unreasonable values for prior medians
(e.g., very low prior median for transient and/or very high prior median for persistent)
the results may turn out either over-optimistic or over-pessimistic with some signs of
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Table 4: Simulation results for different values of r∗u and r∗η in new GTRE model

True values r∗
u = r∗

η = 0.5 r∗
u = r∗

η = 0.6 r∗
u = r∗

η = 0.7
Value Std E(m) D(m) ρm̂ E(m) D(m) ρm̂ E(m) D(m) ρm̂

β0 1 0.914 0.047 0.969 0.049 1.029 0.055
β1 1 1.007 0.006 1.006 0.005 1.005 0.005
σα 0.200 0.161 0.033 0.178 0.035 0.201 0.040
ση 0.500 0.600 0.055 0.528 0.055 0.458 0.060
σν 0.100 0.078 0.007 0.086 0.007 0.095 0.007
σu 0.200 0.269 0.010 0.245 0.010 0.223 0.011
α 0.000 0.200 0.000 0.144 0.521 0.000 0.151 0.537 0.000 0.159 0.552
η 0.408 0.274 0.449 0.153 0.806 0.409 0.158 0.803 0.364 0.164 0.799
u 0.160 0.120 0.206 0.077 0.747 0.191 0.079 0.750 0.176 0.080 0.751
ω 0.569 0.297 0.655 0.164 0.796 0.600 0.171 0.794 0.540 0.179 0.791

MPSRF 1.0467 1.0354 1.0346
Time 226 214 246

True values r∗
u = r∗

η = 0.8 r∗
u = r∗

η = 0.9
Value Std E(m) D(m) ρm̂ E(m) D(m) ρm̂

β0 1 1.118 0.070 1.296 0.050
β1 1 1.004 0.005 1.003 0.005
σα 0.200 0.242 0.047 0.313 0.028
ση 0.500 0.363 0.076 0.169 0.044
σν 0.100 0.104 0.008 0.116 0.009
σu 0.200 0.201 0.013 0.174 0.019
α 0.000 0.200 -0.001 0.162 0.561 -0.001 0.112 0.558
η 0.408 0.274 0.292 0.167 0.796 0.135 0.104 0.797
u 0.160 0.120 0.159 0.080 0.752 0.139 0.078 0.752
ω 0.569 0.297 0.452 0.185 0.783 0.274 0.131 0.606

MPSRF 1.0343 1.0041
Time 244 222

numerical instability (poor mixing properties of the sampler). This seems especially
important for persistent inefficiency. Fortunately, for reasonable-enough values of
r∗u and r∗η we find hardly any impact on the posterior characteristics. Furthermore,
the reader should note that in Bayesian GTRE models we can test different values
of r∗u and r∗η using posterior probabilities of competing Bayesian models. Under
equal prior odds we can compare competing model specifications with different prior
median values or pool inference (e.g., about inefficiency terms) from them using
marginal data density. Makieła (2014) shows how marginal data density can be
estimated in stochastic frontier models via harmonic mean estimator with Lenk’s
(2009) correction.
In order to fully examine numerical efficiency (i.e., mixing speed) of the Gibbs
sampler in the new GTRE model let us now explore other values for σα and σv in the
DGP. As it has been mentioned in the introduction, practice shows that variance of αi
and vit is crucial in acquiring good estimates of inefficiency components. Badunenko
and Kumbhakar (2016) indicate that if variances of symmetric disturbances are
relatively high it precludes our ability to satisfactory estimate transient and persistent
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inefficiency terms in GTRE models. This is, however, not only obvious but also true
for all kinds of SF models. The real question is if we can rely on GTRE models
as much as on their simpler counterparts in such cases. Tables 5-8 report model’s
posterior characteristics once we increase σα, σv and both. For comparability we
present results for TK GTRE and standard SF.

