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Abstract 

The Dee Investigation Simulation Program for Regulating Network (DISPRIN) model consists of eight 
tanks that are mutually interconnected. It contains 25 parameters involved in the process of transforming rainfall 
into runoff data. This complexity factor is the appeal to be explored in order to more efficiently. Parameteriza-
tion process in this research is done by using Differential Evolution (DE) algorithm while parameters sensitivity 
analysis is done by using Monte Carlo simulation method. Software application models of merging the two con-
cepts are called DISPRIN25-DE model and compiled using code program M-FILE from MATLAB. Results of 
research on Lesti watershed at the control point Tawangrejeni automatic water level recorder (AWLR) station 
(319.14 km2) in East Java Indonesia indicate that the model can work effectively for transforming rainfall into 
runoff data series. Model performance at the calibration stage provide value of NSE = 0.871 and PME = 0.343 
while in the validation stage provide value of NSE = 0.823 and PME = 0.180. Good performance in the calibra-
tion process indicates that DE algorithm is able to solve problems of global optimization of the equations system 
with a large number of variables. The results of the sensitivity analysis of 25 parameters showed that 3 parame-
ters have a strong sensitivity level, 7 parameters with a medium level and 15 other parameters showed weak sen-
sitivity level to performance of DISPRIN model. 

Key words: differential evolution, Dee Investigation Simulation Program for Regulating Network (DISPRIN) 
model, Lesti watershed, simulation 

INTRODUCTION 

Metaheuristik is a method for finding the optimal 
solution approach by combining search procedures 
between local and higher strategies to create a process 
that is able to get out of local optima points and do 
a search in the space of solutions to determine the 
global solution. Analytical techniques on the me-

taheuristic method are generally stochastic and solved 
through the iteration process. The optimal solution 
produced maybe not the best conditions, but a solu-
tion that is near optimal. The reliability and ease of its 
application in solving complex and high-dimensional 
equations systems makes it attractive to be applied to 
solve problems in various fields, including the field of 
hydrological engineering. Efforts to improve the per-

DOI: 10.2478/jwld-2018-0033 



142 SULIANTO, M. BISRI, L.M. LIMANTARA, D. SISINGGIH 

© PAN in Warsaw, 2018; © ITP in Falenty, 2018; Journal of Water and Land Development. No. 37 (IV–VI) 

formance of hydrological conceptual models by com-
bining them with metaheuristic methods have been 
widely published by world researchers. Merging me-
taheuristic methods with conceptual hydrologic mod-
els can produce new models that are reliable and prac-
tically applied to transform climate into runoff data 
series. The new model can perform automatic calibra-
tion with only utilize climate and runoff data series 
with length limited. 

Many new models generated from combination 
between metaheuristic methods and hydrological 
models developed by previous researchers. Hydrolo-
giska Byråns Vattenbalansavdelning (HBV) model 
and Ge’nie Rural a’ 4 parame’tres Journalier (GR4J) 
model combined with Diferential Evolution (DE) al-
gorithm and Particle Swam Optimization (PSO) algo-
rithm [PIOTROWSKI et al. 2016]. A combination be-
tween Genetic Algorithm (GA) and the North Ameri-
can Mesoscale (NAM) model can present the rainfall-
runoff relationship with daily periods. Although its 
performance is not as good as the application of Tank 
model based GA with the same data set [NGOC et al. 
2012]. Other models that are successfully developed 
are modified HBV model in combination with GA 
[SEIBERT 2000], HBV model and NAM model with 
the Continous Time Stochastic Modelling (CTSM) 
optimization [JONSDOTTIR et al. 2005], A spatially 
distributed grid based rainfall runoff model for con-
tinuous time simulations of river discharge (AFFDEF) 
model and Shuffle Complex Evolution (SCE) algo-
rithm [DARIKANDEH et al. 2014], Kieistau Model Dis-
charge Simulation (KIDS)  model with Sufi-2 method 
from SWAT (Soil and Water Assessment Tool) Soft-
ware [ZHANGet al. 2012]. The combination between 
SWAT 2000 model and Dynamically Dimensioned 
Search (DDS) algorithm also SWAT 2000 model and 
SCE algorithm show that both methods can work well 
on a daily or monthly data analysis [TOLSON et al. 
2007]. Xin'anjiang model combined with SCE algo-
rithms [BAO et al. 2008], GA and GA hybrid [WANG 

et al. 2012] also can show satisfactory performance 
on a variety of issues over the data-rain runoff.  

Metaheuristic method for automatic calibration 
Tank model parameters has been proposed by many 
researchers in the world. Exploration of Tank model 
combined with PSO algorithm successfully applied to 
the Shigenobu Watershed Japan [SANTOS et al. 2011]. 
Tank model combined with Marquard algorithm [SE-

TIAWAN et al. 2003], GA [NGOC et al. 2012] also 
managed to show a good performance. Combination 
of SCE, GA, PSO, Artificial Imune System (AIS) and 
DE algorithm with Tank model that are applied to the 
Yellow River watershed in China and Reynolds Creek 
Boise ID watershed, Mahantango Creek University 
Park watershed, Little River Tifton watershed in 
United States indicate that the combination in of five 
methods can work well [ZHANG et al. 2012]. 

