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THE K4 GRAPH AND THE INERTIA 
OF THE ADJACENCY MATRIX 

FOR A CONNECTED PLANAR GRAPH

Abstract: The K4 graph and the inertia of the adjacency matrix for a  connected pla-
nar graph. A substantial history exists about incorporating matrix analysis and graph theory 
into geography and the geospatial sciences. This study contributes to that literature, aiding 
in analyses of spatial relationships, especially in terms of spatial weights matrices. We focus 
on the n-by-n 0–1 binary adjacency matrix, whose rows and columns represent the nodes of 
a connected planar graph. The inertia of this matrix represents the number of positive (n+), 
negative (n−), and zero (n0) eigenvalues. Approximating the Jacobian term of spatial auto-nor-
mal models can benefit from calculating these matrix quantities. We establish restrictions for 
n- exploiting properties we uncover for the K4 graph.
Keywords: K4 graph, planar graph, matrix inertia, adjacency matrix, Jacobian term
JEL codes: C4, C6

1. Introduction

The relevant problem involves the estimation of the Jacobian term, J, of the likeli-
hood function, L, for an auto-normal (-Gaussian) random variable, such that

 L = J · f(ρ,β,σ2), (1)

where

  , (2)

f represents the likelihood equation for either the autoregressive response (AR), 
conditional autoregressive (CAR), or simultaneous autoregressive (SAR) model, ρ 

is the spatial autocorrelation parameter  is a (k + 1) × 1 vector of 
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regression coefficients, and σ2 is the variance of the attribute distribution under study 
[Bivand et al. 2013].

Estimation of Equation (1) employs the use of graph theory and matrix analysis, 
specifically in the determination of the eigenvalues (λi) for the Jacobian term. For an 
undirected, connected, and planar graph, one can compute the n×n adjacency matrix 
(A), also known as a 0–1 binary spatial weights matrix, by representing a link be-
tween two nodes (e.g., a common areal units boundary) i and j with a value of 1, and 
a 0 if no such link exists. Next, one can calculate the inertia of matrix A, a tuple of val-
ues that represents the number of positive, negative, and zero eigenvalues (n+,n−,n0), 
respectively). These results from the inertia calculation then can be used to calculate 
an approximation of J for the preceding likelihood function given by Equation (1).

We are re-evaluating a previously conjectured upper bound for the percentage of 
n− [Griffith, Luhanga 2011], which, generally speaking, states that the percentage of 
negative eigenvalues of the inertia for some undirected, connected, planar graph with 

n nodes has a maximum value of  n. Since the positing of this conjecture, a counter-
example has been highlighted [Elphick, Wocjan 2016], which is for an unrealistically 
small value of n. This counterexample is known as the K4 connected planar graph, and 
is illustrated in Figure 1a.

Because of a reliance on the K4 graph, most likely a limited number of cases do 
not follow the conjecture proposed by Griffith and Luhanga [2011]. Moreover, all 
graphs that are inconsistent with this conjecture appear to contain one or more K4 
subgraphs.

The Jacobian term allows for the implementation of Gaussian SAR models for 
massive n. Due to equations outlined in Griffith [2015], which provide good ei-
genvalue approximations for regular square tessellations when n is in the millions, 
estimations of the Jacobian term are straightforward; cases of large n include data 
collected from remotely-sensed images. However, the equations outlined in Griffith 
[2015] do not hold for irregular surface partitionings, requiring other formulations 
to calculate their Jacobian terms. By creating a bound for the percentage of n− for the 
inertia of a connected planar graph, one is improving the estimation of the auto-nor-
mal model for irregular surface partitionings by making more accurate the estimation 
of eigenvalues in the Jacobian term J in Equation (2).

a) The K4 complete planar graph,          b) A chain of K4 subgraphs, with each sequential pair connected 
by a single link

Fig. 1. Two selected counterexamples to the Griffith and Luhanga [2011] conjecture
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Our goal is to determine the implications of existing K4 subgraphs in graphs of 
interest; i.e., spectra of graphs containing K4 subgraphs, K4 subgraph tessellations, 
and empirical examples. We initiate our discussion by examining a variety of spec-
imen graphs, and determining their overall properties. We also report results from 
simulation experiments.