Table 5: Extreme case 1: estimations results when σα = 1
True values new GTRE TK GTRE standard SF
Value Std E(m) D(m) E(m) D(m) E(m) D(m)

β0 1 0.940 0.131 1.438 0.125 1.186 0.109
β1 1 1.004 0.005 1.003 0.005 1.017 0.033
σα 1.0 0.957 0.085 1.030 0.074
ση 0.5 0.615 0.126 0.033 0.067
σν 0.1 0.109 0.008 0.123 0.019 0.991 0.037
σu 0.2 0.190 0.014 0.146 0.066 0.479 0.131
α 0.000 1.000 -0.010 0.356 -0.008 0.117
η 0.408 0.274 0.488 0.355 0.026 0.068
u 0.160 0.120 0.151 0.079 0.116 0.088 0.382 0.299
ω 0.569 0.297 0.639 0.364 0.142 0.114 0.382 0.299

MPSRF 1.0171 1.7469 1.0243
Time 220 1082 66

Table 6: Extreme case 2: estimations results when σν = 0.8
True values new GTRE TK GTRE standard SF
Value Std E(m) D(m) E(m) D(m) E(m) D(m)

β0 1 0.915 0.076 1.512 0.070 1.202 0.091
β1 1 1.022 0.026 1.020 0.027 1.022 0.028
σα 0.2 0.031 0.041 0.332 0.039
ση 0.5 0.567 0.064 0.030 0.048
σν 0.8 0.795 0.021 0.808 0.019 0.825 0.032
σu 0.2 0.252 0.064 0.036 0.056 0.459 0.109
α 0.000 0.200 0.000 0.050 0.001 0.208
η 0.408 0.274 0.453 0.201 0.024 0.050
u 0.160 0.120 0.201 0.161 0.029 0.060 0.366 0.277
ω 0.569 0.297 0.653 0.254 0.053 0.076 0.366 0.277

MPSRF 1.0026 1.1243 1.013
Time 206 1052 64

Two findings are worth noting. First, new GTRE handles extreme cases better
than its predecessors. It is numerically more efficient and stable than TK GTRE,
provides more accurate estimates of model parameters than both and, on average, its
estimates have higher correlation with the true values of αi, ηi, uit, ωit (especially
when σv is high; see Table 8). Second, relatively high values of σv and σα make it
extremely difficult to approximate inefficiency differences, regardless of the model
used (GTRE or not). New GTRE model, however, does manage to identify average
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Table 7: Extreme case 3: estimations results when σα = 1 and σν = 0.8
True values new GTRE TK GTRE standard SF
Value Std E(m) D(m) E(m) D(m) E(m) D(m)

β0 1 0.840 0.172 1.536 0.119 1.201 0.108
β1 1 1.022 0.027 1.021 0.027 1.036 0.041
σα 1 0.933 0.095 1.021 0.078
ση 0.5 0.664 0.160 0.029 0.051
σν 0.8 0.793 0.021 0.807 0.021 1.264 0.037
σu 0.2 0.251 0.063 0.025 0.063 0.461 0.125
α 0.0 1.000 -0.001 0.434 -0.006 0.269
η 0.408 0.274 0.530 0.388 0.023 0.053
u 0.160 0.120 0.201 0.160 0.020 0.063 0.368 0.295
ω 0.569 0.297 0.731 0.421 0.043 0.082 0.368 0.295

MPSRF 1.0031 1.0284 1.0209
Time 173 1049 67

Table 8: Extreme cases 1-3: correlations between posterior means and true values of
latent variables; posterior means and standard deviations of the correlation coefficient

new GTRE TK GTRE standard SF
ρm̂ E(ρm) D(ρm) ρm̂ E(ρm) D(ρm) ρm̂ E(ρm) D(ρm)

σα = 1
α 0.962 0.895 0.034 0.963 0.961 0.005
η 0.239 0.091 0.095 0.278 0.005 0.102
u 0.753 0.531 0.038 0.752 0.414 0.187 0.084 0.024 0.032
ω 0.328 0.141 0.083 0.226 0.158 0.086 0.252 0.072 0.036

when σα = 1
α 0.396 0.030 0.108 0.416 0.327 0.059
η 0.660 0.523 0.055 0.653 0.027 0.108
u 0.132 0.024 0.031 0.143 0.004 0.032 0.108 0.013 0.031
ω 0.605 0.445 0.050 0.596 0.025 0.077 0.323 0.045 0.033

when σα = 1 and σv = 0.8
α 0.930 0.826 0.049 0.931 0.903 0.011
η 0.248 0.097 0.095 0.255 0.004 0.101
u 0.140 0.025 0.032 0.125 0.002 0.032 0.060 0.013 0.031
ω 0.226 0.085 0.082 0.209 0.003 0.073 0.203 0.045 0.033