Combination between Tank model and PSO algo-
rithm for flood analysis with hourly period in urban 
areas in Taiwan also shows very good performance 

[HSU, YEH 2015]. Modification of Tank model into 
Multi Tank model combined with metaheuristic to 
monitor ground water level fluctuations have also 
been conducted by previous researchers. Multi Tank 
model with 6 tanks system arranged in parallel-series 
(27 parameters) combined with DDS algorithm shows 
better results than the output from finite element 
method (FEM) [KENJI et al. 2008]. Para Tank models 
with 8 tank system (32 parameters) combined with 
DDS Algorithm and GA shows good performance in 
predicting fluctuations in groundwater levels in Yam-
agata, Japan. In this case both the developed model 
show the same error rate, but the model with DDS 
algorithm is more effective in terms of speed in reach-
ing convergent conditions [HUANG, XIONG 2010]. 

Dee Investigation Simulation Program for Regu-
lating Network (DISPRIN) model as described by 
JAMIESON and WILKINSON [1972] in SHAW [1985], is 
a lumped model that has more complex parameters 
than Tank model by Sugawara. The DISPRIN model 
application involves 8 tanks and contains more than 
20 parameters. This complexity factor makes the 
DISPRIN model unpopular to be applied to solve 
practical problems. This article aims to improve the 
performance of the DISPRIN model to be more prac-
tical. Technically, it is done by combining it with DE 
algorithm in automatic calibration process of its pa-
rameters. Calibration should include estimation of 
uncertainty, not only identify and set the parameter 
value [GHOLAMI et al. 2016; ZHANG et al. 2012]. In 
this connection, the author accommodate uncertainty 
analysis parameter value by applying the Monte Carlo 
simulation method [CHEN et al. 2006; RAMIRES et al. 
2012; UHLENBROOK et al. 1999]. The new model as 
a results from combination between DISPRIN model 
simulation concept and DE algorithm called the  
DISPRIN25-DE model. Index "25" indicates the 
number of DISPRIN model parameters to be studied 
further. The results are expected to be an alternative 
solution in solving the problem of limited data stream 
flow that often become a classic problem in water re-
sources development activities in developing countries. 

MATERIAL AND METHOD  

DISPRIN MODELS SIMULATION 

Dee Investigation Simulation Program for Regu-
lating Network (DISPRIN) model included in the 
lumped models category which technically can be 
solved by using the analogy of a Tank model simula-
tion by Sugawara. In “The UK the Water Resources 
Board's DISPRIN Models”, this model was developed 
in a research program of the Dee River [SHAW 1985]. 
The simulation scheme of the DISPRIN model 25 
parameters in this research is shown in Figure 1. 

On the application of the DISPRIN model, a wa-
tershed should be divided into three zones according 
position and physical characteristics, namely up-land, 
hill-slope and bottom-slope zone. Up-land zone is 
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Fig. 1. Simulation schematic of Dee Investigation Simulation Program for Regulating Network (DISPRIN) model;  
source: own elaboration 

located in the upstream of watershed that physically 
have sloped surface of a steep slope. Hill-slope zone 
lies in the middle of watershed, where the slope of the 
surface is relatively moderate. Bottom-slope zone is 
located in downstream of watershed, where the slope 
of the land surface is relatively flat. Each watershed 
zones are presented by two tanks and arranged in ver-
tically series. The first tank or top tank presents 
a combined surface and intermediate reservoir that 
contributes to the surface flow and intermediate flow. 
The second tank or the bottom tank is sub base reser-
voir that contributes to the sub base flow. The tanks in 
each watershed zone are mutually interconnection 
with the principle of gravity flow. Horizontal outflow 
from the tank group of up-land zone will flow to the 
tank group of hill-slope zone and then the tank group 
of hill-slope zone will drain the water in the bottom-
slope zone. In the vertical direction, top tank outflow 
will fill the bottom tank when the top tank underneath 
provided sufficient water reserves. However, when 
evapotranspiration is dominant, that cannot be ful-
filled by a water reserve of the top tank, the water 
reserves in the bottom tank will be taken as the value 
of the deficit. This process applies to the both groups 
of tanks, namely on the hill-slope zone and bottom-
slope zone.  

As shown in Figure 1, initially the water can fill 
the top tank or even going out of the tank correspond-
ing in climatic conditions occurred. If rainfall is 
greater than the evapotranspiration, the top tank in all 
three zone will experience the charging amount of the 
difference between the amount of rainfall and evapo-
transpiration values [P(t) – Ep(t)]. But if it turns out 
that evapotranspiration is more dominant than rainfall, 
then the water level in the tank will shrink as the dif-
ference between the value of evapotranspiration and 
rainfall that occurred during that period [Ep(t) – P(t)]. 

Horizontal flow of the top tank (qA1) as surface 
flow will occur when the water level in the tank A1 
exceeds the outlet hole horizontal position. The 
amount stated: 

 qA1(t) = SA1mean(t) – hA1  (1) 

Where: hA1 = height of the horizontal outlet tank A1. 

Vertical flow in the top tank (qA2) present the 
process of infiltration and happened when there is 
sufficient height of water in tank. It will increase the 
flow of high water tank underneath, ie; tank A2. The 
flow of infiltration qA2(t) can be calculated by the 
equation: 

 qA2(t) = CA2 ∙ SA2mean(t) (2) 

 𝑆A2୫ୣୟ୬ሺ𝑡ሻ ൌ
ௌ୅ଶሺ௧ିଵሻାௌ୅ଶሺ௧ሻ

ଶ
 (3) 

Where: CA2 = bottom outlet coefficient of the tank 
A2, SA2mean(t) = the average water level in tank A2 
(mm), SA2(t) = height of water level in tank A2 peri-
od t (mm), SA2(t – 1) = height of water level in tank 
A2 period t – 1 (mm). 

