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Abstract

The paper concerns the problem of treatment o$yktematic effect as a part of the coverage intessociate
with the measurement result. In this case the kneygtematic effect is not corrected for but instisadeated as
an uncertainty component. This effect is charao¢eriby two components: systematic and random.
systematic component is estimated by the bias hadrandom component is estimated by the uncer
associated with the bias. Taking into considerati@mse two components, a random variable can laectavitt
zero expectation and standard deviation calculétgdandomizing the systematic effect. The metho
randomization of the systematic effect is basedadiatten-Gaussian distribution. The stard uncertaint
being the basic parameter of the systematic effeat; be calculated with a simple mathematical fdamiihe
presented evaluation of uncertainty is more ratidhan those with the use of other methods. Itgsful ir
practical metrological applications.
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1. Introduction

A systematic effect having two components, systenaatd random [1], may be treated as
a part of the coverage interval. In this case,ki@wvn systematic effect is not corrected for
but instead is treated as an uncertainty contobutihe first component of the systematic
effect is estimated by the bias and the second ooem is estimated by uncertainty
associated with this bias. The new random variabtebe created with zero expectation and
the calculated standard deviation bases on thenafiion connected with the bias and its own
uncertainty.

2. Coverage interval

The concept of a coverage interval is connectett wie probability distribution of the
possible values for the measurand. In generalsthigstical coverage interval is defined as
“an interval for which it can be stated with a giMevel of confidence that it contains at least
a specified proportion of the population” [1]. Aegjific definition in metrology of the
coverage interval is “an interval containing théueaof a quantity with a stated probability”
[2]. There are two options: probabilistically symine coverage interval and shortest
coverage interval. In case of symmetrical distifiuf the possible values for the measurand
there is only one interval, symmetric around itpaeptation:

lp = [Yiows Yhighls (1)

whereyiow andynigh are the endpoints of the coverage interval cooeding to the values
G Y(a) andG *(a + p), which are thar and a + p quantiles of distribution functio®(7) of
the measurand. The usual assumptiorr ef2,5 % andp = 95 % gives the coverage interval
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defined by the 0,025 and 0,975 quantiles. With reafee to the classical expression of
expanded uncertainty it can be written as:

lb=[y -U, y +U]. (2)
Satisfying: i
[ a(n)dn=p, 3)

whereg(#) is a probability density function of the measutay is its estimate ang is a
coverage probability.

3. Systematic effect as a random variable

The systematic effect contains the bgsas the estimate of systematic error, and its
standard uncertainty(e). We assume that the probability attributed tordredom component
of the effect is a normal distribution, and we a&sslk = 2 corresponding to a coverage
probabilityp = 95 % (Fig. 1). Creating a new random variabléhvziéro expectation we can
determine a symmetrical coverage interval

U =[d+20ue). (4)

Thus, definedU gives the expanded uncertainty of randomized syatie effect. The
distribution of this random variable is &R distribution.

h

e 2-ule)

¥
4

.

Fig. 1. Randomization of systematic effect.
4. RON distribution

The RN distribution is a convolution of two distributisnrectangular and normal. The
probability density function of BN distribution is given by:

n+/3r
= eXx
gRN(U) 2\/&!’"‘[/‘—[ P
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Fig. 2. Probability density function for convoluti@f rectangular and normal distributions with ei#nt values
for parameter.

The probability density functions of (IRl distributions are characterizing, in general, a
constant value surrounding expectation and its eslopre Gaussian functions (Fig. 2).
Therefore, sometimes this distribution is calleftatten-Gaussian distribution [3]. The range
of constancy of the probability density functiorpdads on parametey that is a ratio of the
standard deviatiowr of a rectangular distribution to the standard de&en gy of a normal
distribution:

r=J2% (6)

Y

The parameter of RIN distribution may be estimated by the formula aoimg the bias
and the standard uncertainty associated with th&s b

_2ld
ru—g'u(e)ﬂtl. (7

For simple convolution of the rectangular and ndrafiatributions, whereo, :|e|/\/§

ando, =u(e), itis:

r= |e| : (8)

The above formulas are different, but formula (7)tdyeapproximates the parameter of
randomized systematic effect and may be also wselaracterize the® distribution.

The coverage factor for the[R distribution should be calculated numerically. The
coverage factor values corresponding to the coeepagbabilityp = 95 % are presented in
Table 1 [47]. The coverage factor can also be calculated mthéotrapezoidal distribution

from the formula [810]:
3
kT: I’2+1(1+ ru_2‘\/ru(1_ p)) (9)
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The difference between coverage factor values [zbml for the RN distribution and the
trapezoidal distribution corresponding to coveragabability 95 % are presented in Tab. 2.
For each relationship betweemndu(e) the differences are minimum.