levels of posterior means for αi, ηi, uit, ωit relatively well even in the most extreme
scenario (σα = 1 and σv = 0.8). In the same scenario inefficiency components are
virtually undetected in TK GTRE (very low posterior estimates of ση, σu) and the
model’s implementation exhibits numerical instability (MPSRF= 1.7469).
In order to “help” new GTRE cope with low correlation in the most extreme scenario
considered here (σα = 1, σv = 0.8) one could try to fine-tune hyper-parameters r∗u
and r∗η of the prior transient and persistent inefficiency. However, we have explored
this concept and found that these hyper-parameters have little impact on posterior
inefficiency estimates and virtually no influence as regards relative differences in
inefficiency levels between observations.
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Tsionas and Kumbhakar (2014: 4.1 & 4.3) have also explored other values for T , n,
σα, ση, σv, σu and shorter Gibbs runs. We find that both models give good results
for reasonable values of T , n, σα, ση, σv, σu. However, in all cases considered the
new model numerically outperforms its predecessor. It takes significantly much less
time to compute, its estimates are on average closer to the values set in the DGP
and its implementation appears to be much more reliable when simulating from
the posterior. The last remark becomes especially evident once we set T = 5 and
consider more regression parameters (e.g., k = 3). In such datasets and comparable
MCMC iterations the sampler based on TK GTRE significantly underestimates the
intercept, overestimates ση and its implementation is numerically far less efficient in
comparison to the new model (MPSRF= 1.2-1.3; see Table 9).

Table 9: Comparison between GTRE models; T = 5 and more parameters (k = 2, 3)

True values new GTRE TK GTRE True values new GTRE TK GTRE
n = 100, T = 5, k = 2 n = 100, T = 5, k = 3

β0 1 0.969 0.048 0.803 0.089 1 0.996 0.066 0.689 0.088
β1 1 1.002 0.008 1.003 0.005 1 1.011 0.008 0.996 0.005
β2 – – – – – 1 0.994 0.008 1.000 0.005
σα 0.2 0.198 0.039 0.196 0.038 0.2 0.206 0.041 0.189 0.041
ση 0.5 0.557 0.057 0.678 0.094 0.5 0.519 0.066 0.780 0.099
σν 0.1 0.09 0.015 0.113 0.012 0.1 0.093 0.014 0.103 0.009
σu 0.2 0.208 0.021 0.179 0.025 0.2 0.22 0.019 0.203 0.016
α 0 0.2 0.001 0.164 0.033 0.185 0 0.2 0 0.169 0.030 0.184
η 0.418 0.319 0.437 0.171 0.587 0.199 0.411 0.301 0.411 0.177 0.672 0.200
u 0.155 0.119 0.166 0.082 0.143 0.080 0.17 0.126 0.175 0.085 0.162 0.080
ω 0.573 0.349 0.603 0.182 0.730 0.213 0.582 0.322 0.586 0.19 0.834 0.211

MPSRF 1.0541 1.330 1.0107 1.2079
Time 13.5 111.8 13.7 114.4

Note: Based on 15 thousand draws with initial 5 thousand discarded; example based on Tsionas and
Kumbhakar (2014: p. 120).

Finally, we turn out attention to correlation coefficients between the true values of
latent variables and their estimates. Tsionas and Kumbhakar (2014: 4.1) report
that average correlation coefficient between ηi’s and simulated η

(s)
i ’s is 0.856 and

between uit’s and simulated u(s)
it ’s is about 0.754 (i.e., the average value of correlation

coefficient between real values of latent variables ηi, uit known from the DGP and
each draw from the simulation η