In the same period the bottom tank of up-land 
zone will also change in water reserves. The addition 
of the flow of qA2(t) will occur when the flow is posi-
tive. But if qA2(t) worth negative, it mean that water 
reserves are not sufficient to meet the needs of the 
process of evapotranspiration and the amount should 
be taken from the reserves of water in the bottom 
tank. Water storage of bottom tank in the up-land 
zone period t can be expressed mathematically: 

If qA2 > 0, then  

SA2(t) = SA2(t – 1) + qA2(t) – [qA3(t) + qA4(t)] (4) 

and if qA2 < 0, then 
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SA2(t) = SA2(t – 1) – [Ep(t) – P(t) – SA1(t)] –  
 + [qA3(t) + qA4(t)] (5) 

Horizontal flow (qA3) as a sub-base flow will oc-
cur when the water level in the tank A2 is higher than 
the horizontal outlet position (SA2(t) > hA2). The 
amount of flow is expressed as: 

 qA3(t) = cA3 ∙ (SA2mean(t) – hA2) (6) 

qA3(t) will fill the bottom tank in the hill-slope zone. 
Because there is a wide area difference between up-
land and hill-slope zone, the height of the water that 
goes into the tank B2 proportionally can be calculated 
by the equation: 

 qA3t(t) = (Au/Ah) ∙ qA3(t) (7) 

Where: qA3t(t) = inflows into the tank B2 (mmꞏweek–1), 
Au = area of up-land zone (km2), Ah = area of hill-
slope zone (km2). 

Vertical flow in the bottom tank illustrates the 
percolation process in the soil. This flow will fill wa-
ter reserves in the soil. Vertical flow (qA4) can be 
calculated by the equation; 

 qA4(t) = cA4 ∙ SA4mean(t) (8) 

In DISPRIN model stream flow is the result of 
translation effect from superposition surface flow, sub 
base flow and base flow. Translation effect was pre-
sented by tank D2. Height of water in the tank D2 
calculated by the equation: 

SD2(t) = SD2(t – 1) + qC1t(t) + qC3t(t) + qD1(t)  (9) 

 qC1t(t) = (Ab/Aw) ∙ qC1(t) (10) 

 qC3t(t) = (Ab/Aw) ∙ qC3(t) (11) 

Where: SD2(t) = height of water level in tank D2 pe-
riod t, SD2(t – 1) = height of water level in tank D2 
period (t – 1), Ab =  area of bottom-slope zone (km2). 

So the river flow in the watershed control point 
can be stated: 

 q(t) = CD1 ∙ SD2mean(t)  (12) 

 𝑆A4୫ୣୟ୬ሺ𝑡ሻ ൌ
ௌ୅ସሺ௧ିଵሻାௌ୅ସሺ௧ሻ

ଶ
 (13) 

Percolation flow will further increase in the 
ground water reserves (tank D1). Since the watershed 
parts of the up-land zone and the total watershed have 
different areas, the water level in tank D2 can be pro-
portionally calculated by the equation: 

 qA4t(t) = (Au/Aw) ∙ qA4(t) (14) 

Where: Aw = total watershed area (km2). 

The flow calculation procedure tank systems of 
hill-slope zone and bottom-slope zone by analogy can 
follow these principles by observing the flow configu-
ration as described Figure 1. 

Tank D1 to accommodate the channel flow on the 
attenuation effect component. Water reserves in the 
tank is not influenced by the process of evapotranspi-

ration. Replenishing water in the tank D1 only influ-
enced by the flow of the percolation of the third the 
watershed zone. At the beginning of the dry season 
base flow in river flow caused by the intermediate 
components and sub base flow. But at the end of the 
dry season when the water reserves in the intermedi-
ate zone is running out to meet the needs of evapo-
transpiration, then the flow of the river is only sup-
ported by tank D1. Water level in the tank D1 stated: 

SD1(t) = SD1(t – 1) + qA4(t) + qB4(t) + qC4(t)  (15) 

flow towards the river channel expressed as: 

 qD1 = CD1 ∙ SD1mean(t) (16) 
with 

 𝑆D1୫ୣୟ୬ሺ𝑡ሻ ൌ
ௌୈଵሺ௧ିଵሻାௌୈଵሺ௧ሻ

ଶ
 (17) 

Stream flow is the result of translation effect of 
superposition surface flow, sub base flow and base 
flow. Translation effect factor was presented by tank 
D2. Height of water level in the tank D2 calculated by 
the equation: 

SD2(t) = SD2(t – 1) + qC1t(t) + qC3t(t) + qD1(t)  (18) 

 qC1t(t) = (Ab/Aw) ∙ qC1(t) (19) 

 qC3t(t) = (Ab/Aw) ∙ qC3(t) (20) 

 qC1t(t) = (Ab/Aw) ∙ qC1(t) (21) 

Where: SD2(t) = height of water level in tank D2 pe-
riod t, SD2(t – 1) = height of water level in tank D2 
period t – 1, qC1t(t) = inflow from tank C1 to tank D2 
period t, qC3t(t) = inflow from tank C3 to tank D2 
period t. 