1.1. A Numerical Illustration

To illustrate the effects of eigenvalue approximations on Jacobian approximations, 
we use a graph spectrum with a known percentage of negative eigenvalues that is 
constant at 75 percent. The graph used to illustrate these approximations is illustrat-
ed in Figure 1b, where each K4 subgraph is connected to its immediate neighbor by 
a single link.

The eigenvalues of a 0–1 spatial weights matrix (denoted by C in that literature) 
and its row-standardized counterpart (matrix W), result in the following values:

 

  
,  

where D is a diagonal matrix whose (i, i) element is . Furthermore, the 
moments of the distribution of eigenvalues are easy to calculate. The first moment, 
or mean, is zero, by definition. In addition, the second, third, and fourth moments 
can be determined exactly for a given K4, and in the limit as K4 → ∞:

.
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 A nonlinear regression analysis of selected K4 empirical moments confirm these 
results.

Furthermore, the sum of positive eigenvalues and their squares can be approxi-
mated using nonlinear regression estimation, both of which have R2 ≈ 1, yielding

and .

These equations allow estimation of the parameters of the following two nonlin-
ear regression equations:

and ,

where p denotes the percentage of n−, with estimated values bn = 1 and bp = 0.5909. 
These equations have a combined R2 = 0.9989, and summary statistics as displayed 
in Table 1. Figure 2 portrays example output of these summary statistics.

Likewise, Figures 2–3 demonstrate a  Jacobian approximation for this example, 
where p is 0.75 and the exact and approximated Jacobian values are represented by 
the following equation:

 

Fig. 2. Left: example output associated with Table 1; Center and Right: The exact results  
of the Jacobian term for p = 0.75

Table 1
Output statistics for the eigenvalue distribution of single linked K4 chain graphs with λ and λ̂

Mean Std. Dev. Minimum Maximum Skewness Kurtosis
λ −5.44981 × 10−16 0.5341391 –0.4999949 1.0 0.9628461 –0.7771001
λ̂ −0.000213052 0.5342607 –0.4999949 1.0 0.9869029 –0.7766108
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To analyze specification error, we approximate the Jacobian based upon the esti-
mated eigenvalues. We do this for percentages of 0.75, 2/3, and 0.60. Figure 4 por-
trays these graphs.

Table 2 reports estimation bias from the Jacobian specification error, assuming the 
stated percentage of negative eigenvalues for 200 K4 subgraphs and 1,000 simulation 
replications.

Fig. 3. The approximated results of the Jacobian term for p = 0.75

(a) p = 0.75                                             (b) p = 2/3                                             (c) p = 0.60
Fig. 4. Jacobian approximations based upon the eigenvalues

Table 2
Estimation bias from Jacobian specification error: K4 = 200; 1,000 replications

exact (r = 100) 75% 67% t75%−67% 60% t75%−60%

0.9 0.898 (0.009) 0.898 (0.008) 0.921 (0.008) −985.1 0.917 (0.008) −918.9
0.5 0.499 (0.029) 0.500 (0.030) 0.513 (0.031) −350.1 0.512 (0.031) −385.2
0.0 –0.013 (0.048) −0.010 (0.047) −0.007 (0.047) −451.3 −0.006 (0.046) −336.0

–0.5 –0.507 (0.055) −0.509 (0.052) −0.493 (0.050) −281.2 −0.487 (0.049) −213.0
–0.9 –0.901 (0.048) −0.908 (0.052) −0.871 (0.049) −361.6 −0.854 (0.047) −333.9
–1.5 –1.499 (0.034) −1.522 (0.035) −1.452 (0.034) −1251.3 −1.409 (0.033) −1121.7
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2. Initial Results

Our analysis begins with a general examination of connected planar graphs. Then, 
we examine specific specimen sets of such graphs, all of which contain at least one K4 
subgraph. These results establish part of the foundation for our work.