(s)
i , u

(s)
it , where s = 1, . . . , S and S is the number

of accepted draws; Tsionas and Kumbhakar label them “posterior means of the
correlation coefficient”, which they are not). Exact replication of the results based on
Tsionas and Kumbhakar (2014: 4.1) is provided in Table 10. We find the correlation
coefficients to be on average slightly lower for both GTRE models. Also, even
though GTRE models give more in-depth analysis of efficiency, standard SF models
still provide relatively good measures of overall inefficiency (ωit). Thus, under the
GTRE structure of the DGP a simple SF model is still quite useful in determining
the overall efficiency ranking.
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Table 10: Correlations between posterior means and true values of latent variables;
posterior means and standard deviations of the correlation coefficient

new GTRE TK GTRE
m ρm̂ ρm D(ρm) ρm̂ ρm D(ρm)

n = 100, T = 5, k = 2
α 0.536 0.166 0.104 0.559 0.039 0.101
η 0.808 0.676 0.057 0.824 0.760 0.055
u 0.751 0.508 0.068 0.656 0.609 0.017
ω 0.618 0.658 0.052 0.836 0.782 0.049

n = 100, T = 5, k = 3
α 0.560 0.328 0.091 0.441 0.026 0.103
η 0.830 0.670 0.077 0.810 0.730 0.068
u 0.732 0.559 0.049 0.721 0.671 0.016
ω 0.826 0.678 0.067 0.818 0.754 0.063

Note: Based on 15 thousand draws with initial 5 thousand discarded; results for two and three regression
parameters (k = 2, 3); see notes for Table 2. Source: author’s calculations.

Table 11: Sampling behavior of Bayes estimator in the new GTRE model

α η u ω

mean median std mean median std mean median std mean median std
n = 50, T = 5

True 0.000222 0.000201 0.003129 0.403 0.400 0.046 0.159 0.158 0.007 0.562 0.561 0.048
Est. -0.000267 0.000025 0.003167 0.490 0.479 0.069 0.179 0.176 0.018 0.669 0.561 0.072

n = 100, T = 5
True -0.000071 -0.000010 0.002941 0.399 0.394 0.030 0.158 0.158 0.005 0.557 0.554 0.030
Est. -0.000072 0.000103 0.002162 0.448 0.446 0.049 0.169 0.169 0.014 0.617 0.554 0.050

n = 100, T = 5
True 0.000083 0.000239 0.002886 0.405 0.403 0.028 0.399 0.398 0.014 0.804 0.805 0.031
Est. -0.000330 -0.000060 0.002270 0.433 0.432 0.035 0.396 0.399 0.034 0.829 0.805 0.051

n = 100, T = 10
True -0.000264 -0.000604 0.002990 0.396 0.394 0.025 0.400 0.399 0.009 0.796 0.794 0.026
Est. -0.000011 -0.000002 0.000594 0.429 0.430 0.042 0.398 0.397 0.014 0.826 0.794 0.042

σα ση σv σu
True 0.2 0.5 0.1 0.2

n = 50, T = 5
Est. 0.147 0.154 0.083 0.546 0.546 0.052 0.081 0.092 0.029 0.224 0.223 0.028

n = 100, T = 5
Est. 0.154 0.164 0.058 0.560 0.561 0.051 0.091 0.092 0.014 0.212 0.211 0.017

True 0.1 0.5 0.1 0.5
n = 100, T = 5

Est. 0.046 0.027 0.040 0.546 0.544 0.038 0.085 0.085 0.049 0.493 0.494 0.041
n = 100, T = 10

Est. 0.048 0.037 0.034 0.539 0.541 0.046 0.102 0.103 0.014 0.497 0.497 0.018

Note: “Est.” is posterior mean; results are mean estimates calculated based on 100 datasets of the same
characteristics (re-generated 100 times); simulation results based on 5000 burn-in and 5000 accepted draws;
example similar to Tsionas and Kumbhakar (2014: p. 124). Source: author’s calculations.
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Table 12: Empirical results for the four models

standard SF TRE GTRE GSF
E(m) D(m) E(m) D(m) E(m) D(m) E(m) D(m)

σν 0.161 0.009 0.085 0.008 0.096 0.009 0.101 0.009
σu 0.271 0.020 0.190 0.017 0.162 0.019 0.159 0.018
σα 0.213 0.021 0.146 0.027
ση 0.280 0.070 0.427 0.064
α 0.008 0.058 -0.001 0.021
u 0.212 0.016 0.147 0.015 0.127 0.016 0.124 0.015
η 0.224 0.067 0.377 0.065
ω 0.212 0.016 0.147 0.015 0.351 0.076 0.502 0.073