So river flow at the watershed control points can 
be expressed: 

 q(t) = cD1 ∙ SD2mean(t) (22) 
Where: 

 𝑆D2୫ୣୟ୬ሺ𝑡ሻ ൌ
ௌୈଶሺ௧ିଵሻାௌୈଶሺ௧ሻ

ଶ
 (23) 

q(t) is the discharge period t at a control point water-
shed (mmꞏweek–1). The value of river runoff (m3∙s–1) 
can be converted by the equation: 

 Q(t) = Aw ∙ q(t) : 604.80 (24) 

CALIBRATION AND VALIDATION MODEL 

Calibration of model parameters are an analogy to 
the completion of the optimization problem to gener-
ate optimal parameters value of DISPRIN model. The 
objective function of the optimization process is min-
imization of deviation between the observation flow 
 curve and the flow curve from model simulation. In 
the metaheuristic method objective function is ex-
pressed as a fitness function. In this article the fitness 
function is expressed as RMSE and calculated by the 
equation [HSU et al. 2015; SETIAWAN et al. 2003; 
ZHANG et al. 2012]: 
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 𝐹 ൌ 𝑅𝑀𝑆𝐸 ൌ ට1 𝑁ൗ ∑ ൣ𝑄୲୰ୟ୧୬,௧ െ 𝑄ୱ୧୫,௧൧
ଶே

௜ୀଵ  (25) 

Where: F = fitness, RMSE = root mean square error, 
Qsim,i = discharge of simulated result in period t (m3ꞏs–1), 
Qtrain,i = discharge training in period t (m3ꞏs–1), N = 
number of data points. 

In this article the problem solving optimization is 
done by using Differential Evolution (DE) algorithm. 
DE algorithm is combination between stochastic and 
population based search methods. DE has similarities 
with other evolutionary algorithms (EA), but differs 
in terms of distance and direction information from 
the current population used to guide the process of 
finding a better solution [STORN, PRICE 1997]. In the 
field of hydrological modelling, DE algorithm has 
been successfully applied to the optimization SWAT 
model parameters [ZHANG, LIEW 2008] and the opti-
mization HBV and GR4J model parameters [PIO-
TROWSKI et al. 2016]. DE also successfully applied in 
the case of a multi objective optimization of in-situ 
bioremediation of groundwater [KUMAR et al. 2015]. 
DE algorithm contains 4 components, namely 1) ini-
tialization, 2) mutation, 3) recombination or crossover 
and 4) selection. The relationship of the four compo-
nents is shown in Figure 2.  

The model application of the results combines the 
Dee Investigation Simulation Program for Regulating 
Network model 25 parameters and Differential Evolu-
tion Algorithm (DISPRIN25-DE) in this research was 
compiled using M-FILE MATLAB. Systematically 
the calibration parameters process in DIPRIN25-DE 
models can be explained as follows. 

1) Input data, including data training sets; evapo-
transpiration (Ep(t)), precipitation (P(t)), discharge 
observation (Qtrain(t)) and watershed section area; up-
land zone (Au), hill-slope zone (Ah), bottom-slope 
zone (Ab). 

2) Setting DE parameters, dimension (D), the 
number of individuals on a population (N), the upper 
boundary (ubj) and the lower boundary (lbj) value of 
the variable, and the maximum number of generations 
(maximum iteration). In DISPRIN25-DE model,  
D = 25 according to the number of parameters in 
DISPRIN model. 

3) Initialization: generate the initial value of vari-
able generation-0, the jth variable and ith vector that 
can be represented by the following notation. 

 𝑥௝,௜,଴ ൌ 𝑙𝑏௝ ൅ rand௝ሺ0, 1ሻ൫𝑢𝑏௝ െ 𝑙𝑏௝൯ (26) 

Where: i = 1, 2, 3, … N and j = 1, 2, 3, …, D. Ran-
dom number is generated by the rand function, where 
the resulting number is between (0, 1).  

4) Mutations. This process will produce a popula-
tion of size N vector experiment. Mutation is done by 
adding the difference of two vectors against a third 
vector by the following formula: 

 𝑣௜,௚ ൌ 𝑥௥଴,௚ ൅ 𝐹ሺ𝑥௥ଵ,௚ െ 𝑥௥ଶ,௚ሻ (27) 

It appears that the difference between two ran-
domly selected vector needs to be scaled before they 
are added to the third vector, xr0,g. Scale factor  
F(0, 1) bound the rate of population growth. Vector 
index base r0is determined in a random manner that 
different from the index for the target vector, i. Be-
sides different from each other and different from the 
base index for the vector and the target vector, vector 
index difference between r1 and r2 can be chosen once 
per mutant. 

5) Crossover. At this stage, DE crossed each vec-
tor (xi,g) with mutant vectors (vi,g) to form a vector of 
crossbred ui,g with the formula: 

if rand (0, 1) ≤ Cr or j = jrand, then ui,g = uj,i,g = vj,i,g (28) 

if rand (0, 1) > Cr or j ≠ jrand, then ui,g = uj,i,g = xj,i,g (29) 

Where: Cr  (0, 1) is the value used to control the 
fraction of a variable value copied from the mutant. 

6) Selection. If the trial vector (ui,g) has a smaller 
objective function value of the objective function tar-
get vector (xi,g), then ui,g will replace xi,g in population 
in the next generation. If the opposite occurs, the vec-
tor targets will remain in position in the population. 

7) The process of analysis item 4), 5), 6) is re-
peated from generation-0 to generation maximum 
(maximum iteration). If the generation maximum is 
reached, the output from the analysis can be presented. 