2.1. An Initial Review of Planar Graphs

 Our analysis treats several different types of graphs, focusing only on connect-
ed planar graphs such as those illustrated in An Atlas of Graphs [2005]. This book 
enumerates all of the graphs containing one to seven vertices. The total number 
of graphs illustrated in its pertinent section is 1,252, although we examined sub-
stantially fewer graphs because we restricted our attention to the class of connected 
graphs. This book also presents graphs that are not connected.

Our results reveal that of the 261 connected planar graphs that are studied, only 
104 contain K4 subgraphs. Of those, only two graphs contain a proportion n−/n great-

er than (the conjectured bound of Griffith and Luhanga [2011]). The configurations 

of these two graphs are: (1) the K4 subgraph, and, (2) a  graph containing two K4 
subgraphs sharing a single node. Figure 5 portrays a modification of this latter graph.

We focus on these two particular graphs to identify specimen sets of graphs for 
further analysis. We subsequently describe the other configurations of our focus. The 
purpose of studying these specimens is three-fold: (1) to determine if these or other 

similar configurations converge to n as the number of K4 subgraphs increases; (2) 

to extract other sets of K4 subgraphs for further examination; and, (3) to determine 
whether or not increasing the number of K4 subgraphs results in an asymptotically 
decreasing value of n–/n.

2.2. Specimen Sets of Planar Graphs

The graph specimen that we are most interested in is the one yielding the original 
counterexample to [6] – the K4 complete planar graph. As noted previously, our focus 
includes the set of graphs comprising K4 subgraphs sharing a single node. For this 
configuration, as the number of K4 subgraphs increases,  appears to converge to 

. Figure 5 illustrates this specimen graph, and Figure 13 portrays its convergence 

trajectory.

Figure 13 motivates an inspection of other specimens that are similar in construc-
tion, in that they contain many K4 subgraphs that are connected in various consistent 
ways. Figure 6 illustrates one such example, another patterned specimen graph con-
structed with K4 subgraphs. These graphs are the collection of K4 subgraphs sharing 
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a single node. Our results again show that the percentage of negative eigenvalues 

converges to  as n → ∞. Figure 13 portrays this implied convergence.

Four variations of Figure 6 are of interest. Figure 7 illustrates the first variation, 
which depicts K4 subgraphs connected to a  shared node by individual edges. The 
second variation consists of K4 subgraphs connected to their neighbors by edges such 
that the center of the graph becomes increasingly circular. Figure 81 illustrates this 
specimen set of graphs. Figure 9 illustrates the third variation, a combination of the 
last two, where the center of the graph resembles a “wheel” containing a central node 
and K4 neighbors connected by edges like wheel spokes. Figure 10 portrays the fourth 
variation, which is similar to Figure 8, but with the exception that the K4 subgraphs 
are connected by their bottom nodes. Although the results of these four specimens 
differ slightly, in general, as the number of K4 subgraphs increases, the total number 

of n− for all four specimens converges to n, as illustrated in Figures 13 and 16.

In addition to the aforementioned specimen graph configurations, other exam-
ples of specimen graphs containing K4 subgraphs exist, one of which is illustrated 
in Figure 8. In this example, a series of K4 subgraphs has neighbors connected by 
two edges, where each edge connects a different pair of nodes. Figure 10 portrays an 
example of these graphs. Our analysis shows that the percentage of negative eigen-

values for this specimen category of graphs eventually converges to , as illustrated 

in Figure 15.
Table 3

Specimen graphs resembling “wheel-like” configurations

Specimen Graph Graph Generation Description

Figure 5

Snake configuration
The second graph containing a  in An Atlas of Graphs, 
cataloged as G1009.
Generation of this specimen graph involves adding another K4 sub-
graph directly to the left-most or right-most node of the current graph 
configuration.
Note that this graph can be re-drawn to resemble a variation of the 
wheel configuration (Fig. 8)

1 The regression analysis for this specimen set of graphs excluded the first two data points. These points 
are outliers whose exclusion simplifies approximation of the general trend.
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Figure 6

Pinwheel configuration
Graphs containing K4 subgraphs connected by a central node.
Generation of this specimen graph involves increasing K4 subgraphs 
around a central node. This central node is one of the four nodes 
constituting each K4 subgraph