El(p1) 0.549 0.019 0.543 0.020 0.546 0.020 0.538 0.020
El(p2) 0.401 0.012 0.378 0.012 0.376 0.011 0.384 0.012
El(p3) 0.050 0.017 0.079 0.018 0.078 0.018 0.078 0.018
El(y1) 0.108 0.007 0.086 0.010 0.085 0.010 0.087 0.010
El(y2) 0.416 0.023 0.472 0.024 0.480 0.024 0.492 0.023
El(y3) 0.216 0.018 0.213 0.020 0.213 0.020 0.198 0.021
El(y4) 0.082 0.029 0.082 0.030 0.079 0.029 0.074 0.030
El(y5) 0.098 0.011 0.083 0.014 0.080 0.014 0.090 0.014
TC -0.047 0.004 -0.049 0.004 -0.049 0.004 -0.048 0.003

intercept -0.904 1.040 0.097 0.995 -0.353 0.964 -0.096 0.972
RTS 1.086 0.008 1.068 0.013 1.069 0.013 1.063 0.012

MPSRF 1.002 1.014 1.043 1.007

Note: El (m) denotes cost elasticity of m; the table only provides average levels of elasticities due to
space constrains; E(m) and D(m) are posterior mean and posterior standard deviation respectively; TC
is technical change (∂lnC /∂t); RTS are returns to scale; p1 is wage rate for labor; p2 is interest rate for
borrowed funds; p3 is price of capital; y1 are consumer loans; y2 are non-consumer loans; y3 are securities;
y4 is financial equity capital; y5 are non-traditional banking activities; see Feng and Serletis (2009) for
more details.

4 Empirical application and results comparison

Empirical application is based on US banking data from 1998 to 2005 as in Feng
and Serletis (2009). We use translog specification with eight input variables and a
time trend (3 prices and 5 products; see notes in Table 12). Since one of the goals
in this section is to compare and contrast the results obtained from the new model
with those from Tsionas and Kumbhakar (2014) we also use “Group 1” from the
dataset (very large banks) and focus on the main findings and differences. The reader
should note, however, that the results are consistent for other bank groups as well.
Tsionas and Kumbhakar (2014) find persistent inefficiency to be smaller than transient
inefficiency. That is why a priori we do not favour any inefficiency component and
set: r∗u = r∗η = 0.8. In order to impose economic regularity conditions (economic
restrictions) on the cost function we modify the original minimally informative prior
on β, i.e., we set p (β) ∝ fN

(
β
∣∣ b, C−1) × IB (β), where b = 0k×1, C = 10−4Ik.