Model validation is done by reapplying  
DISPRIN25 model with input data testing sets and 
optimal parameters value resulting from the calibra-
tion process. Discharge simulation as a model output 
are then compared with discharge testing, and the de-
viation will be tested using Nash–Sutcliffe Efficiency 
(NSE) and Persistence Model Efficiency (PME) 
which are calculated by the equation: 

 𝑁𝑆𝐸 ൌ 1 െ
∑ ൫ொ౩౟ౣ,೟ିொ౪౛౩౪,೟൯

మಿ
೟సభ

∑ ൫ொ౪౛౩౪,೟ିொౣ౛౗౤൯
మಿ

೟సభ
 (30) 

 𝑃𝑀𝐸 ൌ 1 െ
∑ ൫ொ౩౟ౣ,೟ିொ౪౛౩౪,೟൯

మಿ
೟సభ

∑ ൫ொ౪౛౩౪,೔ିொ౥ౘ౩,೟షభ൯
మಿ

೟సభ
 (31) 

 

 

Fig. 2. Relationships of components in DE Algorithm; source: own elaboration 
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Both indicators provide an interesting perspective 
on the phenomenon of model performance. NSE pro-
vides a model of normal performance indicators in 
relation to the benchmark. NSE (dimensionless) 
measure the relative residual variance of discharge 
observation. The optimal value is “1” and the value 
must be more than “0” to indicate the minimum ac-
ceptable. PME measure the relative residual variance 
(noise) to a variant of the model errors obtained using 
simple persistence. Model simple persistence is min-
imal information on the situation where we assumed 
that the best estimate of river flow at the next time 
step is given by the flow observation at the current 
time [GUPTA et al. 1999]. 

SENSITIVITY ANALYSIS OF DISPRIN MODEL 
PARAMETERS 

Monte Carlo simulation is a type of probabilistic 
simulation to seek resolution of the problem with ran-
dom sampling. Monte Carlo method is a method for 
evaluating a recurring basis of a deterministic model 
using a set of random numbers as input data. This 
simulation method involves the use of random num-
bers to model the system, by which time has no sub-
stantive role. The series of sensitivity analysis in con-
ceptual hydrologic model parameters can be made 
through the following 8 stages [RAMIRES et al. 2012]: 
1) formulate the optimization equation system to be 

simulated, according to the equation (25); 
2) input data training set, namely: Au, Ah, Ab, P(t), 

Ep(t) and Qobs(t); 
3) input Monte Carlo parameters, ie: number of sam-

ples (N), and limit the sample chamber (lbj and 
ubj) of each variable analysed, ie: 25 parameters of 
DISPRIN model; 

4) generate uniformly distributed random numbers or 
other probabilistic distributions worth (0, 1); 

5) calculate the random variables corresponding to 
each of the model parameters investigated based 
on the number and the desired sample chamber; 

6) evaluate the performance of the model using ran-
dom input parameter values results from step 5) 
according to the equation developed in step 1); 

7) step 4) and 5) is repeated a given number of samples; 

8) analysis and discussion of the output of the model 
presented in the form of graphs and statistical pa-
rameters. 

CASE STUDY 

A case study in this research is Lesti watershed at 
the control point Tawangrejeni automatic water level 
recorder (AWLR) stations, as shown in Figure 3. The 
location of the study is administratively located in 
Malang District of East Java Province Indonesia, and 
is geographically located at 8°2’50” ~ 8°12’10” S 
latitude and 112°42’58” ~ 112°56’21” E longitude. 
Lesti watershed has an area of 319.14 km2 which is 
divided into up-land, hill-slope, and bottom-slope 
zones row respectively of 87.02 km2, 104.89 km2 and 
127.23 km2. Hydroclimatology data series is the data 
recorded from January 1, 2007 to December 31, 2016. 
Evapotranspiration data obtained from analyses ac-
tivity using Penmann method. The climate parameters 
data obtained from the recording of Karangkates sta-
tion. There are four rainfall stations covered in Lesti 
watershed, namely; Dampit, Tirtoyudo, Wajak and 
Turen rainfall station. Rainfall data recorded in a daily 
period. Regional rainfall calculated with Thiessen 
polygon method. Weighting factor for all four rainfall 
station, respectively are 0.38, 0.09, 0.19 and 0.34. 
Stream flow data resulted from recording of Ta-
wangrejeni AWLR station provided the daily average 
period. Furthermore, the data series is divided into 
two groups. The first group is used as a data training 
sets for the calibration of parameters process and the 
second group is used as a data testing sets for valida-
tion process. Data training sets is the recording data in 
January 1, 2007 until December 31, 2013 and data 
testing set is recording data in from January 1, 2014 to 
December 31, 2016. Hydroklimatology data in a 
weekly period shown in Figure 4. The result of the 
recording from Tawangrejeni AWLR station for ten 
years showed a value of minimum flow mean in the 
dry season is 5.22 m3∙s–1 and a maximum during the 
rainy season is 35.42 m3∙s–1. Average rainfall in the 
Lesti watershed is 2330 mm∙year–1, and evapotranspi-
ration is 1131 mm∙year–1. 