Figure 7

Extended pinwheel configuration
Graphs containing K4 subgraphs connected to a central node by 
individual edges.
Note that each K4 subgraph is connected to a central node by a single 
edge. Neither the connecting edge nor the central node are part of the 
K4 subgraphs

Figure 8

Wheel configuration
K4 subgraphs connected by edges forming an interior wheel.
Note the absence of an interior node, and that the connecting edges 
are generated from the same node within each K4 subgraph

Figure 9

Wagon wheel configuration
A graph containing K4 subgraphs whose center resembles a “wagon 
wheel”.
Note the presence of a cental node connected by one edge from each 
K4 subgraph as well as edges connecting each K4 subgraph by a K4 
node. This configuration is a combination of the extended pinwheel and 
wheel configurations (Fig. 6, 8)
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Employing individual specimen graphs, we can begin building tessellations of K4 
subgraphs. The first considered here is a p×q tessellation of squares constructed with 
K4 subgraphs. Figure 11a illustrates these types of graphs. Expanding this square tes-
sellation from two K4 subgraphs (i.e., a single square or a 1×1 tessellation) through 
a 2,000 K4 subgraph tessellation, the percentage of negative eigenvalues converges 
to 0.50, as illustrated in Figure 11b. This is the maximum percentage for a regular 
square tessellation coupled with a rook’s adjacency rule.

The final specimen graphs examined consist of K4 subgraphs arranged as hex-
agons around a center node, as illustrated in Figure 12a. More importantly, these 
hexagons are arranged in a p×q tessellation, where p is the number of hexagons in 

Fig. 10. Three variations of single-linked K4 subgraphs. The first variation contains only 
solid black edges and consists of single linked K4 subgraphs. The second variation comprises 

both solid and dashed black edges, making up K4 subgraphs connected by two links.  
The third variation involves both solid black and solid red edges

Fig. 11. Square tessellations of K4 subgraphs have a percentage of n− that converges to 
0.50. Note that values where p=q in the tessellation dimension have a tighter fit along the 

regression line
(a) An example of a 2×2 square tessellation, (b) A square tessellation of K4 subgraphs comprising K4 

subgraphs. As the p×q dimension expands,  converges to 0.50.

a b
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the horizontal axis, and q is the number of hexagons in the vertical axis. For p,q=0 
(i.e., K4=1), the percentage of n− is 0.75, as previously discussed. As p and q increase, 
the percentage of n− decreases, eventually converging to approximately 0.50, as illus-
trated in Figure 12b.

Evidence summarized here supports our initial conjecture about the convergence 
of the percentage of negative eigenvalues. However, graphs exist for which K4 sub-

graphs result in the percentage of negative eigenvalues remaining consistently at . 
That being said, we can state the following, as Theorem 1 and Conjecture 1.

Theorem 1. The existence of K4 subgraphs in a connected planar graph is a neces-

sary, but not a sufficient, condition for the percentage of n− to be .

Proof.

Figure 5, where the specimen set of planar graphs contains K4 subgraphs sharing 
a single node, illustrates one of several counterexamples corroborating Theorem 1. 

As the number of K4 subgraphs increases, the percentage of n− converges to , as 

illustrated in Figure 13.
Conjecture 1. For connected planar graph spectra based on n nodes whose artic-

ulation does not contain K4 subgraphs, the maximum n− is bounded by

 . (4)

An additional example we study is a series of K4 subgraphs with neighbors that 
are connected by one edge, as illustrated by Figure 10. Expanding this general graph 
implies that the percentage of n− always is n for it. This finding shows that more 

Fig. 12. Hexagonal tessellations of K4 subgraphs have a percentage of n− that converges to 
0.50. Note that observations plotted are tessellations for which p=q

(a) A hexagonal tessellation of K4 subgraphs, (b) Hexagonal tessellation results from p,q=0, (i.e., only 
a single K4) to p,q=30.

a b
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than a single set of graphs exist whose percentage of negative eigenvalues exceeds 

the  conjecture, rather than asymptotically decreasing to . Figure 14 illustrates this 

contention.