Economic regularity conditions are imposed always at the means (i.e., at variables’
overall means in the dataset) and for the entire dataset through the support B of
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the prior density p(β). If met, IB(β) = 1, zero otherwise. Each time (i.e., with each
iteration of the MCMC scheme that meets the restrictions at the means) we take
l = 1000 attempts to draw a configuration that meets restrictions globally for the
entire dataset. This allows us to effectively probe the posterior even if probability
of meeting the restrictions for the entire dataset at a specific draw are exceptionally
low. Value of l determines a trade-off between computational speed (small l) and
imposing strict global economic regularity restrictions for all data points and at each
drawn configuration (large l). Exceptionally low probability of meeting economic
regularity restriction for the entire dataset may occur in the MCMC scheme when we
deal with translog functions with minimally informative priors and nuisance datasets,
as it is the case here. A much simpler and straightforward solution would be to put
a more informative prior on β, e.g., one that is based on the cost function theory.
This, however, could preclude comparability with previous studies. The simulation is
stopped once 100 thousand iterations are accepted, with initial 50 thousand discarded
(sampler’s burn-in phase).
Table 12 and Figures 4-6 compare results for four models: GTRE, true random-
effects (TRE), standard SF and a generalized SF model, here labelled GSF (i.e.:
εit = uit + ηi + vit). Similarly to Feng and Serletis (2009) we find overall annual
reduction of total costs (technical progress), which is also partially in line with results
from Tsionas and Kumbhakar (2014). Posterior estimates of returns to scale are
between 1.063-1.086 indicating, on average, increasing returns to scale; see results for
RTS in Table 12 for details. We also find an interesting pattern in terms of modelling
inefficiency and individual effects in the analysed models. Since the standard SF
model does not have individual effects, the posterior estimate of σv is (relatively)
very high. Presence of a symmetric individual effect (αi), which is quite relevant to
the TRE specification, makes the posterior estimate of σv much smaller (in TRE)
and there is also less inefficiency found there than in a standard SF. Furthermore,
posterior standard deviation of the symmetric individual effect in the new GTRE is
smaller in comparison to TRE (Figure 5), which is different to findings in Tsionas
and Kumbhakar (2014). This can be attributed to very tight prior on ηi in the
previous study. We have found that once we “tighten” the prior on ηi in our GTRE
the posterior distribution of αi also becomes more diffused (e.g., posterior standard
deviation of αi is 0.027 if prior median of ηi is set 0.9; compared to 0.021 when prior
median of ηi is 0.8). Inefficiency components in GSF model are very similar to the
ones from our GTRE with only persistent inefficiency being slightly higher. This
difference is likely due to the lack of individual effects in GSF.
In general, we find inefficiency terms to be much larger than the ones reported by
Tsionas and Kumbhakar (2014). The reader should note, however, that the previous
model implied a very tight informative prior on efficiency centred around 0.99 value.
Also, unlike in Tsionas and Kumbhakar (2014) we find that a posteriori persistent
inefficiency distribution (ηi) is centered around considerably higher values and much
more diffused than transient inefficiency (uit). Thus, the resulting overall inefficiency
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Figure 4: Posterior distributions of inefficiency components in the GTRE model
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Figure 5: Posterior distribution of bank effects
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scores (ωit = uit + ηi) in the GTRE model are also considerably larger than in TRE
or standard SF (see Figure 5). This would indicate that information in the data
regarding persistent inefficiency is rather weak. Furthermore, inefficiency component
in TRE model has very similar posterior characteristics to transient inefficiency from
GTRE. Their density charts from Figures 4 and 6 nearly overlap and their posterior
inefficiency rankings are almost identical (0.998 correlation between posterior means
of inefficiency; see Table 13). This would indicate that inefficiency estimates that
we acquire using TRE model should be treated as transient rather than overall
inefficiency scores. Persistent inefficiency is likely captured via bank effects (αi) in
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Figure 6: Posterior distribution of overall inefficiency ωit in GTRE, TRE, GSF and
standard SF
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the TRE model. We also find that posterior estimates of inefficiency scores in the
standard SF are quite similar to overall inefficiency scores in the GTRE model (0.895
correlation between posterior means of inefficiency; see Table 13).

Table 13: Correlations between inefficiencies from four models
Correlation between overall inefficiency (ω)

standard SF TRE GTRE GSF
standard SF 1 0.328

(0.039)
0.466

(0.058)
0.568

(0.040)
TRE 0.606 1 0.314

(0.051)
0.260

(0.044)
GTRE 0.895 0.574 1 0.638

(0.084)
GSF 0.845 0.375 0.961 1

Correlation between transient inefficiency (u)
standard SF TRE GTRE GSF

standard SF 1 0.328
(0.039)

0.290
(0.042)

0.286
(0.040)

TRE 0.606 1 0.502
(0.058)

0.478
(0.059)

GTRE 0.595 0.998 1 0.432
(0.062)

GSF 0.609 0.987 0.992 1

Note: Lower triangles in the cross-tables (in italic) contain correlation coefficients between posterior means
of inefficiencies in different models; upper triangles contain the posterior means and standard deviations
(in brackets) of correlation coefficients between inefficiencies in different models (calculated using draws
from simulations); for models standard SF and TRE overall inefficiency is equal to transient.

Since posterior distribution of ηi is relatively diffused and centered around significantly
higher values than transient inefficiency (uit) it is worth exploring how our prior belief,
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expressed via prior median hyper-parameter r∗η, influences posterior characteristics of
the distribution of ηi. Sensitivity analysis provided in Table 14 indicates that for
very high/low values of prior median information in the data pulls the posterior
significantly away from the initially centred prior, even if the prior is relatively tight.
More importantly, however, correlation coefficient of banks’ persistent inefficiencies
between models with prior median 0.6 and 0.9 is 0.993 (Spearman’s rank correlation
is 0.997). This indicates that prior median hyper-parameter of the new GTRE model
has virtually no impact on relative differences in persistent inefficiency estimates
between banks.