 

Fig. 3. Lesti watershed; source: own elaboration 
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Fig. 4. Data training and data testing sets; P = precipitation,  Ep = potential evapotranspiration; source: own study 

RESULTS AND DISCUSSION 

OPTIMUM VALUES OF DISPRIN MODEL 
PARAMETERS 

The Dee Investigation Simulation Program for 
Regulating Network (DISPRIN) model application 
reference is limited so that the parameter value limit 
becomes difficult to be defined. Tank model refers to 
the application of various existing references which 
lower boundary (lbj) and the upper boundary (ubj) of 
tank outlet coefficient are respectively “0” and “1”. 
Initial height of water level in the tank and height of 
outlet notch are positive numbers, whose varies de-
pending on hydrological characteristics. In this article, 
the researcher tried to determine the value of lbj and 
ubj for each parameter through trial and error ap-
proach. The analysis was performed by utilizing ap-
plication of DISPRIN25–DE model. The program 
runs for four times with input lbj = 0 and ubj respec-
tively forrun-1 = 400, run-2 = 600, run-3 = 800 and 
run-4 = 1200 mm. By giving input the number of in-
dividuals N =800 and maximum generation N = 350, 
convergent condition is reached by the performance 
indicators shown in Table 1. 

 
Table 1. The performance indicators of the model results 
combine the DISPRIN model 25 parameters and DE Algo-
rithm (DISPRIN25-DE model) 

Indicators 
Run-1 Run-2 Run-3 Run-4 

ubj 
400 mm 600 mm 800 mm 1200 mm 

1 2 3 4 5 

RMSE, m3∙s–1 0.125 0.119 0.125 0.121 
NSE 0.842 0.858 0.849 0.854 
PME 0.252 0.327 0.308 0.306 

Explanations: RMSE = root mean square error, NSE = Nash–
Sutcliffe Efficiency, PME = Persistence Model Efficiency. 
Source: own study. 

All the results of the analysis show a good per-
formance (Tab. 1). The results of the run-2 has the 
best performance compared to the results of a run-1, 
run-3 and run-4. If required decent value lies in the 

position NSE > 0.7 and PME > 0.2 then all the opti-
mum parameters generated from the results of running 
program is feasible. The optimum value of the DIS-
PRIN  model  parameters  from  run-1  to  run-4 show 
different results as shown in Table 2 (columns 3, 4, 5 
and 6. The difference is caused by two factor. First 
due to limiting the value of lbj, ubj, maximum itera-
tion in the running process, and secondly due to the 
difference in the sensitivity level of each model pa-
rameter. A wide range of lbj and ubj values can pro-
vide opportunities for achieving global optimum con-
ditions, but it is required large maximum iteration 
value and long iteration times, and vice versa. Giving 
the same maximum iteration input to every running 
program but with different lbj and ubj ranges will re-
sult in different minimum fitness value. Therefore, 
identification of the characteristic relationship be-
tween input parameter and resulting output becomes 
an important part in an effort to improve the effec-
tiveness of the model. Furthermore, superposition of 
the optimal parameter value results from run-1 to run-
4 resulting in minimum and maximum parameter val-
ues as shown in Table 2 (columns 7 and 8). The range 
of the minimum and maximum values of each parame-
ter is shown graphically in Figures 5 and 6. 

As an effort to find a global optimal solution then 
re-analyzed is done by using the minimum parameter 
value as the parameter lbj and the maximum value as 
ubj. The optimization process with input data training 
sets and DE parameters value equal to the previous 
analysis reach the convergent condition within 56 min. 
Running program is done by using CPU with Core i3 
processor and 4 GB RAM specification. Optimal pa-
rameters values are shown in Table 2 (column 9). 

Model performance at the calibration stage can 
show very satisfactory results. Analysis at this stage 
yields RMSE, NSE and PME values of 0.113 m3ꞏs–1, 
0.871 and 0.343, respectively. The model perfor-
mance indicators in Table 3 (column 2) show better 
conditions than Table 1 (columns 2, 3, 4, 5). This in-
dicates that the superposition way of determining lbj 
and ubj values can improve the effectiveness model. 
Comparison between hydrograph observation and
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Table 2. Optimum value of Dee Investigation Simulation Program for Regulating Network (DISPRIN) model parameters 

Parameter Description Run-1 Run-2 Run-3 Run-4 Min Max Optimum
1 2 3 4 5 6 7 8 9 

hA1 height of surface outlet up-land zone 0.00 406.79 64.46 0.00 0.00 406.79 25.92 
hA2 height of sub-surface outlet up-land zone 366.61 27.28 134.10 786.61 27.28 786.61 38.26 
CA2 infiltration coefficient up-land zone 0.000 0.703 0.975 1.000 0.00 1.00 1.000 
CA3 sub-surface coefficient up-land zone 1.000 0.598 0.000 0.593 0.00 1.00 0.825 
CA4 percolation coefficient up-land zone 0.285 0.973 1.000 0.449 0.28 1.00 0.526 
SA1_0 initial storage of tank A1 up-land zone 347.39 0.00 362.43 265.17 0.00 362.43 319.14 
SA2_0 initial storage of tank A2 up-land zone 276.50 130.20 224.80 651.95 130.20 651.95 553.59 
hB1 height of surface outlet hill-slope zone 0.59 538.82 699.29 1200.00 0.59 1200.00 1200.00 
hB2 height of sub-surface outlet hill-slope zone 382.35 457.27 800.00 1073.19 382.35 1073.19 927.56 
CB2 infiltration coefficient hill-slope zone 0.660 0.465 0.424 0.575 0.42 0.66 0.660 
CB3 sub-surface coefficient hill-slope zone 0.037 0.000 0.000 0.000 0.00 0.04 0.005 
CB4 percolation coefficient hill-slope zone 0.008 0.000 0.000 0.000 0.00 0.01 0.010 
SB1_0 initial storage of tank B1 hill-slope zone 0.00 600.00 696.48 606.25 0.00 696.48 631.37 
SB2_0 initial storage of tank B2 hill-slope zone 160.10 29.75 268.12 495.68 29.75 495.68 467.65 
hC1 height of surface outlet bottom-slope zone 0.00 0.23 0.00 0.00 0.00 0.23 0.00 
hC2 height of sub-surface outlet bottom-slope zone 400.00 74.18 0.00 0.54 0.00 400.00 322.27 
CC2 infiltration coefficient bottom-slope zone 1.000 0.331 0.594 0.905 0.33 1.00 0.605 
CC3 sub-surface coefficient bottom-slope zone 0.000 0.474 0.000 0.744 0.00 0.74 0.000 
CC4 percolation coefficient bottom-slope zone 0.000 0.877 0.650 0.264 0.00 0.88 0.001 
SC1_0 initial storage of tank C1 bottom-slope zone 51.38 0.00 0.00 69.30 0.00 69.30 11.99 
SC2_0 initial storage of tank C2 bottom-slope zone 300.24 531.02 706.16 888.60 300.24 888.60 302.98 
CD1 runoff coefficient 0.894 0.011 0.808 0.004 0.00 0.89 0.785 
CD2 runoff coefficient 0.050 0.069 0.045 0.059 0.04 0.07 0.070 
SD1_0 initial storage of tank D1 (attenuation effect) 386.36 500.91 542.45 960.93 386.36 960.93 411.11 
SD2_0 initial storage of tank D2 (translation effect) 395.30 499.61 55.65 63.00 55.65 499.61 228.43 