3. Single Linked K4 Chains

The following are two theorems that give the maximum number of –1 eigenvalues 
for special K4 chains connected by single links. The Appendices present proofs of these 
theorems.

Theorem 2. The number of –1 eigenvalues for the K4 chain (Fig. 14) is τ+2, where 
τ denotes the number of K4 subgraphs.

Table 4
Convergence trajectory plots for percentages of negative eigenvalues

Fig. 13. Plots associated with the 
aforementioned “wheel-like” graphs, as 

illustrated in Table 3

Fig. 14. Results for Figure 10 – implied 
convergence for a chain of K4 subgraphs with 

neighbors connected by single edges

Fig. 15. Results for Figure 10 – implied 
convergence for a chain of K4 subgraphs 
with neighbors connected by two edges

Fig. 16. Results for Figure 10 – implied 
convergence for a chain of K4 subgraphs with 
nieghbors connected by two bottom nodes  

and forming a closed circle
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Fig. 17. Histograms of principal eigenvalues of the binary spatial weights matrix C
(a) For 184 specimen surface partitions, (b) For 10,000 randomly generated planar graphs.

Theorem 3. The number of –1 eigenvalues for K4 subgraphs directly connected by 
nodes can be calculated with

  
,

where τ denotes the number of K4 subgraphs.

4. Simulation Experiments

Planar graphs can be generated in a number of ways (e.g., see Meinert, Wagner 
[2011]). A new algorithm exploiting the mixture of a regular square and hexagonal 
tessellation structure generated the simulation experiment results this section sum-
marizes. It is capable of producing the full range of connected planar graphs: a linear, 
regular square or hexagonal, maximum connectivity, or irregular surface partitioning. 
Although it yields graphs whose sizes range from 2 to 4,489, because of the random 
sampling involved, the central tendency for graph size is a mean of 1,156, a median 
of 870, and a mode of 120; its frequency distribution resembles that for a gamma 
random variable. This algorithm also allows replicates for a specified n, and a shift 
in its emphasis between the regular square and hexagonal tessellations. Not only do 
numerous isomorphisms and automorphisms of randomly selected planar graphs 
exist, but an enormous number of different graphs exist for most n.

A database of 184 specimen empirical surface partitionings furnish a yardstick 
for comparisons. Figure 17a portrays the principal eigenvalues histogram for the bi-
nary 0–1 adjacency matrices depicting the dual graphs of these selected surfaces (n 
is between 5 and 7,249); its range is 2.94 to 8.60. Figure 17b portrays the principal 
eigenvalues histogram for 10,000 randomly generated planar graphs (n is between 3 
and 4,292); its range is 1.41 to 15.06. This range is wider because observing maxi-
mum connectivity planar graphs is uncommon in practice, and geographic landscapes 
partitioned into too few areal units rarely are analyzed.

a b
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The variable of interest here is the percentage of n−. Figure 18 portrays the iner-
tia components of the randomly generated planar graphs. For reasonable size n, the 
maximum percentage is 65, below the  threshold. Figure 18b portrays a scatterplot 

of the predicted and observed values for n ≥ 6 (removing this constraint introduces 
a few anomalies, and only marginally decreases the percentage of variance accounted 
for); its pseudo-R2 is 0.92.

The trend line is described as follows: % , where ai=−2.2392−0.0158  
λc maxi 

+0.203λw mini
+0.0742VARci

+2.3023VARwi
, with λc maxi 

denoting the principal eigen-
value of the binary 0–1 spatial weights matrix C, λw mini

 denoting the minimum eigen-
value of the row-standardized spatial weights matrix W, VARci

  denoting the variance 
of the eigenvalues of matrix C, and VARwi  

denoting the variance of the eigenvalues 
of matrix W. All of these quantities are available for a given spatial weights matrix.

Conjecture 2. Eigenvalues ranked (in descending order) 2k through 3k+1 are –1 

for matrix C, and  for matrix W.