Table 14: Prior and posterior distribution of ηi under different prior median values

prior median 0.6 0.7 0.8 0.875 0.9
prior posterior prior posterior prior posterior prior posterior prior posterior

Efficiency distribution characteristics (exp(−η))
mean 0.595 0.748 0.683 0.777 0.778 0.801 0.856 0.838 0.884 0.852
st.dev. 0.235 0.048 0.200 0.047 0.152 0.052 0.105 0.051 0.087 0.055
median 0.6 0.753 0.7 0.782 0.800 0.807 0.875 0.842328 0.900 0.850

Inefficiency distribution characteristics (η)
mean 0.625 0.292 0.436 0.254 0.273 0.224 0.163 0.179 0.129 0.173
st.dev. 0.513 0.065 0.358 0.061 0.224 0.067 0.134 0.063 0.106 0.066
median 0.506 0.283 0.352 0.247 0.221 0.214 0.132 0.172 0.104 0.161

To sum up, we find that inefficiency estimates (ηi, uit, ωit) from the GTRE model are
highly correlated with their respective counterparts from simpler SF models. Whether
one should consider the “full” GTRE model or one of its simplifications should be
based on both, research needs at hand as well as each model’s adequacy, e.g., as
measured by the marginal data density. Unfortunately, despite recent breakthroughs
in estimating the marginal data density (see e.g., Pajor 2016; Lenk 2009) its precise
calculation in Bayesian SF models is still a challenging task. Moreover, it seems that
due to a large number of latent variables GTRE models are particularly troublesome
in this regard.

5 Concluding remarks
We have revisited Bayesian approach to estimating generalized true random-effects
models (GTRE) and proposed some modifications to the earlier work by Tsionas and
Kumbhakar (2014). Simulation exercises indicate that the new Bayesian model (and
its numerical implementation) outperforms its predecessor, which is no doubt due to
more reasonable priors on inefficiency terms. Both models manage to replicate true
values assigned in the DGP when the conditions are favourable; that is: i) if the
dataset is large-enough, ii) symmetric disturbances are relatively small in respect
to inefficiency terms, and iii) we do not have that many regression parameters.
Implementation of the new model, however, has better numerical properties, and thus
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in more noisy datasets, or with more complex specifications (e.g., more parameters),
advantages of the new model become evident. It is easier to implement, faster to
compute and appears more reliable in use. Furthermore, we have proposed other
types of Bayesian GTRE models (3a-c) that can also be relatively easily estimated
using Gibbs sampling. All this makes Bayesian GTRE models with reasonable,
interpretable priors a useful alternative to classical estimators in this field, which
have only asymptotic properties.
The modification also allows us to conduct a more robust analysis because now we
can easily control our prior beliefs about ηi and uit. That is, we can trace how
much information in the data alters the posterior in relation to the prior. This seems
especially important in empirical applications of the GTRE model because we find
that inefficiency terms can be considerably larger than reported in previous studies,
persistent inefficiency in particular. We also find that posterior characteristics of
bank-specific effects (i.e., object-specific ηi and αi) are quite diffused and depended
on the model prior specification. This, however, is to be expected since in the empirical
example we deal with a relatively “short” panel (T = 8 and n = 141).
To conclude, the reader should consider the economic meaning of having a symmetric,
object-specific effect (αi) in a stochastic frontier framework. Inference about it is not
only quite dependent on the priors on αi and ηi, but also implies frontier heterogeneity
to the extent where a notion of a common technical frontier, against which we
benchmark our objects seems questionable (i.e., different technologies). It may be
more suitable for a stochastic frontier framework to move away from the concept
of purely individual “object-specific” effects in the GTRE model towards “cluster-
specific” effects, (i.e., instead of αi use αj , j = 1, . . . , J and J < N) or a “cluster-
specific” frontier framework (see, e.g., Koop, Osiewalski and Steel, 2000b), where one
could indicate clusters (i.e., groups) of objects that operate under a common frontier.
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Supplementary materials
MATLAB codes needed to estimate models discussed in the article can be
downloaded from: http://www.mathworks.com/matlabcentral/fileexchange/
61059-bayesian-gtre-models
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