Explanations: “0” in SA1, SA2, SB1, SB2, SC1, SC2, SD1, SD2 parameters show the condition of the initial water level in each tank (water 
level at t = 0 in the simulation process).  
Source: own study. 

 

Fig. 5. Space eligibility initial value of water level  
and outlet of tank position parameters; parameters notations as in Tab. 2; source: own study 

 

Fig. 6. Space eligibility outlet of tank coefficient parameters; parameters notations as in Tab. 2; source: own study 

H
ei

gh
t 

h,
 S

, m
m

 

O
ut

le
t 

co
ef

fic
ie

nt
 v

al
ue

 C
 

hA1      hA2   SA1_0  SA2_0   hB1    hB2     SB1_0   SB2_0   hC1    hC2    SC1_0   SC2_0  SD1_0  SD2_0

CA2    CA3    CA4    CB2    CB3    CB4   CC2     CC3    CC4    CD1    CD2 



Automatic calibration and sensitivity analysis of DISPRIN model parameters… 149 

 © PAN in Warsaw, 2018; © ITP in Falenty, 2018; Journal of Water and Land Development. No. 37 (IV–VI) 

Table 3. Model performance 

Indicator Calibration stage Validation stage 
1 2 3 

RMSE, m3∙s–1 0.113 0.224 
NSE 0.871 0.823 
PME 0.343 0.180 

Explanations as in Tab. 1. 
Source: own study. 

model simulation are presented in Figure 7. Distribu-
tion of data training and output model indicate the 
coefficient of determination (r2) of 0.863. The flow 
curve from the model outline can generally follow the 
fluctuation pattern of the seasonal flow data training. 
Low flow, medium flow and high flow conditions can 
be responded well except in the period of 170 to  
period 230. In that period the discharge model tend to 
be under estimated. 

VALIDATION OF DISPRIN25-DE MODEL 

The model validation process uses the optimum 
parameter input resulting from the calibration process 
and the data testing sets. Comparison of model per-
formance indicators at the calibration and validation 
stage is shown Table 3. Model performance in the 
validation stage worse than the result from the cali-
bration stage. The NSE indicator does not differ 
much, but the RMSE and PME indicators show a sig-

nificant difference. Figure 8 presents a comparison 
between the flow curve of the model output and the 
data testing. The flow curve of the model output is 
generally less able to approach fluctuations of data 
testing. Plotting the distribution of discharge testing 
and discharge models tends to be above the equation 
line, meaning the discharge model tends to overesti-
mate. This is the cause of the small value of the coef-
ficient of determination (r2) produced. Poor model 
performance in the validation stage is caused by dif-
ferences in statistical characteristics of data training 
and data testing sets. Comparison of statistical param-
eters of both groups of data are presented in Table 4. 
The average, minimum, maximum and standard devi-
ation values of discharge training and discharge test-
ing data differs significantly. The maximum, mean  
 

Table 4. Characteristic of statistics set data 

Statistical 
parameters 

Data training Data testing  
precipitation 
mmꞏweek–1 

discharge 
m3ꞏs–1 

precipitation 
mmꞏweek–1 

discharge
m3ꞏs–1 

Min   0.00   5.22     0.00   5.81 
Max 228.10 32.24 258.90 35.42 

Average   43.26 17.84   47.21 19.02 
Standard  
deviation 

  46.00   6.03   51.44   6.98 

Coefficient of 
determination 

0.244 0.271 

Source: own study. 

 

 

Fig. 7. Comparison of the data training and output
model; source: own study 
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Fig. 9. Sensitivity of the Dee Investigation Simulation Program for Regulating Network model 25 parameters 
(DISPRIN25); parameters notations as in Tab. 2; source: own elaboration 
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Fig. 8. Comparison of the data testing and
output model; source: own study 
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and standard deviation values of weekly rainfall data 
also differ considerably. The coefficient of determina-
tion (r2) from the relationship of precipitation and 
discharge data is also different although not signifi-
cant. This indicates that the DISPRIN25-DE model 
can only predict well if the data training and data test-
ing sets have uniform characteristic of statistic. 