Table 1. Coverage factégy corresponding to coverage probabifity 95 % for limits of ratiar,.

ly ry ly
Kan up to value Kan up to value Kan up to value
1,96 0,5090 1,85 1,6410 1,74 3,1930
1,95 0,6985 1,84 1,7380 1,73 3,4410
1,94 0,8240 1,83 1,8390 1,72 3,7300
1,93 0,9280 1,82 1,9460 1,71 4,0740
1,92 1,0220 1,81 2,0600 1,70 4,4925
1,91 1,1110 1,80 2,1820 1,69 5,0235
1,90 1,1980 1,79 2,3135 1,68 5,7350
1,89 1,2840 1,78 2,4560 1,67 6,7760
1,88 1,3700 1,77 2,6120 1,66 8,5975
1,87 1,4580 1,76 2,7845 1,65 )
1,86 1,5480 1,75 2,9765

Table 2. Standard uncertainty and coverage fadtamlomized systematic effect.

elu(e) ry Krn ke u Ug=U/Kgn ug=U/kr UrmcMm)
0,1 1,0667 1,91 1,90 2,1 1,10 1,10 1,10
0,2 1,1333 1,90 1,90 2,2 1,16 1,16 1,15
0,3 1,2000 1,89 1,90 2,3 1,22 1,21 1,21
0,4 1,2667 1,89 1,89 2,4 1,27 1,27 1,28
0,5 1,3333 1,88 1,89 2,5 1,33 1,32 1,32
0,6 1,4000 1,87 1,88 2,6 1,39 1,38 1,39
0,7 1,4667 1,86 1,88 2,7 1,45 1,44 1,44
0,8 1,5333 1,86 1,87 2,8 1,51 1,49 1,50
0,9 1,6000 1,85 1,87 2,9 1,57 1,55 1,56
1 1,6667 1,84 1,86 3,0 1,63 1,61 1,62
2 2,3333 1,78 1,81 4,0 2,25 2,21 2,23
3 3,0000 1,74 1,77 5,0 2,87 2,83 2,85
4 3,6667 1,72 1,74 6,0 3,49 3,46 3,47
5 4,3333 1,70 1,71 7,0 4,12 4,08 4,10
6 5,0000 1,69 1,70 8,0 4,73 4,71 4,72
7 5,6667 1,68 1,69 9,0 5,36 5,34 5,35
8 6,3333 1,67 1,68 10 5,99 5,96 5,98
9 7,0000 1,66 1,67 11 6,63 6,59 6,61
10 7,6667 1,66 1,66 12 7,23 7,21 7,23

5. Standard uncertainty of the randomized systemati effect

The standard uncertainty of the randomized systeraiect is given as:

_U_|g+2-u(g

where the coverage factor:

R

k

k:kRN

k

(10)

(11)
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The differences between standard uncertainty vakedsulated for the randomized
systematic effect with the use of the coverageofaéky andkr are also presented in Table 2.
This differences are minimum and do not influertoe Yalue of standard uncertainty as it is
expressed with two significant digits. In Table I tvalues of standard uncertainty are
presented with three significant digits to show thiference between them. The above-
mentioned differences between them do not exceegencent.

The standard uncertainty of the randomized sysiereffect may also be calculated with
the use of the Monte Carlo method. One can do ctatipa from the formula [2]:

2 1 Y —\2
Uz vcwm) :mz( Y — Y) . (12)
L=l

The valuesy, are drawn from the BN distribution, having parameter= r, given by
equation (7). The results okmcvy computation are presented in Table 2. The diffegen
betweenur values obtained by the analytical method arghcw) values obtained by the
numerical method do not exceed one percent.

The random number generator diNRdistribution may be built with the use of two gil®
random number generators. The random numbers anerdhrough the formula:

y=rat?% (13)

Jrig1

wherez andz are random variables having standardized rectandigaibution R(0, 1) and
standardized normal distribution N(O, 1).

6. Comparison with literature approach

The approach presented in literature{13] most often gives the formula for calculating
the standard uncertainty associated with the syaieraffect:

U =&+ (8. (14)
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Fig. 3. Standard uncertainty of systematic effattwated with two approaches.
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In this approach the value of the biass treated as a standard uncertainty. Because the
bias is always evaluated with a given uncertaittitg,formula (14) also contains the standard
uncertaintyu(e) associated with the estimation @f This formula binds the systematic and
random components of the systematic effect, expprgstandard uncertainty like the law
of uncertainty propagation. When we calculate theettainty from this formula the value of
u_ is a nonlinear function (Fig. 3).