Comparing the structure of the empirical specimens and selected random planar 
graphs reveals similarities and differences. Figure 19 (after Garcia [2012]) portrays 
two extreme cases in a set of seven, for n=99; this scatterplot is similar to a quantile 
plot, with a straight line depicting a close correspondence. This figure illustrates that 
some of the simulated graphs are similar to empirical graphs, and others are not. 
Figure 19a is for a graph with a principal eigenvalue of 6.40, whereas Figure 19b is 
for a graph with a principal eigenvalue of 8.94; principal eigenvalues for the three 
specimen surfaces range from 5.18 to 5.55.

In conclusion, the simulation experiments support the contention that most per-

centages of negative eigenvalues are less than  and suggest that for practical values 

of n, this percentage may well be between 50% and 60%.

Fig. 18. (a) The inertia components of a binary 0–1 spatial weights matrix C: red denotes % 
negative, green denotes % positive, and blue denotes % zero eigenvalues. (b) A scatterplot 
with a superimposed binomial regression model prediction of the percentage of negative 

eigenvalues

a b
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4.1. K4 Subgraphs and Empirical Surface Partitionings

Complimentary to the simulation experiments described in the previous section 
is an analysis of K4 subgraphs in empirical surface partitionings. Here these surface 
partitionings consist of major cities of North America, including: Chicago, Washing-
ton, Detroit, and Philadelphia.

In all cases, more K4 subgraphs are present than was first anticipated. Despite the 
presence of these surprisingly large numbers of K4 subgraphs, our overall results in 
terms of negative eigenvalue percentages do not change.

One possible explanation for several clusters of K4 subgraphs in cities lies in large 
and irregular administrative polygon (e.g., census tract) sizes, which often com-
prise oblong water bodies, such as rivers. These boundaries connect to several oth-
er boundaries in a way that generates K4 subgraphs as well as the clustering of K4 
subgraphs, similar to that appearing in Figure 6. An example of this phenomena is 
illustrated in Figures 21a–21b.

     (a) A close correspondence  (b) A poor correspondence
Fig. 19. Three empirical specimen sets of eigenvalues superimposed on those for a simulated 

random graph (denoted by open circles); n = 99

     (a) Chicago, Illinois  (b) Washington, DC (c) Detroit, Michigan
Fig. 20. The presence of K4 subgraphs in the Chicago, Washington, and Detroit MSAs
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4.1.1. n− and Empirical Surface Partitionings

A further examination of empirical surface partitionings for several metropolitan 
statistical areas (MSAs) in the United States suggests that the percentage of neg-

ative eigenvalues remains well below the  threshold. For several MSAs studied, 

n− remains below 0.60. Note that data utilized here are from the 2016 census tracts 
from the TIGER/Line website (https://www.census.gov/cgi-bin/geo/shapefiles/in-
dex.php).

Calculating the rook adjacency spatial weights matrices for twenty MSAs, rang-
ing in size from small to large in terms of number of census tracts, reveals that the 
highest percentage of n− is 0.632, with a mean percentage of 0.586. Table 5 tabulates 
summary results for the selected MSAs. Overall, these results support our hypothesis 
that the utilized maximum bound for the percentage of n− should be significantly less 

than .

4.1.2. K4 Subgraphs in Empirical Surface Partitionings

In addition to examining n− in the preceding section, we also examine the number 
of K4 subgraphs in empirical surface partitionings. Several sizes of MSAs were analyz-
ed, as detailed in Table 5.

As illustrated in Figure 22, the spread of n− is fairly consistent regardless of the 
percentage of census tracts contributing to K4 subgraphs. In addition, all examples—
with the exception of the Bloomsberg-Berwick, Pennsylvania MSA (a  small-scale 
MSA in the United States) – have a percentage of census tracts in K4 subgraphs well 
under 25%. Specifically, 50% of our sampled MSAs have less than 10% of their cen-
sus tracts contributing to K4 subgraphs, with 75% of our sampled MSAs having under 
15%.