DISPRIN25 MODEL PARAMETERS SENSITIVITY 

A sensitivity analysis of model parameters is 
done by using Monte Carlo simulation method with 
input sample size of 300,000. The limit of the sample 
chamber according to the value of lbj and ubj in as 
shown in Table 2 (column 8 and column 9), and the 
hydroclimatology data using data training set. Run-
ning program for 266 minute generates graphs of rela-
tionship between normalize scale of model parameters 
and type parameter based on the best RMSE values as 
shown in Figure 9. Each parameter has a different 
sensitivity level. If the level of sensitivity are grouped 
in three clusters corresponding normal scale, the level 
of sensitivity of each parameters can be classified as 
shown in Table 5. CC3, CD2, and SD2_0 have a very 
strong influence on the performance of the resulting 
DISPRIN25 model. CC4, CC2,CD1, SA2_0, hB2, 
SC2_0 and SD1_0 have medium influence, while 
CA2, CA3, CB2, CB3, CB4, CC4, hA1, hA2, SA1_0, 
SA1_0, hB, SB1_0, SB2_0, hC1, hC2 and SC1_0 have 
not a significant influence on performance  
DISPRIN25 model for its value lies between the lbj 
and ubj as shown in Table 2. 

 
Table 5. Sensitivity level of Dee Investigation Simulation 
Program for Regulating Network model parameters 

Parame-
ter C 

low sensitivity 
CA2, CA3, CB2, CB3, CB4, 
CC4 

moderate sensitivity CA4, CC2, CD1 
high sensitivity CC3, CD2 

Parame-
ter h 

low sensitivity 
hA1, hA2, SA1_0, hB1, SB1_0, 
SB2_0, hC1, hC2, SC1_0 

moderate sensitivity SA2_0, hB2, SC2_0, SD1_0 
high sensitivity SD2_0 

Criteria: 
– the range of normal scale (> 0.7)  low sensitivity 
– the range of normal scale (0.4 ~ 0.7)  moderate sensitivity  
– the range of normal scale (<0.4)  high sensitivity 
Explanations: parameters notations as in Tab. 2. 
Source: own study. 

CONSCLUSIONS 

Application of DISPRIN25-DE model in Lesti 
watershed (319.14 km2) with weekly data period 
shows very good performance. The calibration pro-
cess with the data training set throughout the 7 years 
shows the value indicator NSE = 0.865 and PME = 
0.343, the validation process with input data testing 
set provide value NSE = 0.823 and PME = 0.180.  

Good performance in the calibration process 
showed that DE algorithm is able to solve problems of 
global optimization with a large number of variables. 

The results are less satisfactory in the validation stage 
due to differences in statistical characteristics of the 
data training and data testing sets used in this case 
study. This indicates that the DISPRIN25-DE model 
can work only when the data set used has almost uni-
form statistical characteristics. The results of the sen-
sitivity analysis with Monte Carlo simulation method 
shows that parameter CC3, CD2, and SD2_0 have 
a very strong influence on the performance of the re-
sulting DISPRIN-25 model, while parameter CC4, 
CC2, CD1, SA2_0, hB2, SC2_0 and SD1_0 have 
a strong enough influence, and 15 other parameters 
did not have significant influence. This condition ap-
plies only to this case study. The application in other 
watersheds that have different physical and climatic 
characteristics will certainly give different result. 
Hence, the application of the model to another water-
shed becomes an important step to test the efficiency 
of the model. 
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Kalibracja automatyczna i analiza czułości parametrów modelu DISPRIN:  
Przypadek zlewni Lesti w prowincji Jawa Wschodnia, Indonezja 

STRESZCZENIE 

Model DISPRIN składa się z ośmiu zbiorników wzajemnie ze sobą połączonych. Zawiera 25 parametrów 
zaangażowanych w proces transformacji danych opadowych w dane odpływu. Ten czynnik złożoności skłania 
do podjęcia badań celem zwiększenia wydajności. W badaniach prezentowanych w niniejszej pracy proces pa-
rametryzacji zrealizowano, stosując algorytm zróżnicowanej ewolucji (DE), podczas gdy analizę czułości prze-
prowadzono z użyciem metody symulacji Monte Carlo. Modele aplikacji polegające na łączeniu dwóch koncep-
cji nazywane są DISPRIN25-DE i są kompilowane za pomocą programu M-FILE z MATLAB. Wyniki badań 
zlewni Lesti (319,14 km2) w punkcie kontrolnym stacji Tawangrejeni z automatycznym pomiarem poziomu wo-
dy w prowincji Jawa Wschodnia w Indonezji wskazują, że model może efektywnie działać w celu przekształce-
nia opadów w serie danych o odpływie. Na etapie kalibracji model dostarczył wartości NSE = 0,871 i PME = 
0,343, a na etapie walidacji wartości NSE = 0.823 i PME = 0,180. Dobre rezultaty w procesie kalibracji wskazu-
ją, że algorytm DE jest zdolny rozwiązywać problemy globalnej optymalizacji systemu równań z dużą liczbą 
zmiennych. Wyniki analizy czułości 25 parametrów wykazały, że 3 parametry mają wysoką czułość, 7 – pośred-
nią, a 15 innych parametrów cechuje niski poziom czułości na zachowanie modelu DISPRIN. 
 
Słowa kluczowe: ewolucja różnicowa, model DISPRIN, symulacja, zlewnia Lesti  


