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Abstract 

The paper concerns the problem of treatment of the systematic effect as a part of the coverage interval associated 
with the measurement result. In this case the known systematic effect is not corrected for but instead is treated as
an uncertainty component. This effect is characterized by two components: systematic and random. The 
systematic component is estimated by the bias and the random component is estimated by the uncertainty 
associated with the bias. Taking into consideration these two components, a random variable can be created with 
zero expectation and standard deviation calculated by randomizing the systematic effect. The method of 
randomization of the systematic effect is based on a flatten-Gaussian distribution. The standard uncertainty, 
being the basic parameter of the systematic effect, may be calculated with a simple mathematical formula. The 
presented evaluation of uncertainty is more rational than those with the use of other methods. It is useful in 
practical metrological applications. 
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1. Introduction 

 
A systematic effect having two components, systematic and random [1], may be treated as 

a part of the coverage interval. In this case, the known systematic effect is not corrected for 
but instead is treated as an uncertainty contribution. The first component of the systematic 
effect is estimated by the bias and the second component is estimated by uncertainty 
associated with this bias. The new random variable can be created with zero expectation and 
the calculated standard deviation bases on the information connected with the bias and its own 
uncertainty.  
 
2. Coverage interval 

 
The concept of a coverage interval is connected with the probability distribution of the 

possible values for the measurand. In general, the statistical coverage interval is defined as 
“an interval for which it can be stated with a given level of confidence that it contains at least 
a specified proportion of the population” [1]. A specific definition in metrology of the 
coverage interval is “an interval containing the value of a quantity with a stated probability” 
[2]. There are two options: probabilistically symmetric coverage interval and shortest 
coverage interval. In case of symmetrical distribution of the possible values for the measurand 
there is only one interval, symmetric around its expectation: 

 

  Ip = [ylow, yhigh],      (1) 
 

where ylow and yhigh are the endpoints of the coverage interval corresponding to the values     
G−1(α) and G−1(α + p), which are the α and α + p quantiles of distribution function G(η) of 
the measurand. The usual assumption of α = 2,5 % and p = 95 % gives the coverage interval 
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defined by the 0,025 and 0,975 quantiles. With reference to the classical expression of 
expanded uncertainty U it can be written as: 
 

Ip = [ y  − U,  y  + U].                                      (2) 
Satisfying: 

 ( )d ,
y U

y U

g p
+

−

η =∫ η        (3) 

 

where g(η) is a probability density function of the measurand, y  is its estimate and p is a 
coverage probability.  
 
3. Systematic effect as a random variable 

 
The systematic effect contains the bias e, as the estimate of systematic error, and its 

standard uncertainty u(e). We assume that the probability attributed to the random component 
of the effect is a normal distribution, and we assume k = 2 corresponding to a coverage 
probability p = 95 % (Fig. 1). Creating a new random variable with zero expectation we can 
determine a symmetrical coverage interval 

 

 ( )eueU ⋅+= 2 .       (4) 
 

Thus, defined U gives the expanded uncertainty of randomized systematic effect. The 
distribution of this random variable is a R∗N distribution.  

 

 
 

Fig. 1. Randomization of systematic effect. 
 
4. R∗∗∗∗N distribution 

 
The R∗N distribution is a convolution of two distributions, rectangular and normal. The 

probability density function of  R∗N distribution is given by: 
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Fig. 2. Probability density function for convolution of rectangular and normal distributions with different values 
for parameter r.  

 
The probability density functions of R∗N distributions are characterizing, in general, a 

constant value surrounding expectation and its slopes are Gaussian functions (Fig. 2). 
Therefore, sometimes this distribution is called a flatten-Gaussian distribution [3]. The range 
of constancy of the probability density function depends on parameter r, that is a ratio of the 
standard deviation σR of a rectangular distribution to the standard deviation σN of a normal 
distribution: 

 R

N

.r =
σ

σ
       (6) 

 

The parameter r of R∗N distribution may be estimated by the formula connecting the bias 
and the standard uncertainty associated with this bias:  
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For simple convolution of the rectangular and normal distributions, where R 3e=σ  

and ( )N u e=σ , it is:  
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The above formulas are different, but formula (7) better approximates the parameter of 
randomized systematic effect and may be also used to characterize the R∗N distribution. 

The coverage factor for the R∗N distribution should be calculated numerically. The 
coverage factor values corresponding to the coverage probability p = 95 % are presented in  
Table 1 [4−7]. The coverage factor can also be calculated as for the trapezoidal distribution 
from the formula [8−10]: 
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The difference between coverage factor values calculated for the R∗N distribution and the 
trapezoidal distribution corresponding to coverage probability 95 % are presented in Tab. 2. 
For each relationship between e and u(e) the differences are minimum. 
 