In the approach presented here, the calculatiank @reates practically a linear function.
The growth of the value of the systematic effeahponent causes the proportional increase
of standard uncertainty of this effect. Thus, te&ation between the standard uncertainty,
given by (10), and systematic effect componengsastically linear.

7. Practical example

Practical use of the proposed randomization mayaglied to interpretation of the
information contained in the calibration certifieain this certificate the bias is given with
associated uncertainty. The reported expanded tamagr of measurement is stated as the
combined standard uncertainty multiplied by theerage factok = 2, which for a normal
distribution corresponds to the coverage probaalitapproximately 95 %.

We can use a simple example concerning the measuateaf a roller diameter by a
calibrated micrometer. The calibration certificafea measuring instrument states the bias in
the whole measuring range iU with an associated uncertainty ofieh. We can assume
that the bias is the estimate of the maximum systienerror and its absolute value may be

equal or smaller thanBm for any measured diameter. In this c@e 0,003 mm andJ(e) =

0,001 mm, because expanded uncertainty 0,002 mm andck = 2. The randomizing BN
distribution of that systematic effect has a paranrg = 3, given by formula (7). From Table
1 we can readiry = 1,74 or from the formula (9) we can calculkte= 1,77. The standard
uncertainty, given by formula (10), isg=0,0029 mm. In the case of trapezoidal
approximation the standard uncertaintygs= 0,0028 mm, because a trapezoidal distribution
has a smaller standard deviation than thé\ Rlistribution for the same parameter of a
randomized quantity. This uncertainty we can albtgpe B and then it may be writteg =
URr.

The roller diamete@20h7 (h7 is a symbol of diameter tolerance) wassuwea with an
average of the observatiorts= 19,990 mm, as the estimate of the diameter arl thie

experimental standard deviation of the mes(ﬂ1) = 0,0017 mm, as the standard uncertainty.

This uncertainty is called type A, ther= id_) In accordance with the law of uncertainty
propagation the combined standard uncertaintysrgas:

U, (d)=y U+ . (15)

The combined standard uncertainty may be an esiofastandard uncertainty associated
with the measurement result of the roller diametatained using a calibrated micrometer:
u(d) = uc(d) = 0,0033 mm. We can assume normal distributitnibated to thaus uncertainty
and the RN distribution attributed to theis uncertainty. The coverage interval may be
calculated by the analytical method described iplipations [4-6]. Using this method we can
obtain: diow = 19,9838 mm andlgn = 19,9962 mm. According to the recommendation of
document [2] we can report the final result of meaement as:

d=19,9900 mmuy(d) = 0,0033 mm
95 % coverage interval = [19,9838; 19,9962] mm
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or we can present it in traditional forrd:= (19,9900 + 0,0062) mm. We can compare this
result with the calculation using the Monte Carlethod [2]:

d =19,9900 mmuy(d) = 0,0034 mm
95 % coverage interval = [19,9837; 19,9963] mm

or we can present it in traditional forieh= (19,9900 + 0,0063) mm. The measurement result
is the same when we round the standard uncert@rdge significant digit

d = 19,990 mmu(d) = 0,003 mm
95 % coverage interval = [19,984; 19,996] mm

or express it in traditional forrd = (19,990 + 0,006) mm. The tolerance of the diamet
@20h7 isT = 21 um with the upper specification limit: @m and lower specification limit:
-21 pym, corresponding to a maximum permissible diametgual dn.x=20 mm and
minimum permissible diameter equili,= 19,979 mm.

8. Conclusion

The systematic effect may be joined to the coveratgval of a measurement result. In
this case the systematic effect is treated as aartainty component and a random variable.
This random variable can be characterized by thN Ristribution. The RN distribution
covers two components of systematic effect, bias w@rcertainty associated with this bias.
The calculations of standard uncertainty and caeefactor of the randomized systematic
effect are simple and can be easily implementgatantical application in metrology.

The literature approach does not assume the pildpadbistribution for the systematic
effect. Thus, the standard uncertainty associaté tive systematic effect can be calculated
only from the law of uncertainty propagation. Ttedcalation presented above may be done
by the analytical method as well as the numericathed with the use of propagation of
distributions, recommended in [2]. Each method es practically the same value of
standard and expanded uncertainty.
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