Table 1. Coverage factor kRN corresponding to coverage probability p = 95 % for limits of ratio ru. 
 

kRN 

ru 

up to value kRN 
ru 

up to value kRN 
ru 

up to value 

1,96 0,5090 1,85 1,6410 1,74 3,1930 
1,95 0,6985 1,84 1,7380 1,73 3,4410 
1,94 0,8240 1,83 1,8390 1,72 3,7300 
1,93 0,9280 1,82 1,9460 1,71 4,0740 
1,92 1,0220 1,81 2,0600 1,70 4,4925 
1,91 1,1110 1,80 2,1820 1,69 5,0235 
1,90 1,1980 1,79 2,3135 1,68 5,7350 
1,89 1,2840 1,78 2,4560 1,67 6,7760 
1,88 1,3700 1,77 2,6120 1,66 8,5975 
1,87 1,4580 1,76 2,7845 1,65 ∞ 
1,86 1,5480 1,75 2,9765   

 
Table 2. Standard uncertainty and coverage factor of randomized systematic effect.  

 

e/u(e) ru kRN kT U uR=U /kRN uR=U /kT uR(MCM) 

0,1 1,0667 1,91 1,90 2,1 1,10 1,10 1,10 
0,2 1,1333 1,90 1,90 2,2 1,16 1,16 1,15 
0,3 1,2000 1,89 1,90 2,3 1,22 1,21 1,21 
0,4 1,2667 1,89 1,89 2,4 1,27 1,27 1,28 
0,5 1,3333 1,88 1,89 2,5 1,33 1,32 1,32 
0,6 1,4000 1,87 1,88 2,6 1,39 1,38 1,39 
0,7 1,4667 1,86 1,88 2,7 1,45 1,44 1,44 
0,8 1,5333 1,86 1,87 2,8 1,51 1,49 1,50 
0,9 1,6000 1,85 1,87 2,9 1,57 1,55 1,56 
1 1,6667 1,84 1,86 3,0 1,63 1,61 1,62 
2 2,3333 1,78 1,81 4,0 2,25 2,21 2,23 
3 3,0000 1,74 1,77 5,0 2,87 2,83 2,85 
4 3,6667 1,72 1,74 6,0 3,49 3,46 3,47 
5 4,3333 1,70 1,71 7,0 4,12 4,08 4,10 
6 5,0000 1,69 1,70 8,0 4,73 4,71 4,72 
7 5,6667 1,68 1,69 9,0 5,36 5,34 5,35 
8 6,3333 1,67 1,68 10 5,99 5,96 5,98 
9 7,0000 1,66 1,67 11 6,63 6,59 6,61 
10 7,6667 1,66 1,66 12 7,23 7,21 7,23 

 
5. Standard uncertainty of the randomized systematic effect 
 

The standard uncertainty of the randomized systematic effect is given as: 
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where the coverage factor: 
 RN T.k k k= ≈        (11) 
 



 
Metrol. Meas. Syst., Vol. XVII (2010), No. 3, pp. 439−446 

The differences between standard uncertainty values calculated for the randomized 
systematic effect with the use of the coverage factors kRN and kT are also presented in Table 2. 
This differences are minimum and do not influence the value of standard uncertainty as it is 
expressed with two significant digits. In Table 2 the values of standard uncertainty are 
presented with three significant digits to show the difference between them. The above-
mentioned differences between them do not exceed two percent. 

The standard uncertainty of the randomized systematic effect may also be calculated with 
the use of the Monte Carlo method. One can do computation from the formula [2]: 
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− ∑        (12) 

 

The values yi are drawn from the R∗N distribution, having parameter r = ru given by 
equation (7). The results of uR(MCM) computation are presented in Table 2. The differences 
between uR values obtained by the analytical method and uR(MCM) values obtained by the 
numerical method do not exceed one percent. 

The random number generator of R∗N distribution may be built with the use of two simple 
random number generators. The random numbers are drawn through the formula: 
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       (13) 

 

where z1 and z2 are random variables having standardized rectangular distribution R(0, 1) and 
standardized normal distribution N(0, 1). 
 
6. Comparison with literature approach 
 

The approach presented in literature [11−13] most often gives the formula for calculating 
the standard uncertainty associated with the systematic effect: 

 

 ( )2 2
L .u e u e= +        (14) 
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Fig. 3. Standard uncertainty of systematic effect calculated with two approaches. 
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In this approach the value of the bias e is treated as a standard uncertainty. Because the 
bias is always evaluated with a given uncertainty, the formula (14) also contains the standard 
uncertainty u(e) associated with the estimation of e. This formula binds the systematic and 
random components of the systematic effect, expressing standard uncertainty uL like the law 
of uncertainty propagation. When we calculate the uncertainty from this formula the value of 
uL is a nonlinear function (Fig. 3).  

In the approach presented here, the calculation of uR creates practically a linear function. 
The growth of the value of the systematic effect component causes the proportional increase 
of standard uncertainty of this effect. Thus, the relation between the standard uncertainty, 
given by (10), and systematic effect components is practically linear. 
 
7. Practical example 

 
Practical use of the proposed randomization may be applied to interpretation of the 

information contained in the calibration certificate. In this certificate the bias is given with 
associated uncertainty. The reported expanded uncertainty of measurement is stated as the 
combined standard uncertainty multiplied by the coverage factor k = 2, which for a normal 
distribution corresponds to the coverage probability of approximately 95 %.  

We can use a simple example concerning the measurement of a roller diameter by a 
calibrated micrometer. The calibration certificate of a measuring instrument states the bias in 
the whole measuring range is 3 µm with an associated uncertainty of 2 µm. We can assume 
that the bias is the estimate of the maximum systematic error and its absolute value may be 
equal or smaller than 3 µm for any measured diameter. In this case e = 0,003 mm and ( )eu  = 

0,001 mm, because expanded uncertainty U = 0,002 mm and k = 2. The randomizing R∗N 
distribution of that systematic effect has a parameter ru = 3, given by formula (7). From Table 
1 we can read kRN = 1,74 or from the formula (9) we can calculate kT = 1,77. The standard 
uncertainty, given by formula (10), is uR = 0,0029 mm. In the case of trapezoidal 
approximation the standard uncertainty is uR = 0,0028 mm, because a trapezoidal distribution 
has a smaller standard deviation than the R∗N distribution for the same parameter of a 
randomized quantity. This uncertainty we can also call type B and then it may be written uB = 
uR.  

The roller diameter Φ20h7 (h7 is a symbol of diameter tolerance) was measured with an 
average of the observations d = 19,990 mm, as the estimate of the diameter and with the 
experimental standard deviation of the mean ( )ds  = 0,0017 mm, as the standard uncertainty. 

This uncertainty is called type A, then uA= ( )ds . In accordance with the law of uncertainty 
propagation the combined standard uncertainty is given as: 

 

( ) 2 2
c A B .u d u u= +                                                       (15) 

 

The combined standard uncertainty may be an estimate of standard uncertainty associated 
with the measurement result of the roller diameter obtained using a calibrated micrometer: 
u(d) = uc(d) = 0,0033 mm. We can assume normal distribution attributed to the uA uncertainty 
and the R∗N distribution attributed to the uB uncertainty. The coverage interval may be 
calculated by the analytical method described in publications [4−6]. Using this method we can 
obtain: dlow = 19,9838 mm and dhigh = 19,9962 mm. According to the recommendation of 
document [2] we can report the final result of measurement as: 
 

d = 19,9900 mm, u(d) = 0,0033 mm 
95 % coverage interval = [19,9838; 19,9962] mm 
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or we can present it in traditional form: d = (19,9900 ± 0,0062) mm. We can compare this 
result with the calculation using the Monte Carlo method [2]:  
 

d = 19,9900 mm, u(d) = 0,0034 mm 
95 % coverage interval = [19,9837; 19,9963] mm 

 

or we can present it in traditional form: d = (19,9900 ± 0,0063) mm. The measurement result 
is the same when we round the standard uncertainty to one significant digit  
 

d = 19,990 mm, u(d) = 0,003 mm 
95 % coverage interval = [19,984; 19,996] mm 

 

or express it in traditional form: d = (19,990 ± 0,006) mm. The tolerance of the diameter 
Φ20h7 is T = 21 µm with the upper specification limit: 0 µm and lower specification limit:     
-21 µm, corresponding to a maximum permissible diameter equal dmax = 20 mm and 
minimum permissible diameter equal dmin = 19,979 mm.  
 
8. Conclusion 
 

The systematic effect may be joined to the coverage interval of a measurement result. In 
this case the systematic effect is treated as an uncertainty component and a random variable. 
This random variable can be characterized by the R∗N distribution. The R∗N distribution 
covers two components of systematic effect, bias and uncertainty associated with this bias. 
The calculations of standard uncertainty and coverage factor of the randomized systematic 
effect are simple and can be easily implemented in practical application in metrology. 

The literature approach does not assume the probability distribution for the systematic 
effect. Thus, the standard uncertainty associated with the systematic effect can be calculated 
only from the law of uncertainty propagation. The calculation presented above may be done 
by the analytical method as well as the numerical method with the use of propagation of 
distributions, recommended in [2]. Each method provides practically the same value of 
standard and expanded uncertainty.  
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