(a) Philadelphia, Pennsylvania       (b) A zoom-in of Philadelphia
Fig. 21. The presence of K4 subgraphs in the Philadelphia MSA
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Table 5
United States MSA Census Tract Based K4 and n– Results

MSA # Census Tracts # K4s n−/n
Bloomsburg-Berwick, PA 19 3 0.632
New York-Newark-Jersey City, NY-NJ-PA 4,700 138 0.584
Corvallis, OR 18 0 0.556
Elmira, NY 22 1 0.591
Grand Island, NE 22 0 0.591
Parkersburg-Vienna, WV 28 0 0.607
Deltona-Daytona Beach-Ormond Beach, FL 135 3 0.585
Des Moines-West Des Moines, IA 131 7 0.580
Madison, WI 133 7 0.579
Ogden-Clearfield, UT 117 6 0.607
Springfield, MA 139 5 0.583
Syracuse, NY 186 9 0.581
Wichita, KS 152 8 0.592
Winston-Salem, NC 150 3 0.580
Boston-Cambridge-Newton, MA-NH 1,006 29 0.589
Chicago-Naperville-Elgin, IL-IN-WI 2,215 45 0.574
Dallas-Fort Worth-Arlington, TX 1,324 42 0.582
Houston-The Woodlands-Sugar Land, TX 1,072 27 0.576
Los Angeles-Long Beach-Anaheim, CA 2,928 45 0.580
Philadelphia-Camden-Wilminton, PA-NJ-DE-MD 1,477 68 0.587

Fig. 22. (a) A scatterplot of the percentage of n− versus the number of K4s, (b) A scatterplot 
of the percentage of n− versus the percentage of census tracts in K4s

a b
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5. Further Work

Although more work remains to be done, our current findings yield promising re-
sults that make us confident that our goals set out in this paper will be accomplished 
in the near future. A proof of Conjecture 1 is anticipated. That being said, we must 
emphasize that construction of such a formal proof is challenging.

Now that we have seen instances for which specimen graphs containing K4 sub-
graphs stay consistently above our conjectured bound, we are interested in determin-
ing the implications of these instances, and seeing what happens as our specimen set 
expands in size.

Nevertheless, the ultimate goal of this work is to enable a sound Jacobian term 
estimate via approximated eigenvalues for massively large georeferenced datasets, 
one comparable to that furnished by Griffith [2015] for remote sensing datasets.
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Appendices: proofs of theorems

A.    –1 eigenvalues for K4 subgraph chains

Theorem 2. The number of –1 eigenvalues for the K4 chain is τ+2, where τ de-
notes the number of K4 subgraphs.

Proof.
By induction. Note that the following argument is presented for the C matrix; 

however, the same process holds for the W matrix. In the latter case, the eigenvalues 

isolated are  rather than −1.

Let τ=1. Then, for one K4 subgraph, to calculate the number of –1 eigenvalues, 
one can create the adjusted K4 subgraph matrix with −λ multiplied by the identity 
matrix, such that K4−λI. This adjustment leads to the eigenvalue problem, where 
det|K4−λI|= 0, and

 

.

To determine the number of eigenvalues of value −1, which can be represented 
as −(λ+1), using matrix theory, one can isolate these values in single columns such 
that only the −(λ+1) terms and zeros are present. From there, one can simply solve 
for λ in each column. For the following matrix algebra displayed in this document, let 
Ci and Ri represent the ith column and row of the matrix, respectively. Beginning with 
the K4−λI matrix, we perform the following matrix algebra operations to isolate as 
many −(λ+1) as possible:

Continuing with this process, we can isolate other values of −(λ+1).
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Therefore, we can conclude that for τ=1, the number of –1 eigenvalues is equal to 
3. For τ = 2, we continue to utilize the same process, but now the τ=1 and the τ=2 
parts of the matrix can have only two λ=−1 values isolated, as illustrated next:

 

Thus, 4 isolated (−1−λ) terms exist for τ=2. This is due to the cell entries of 1 
directly below and to the right of the λ in column 4. These cell values connect the two 
K4 subgraphs and prevent the isolation of λ terms in columns 3, 4, 5, and 6.

If we continue to expand this matrix for τ=3, the same process holds. Therefore, 
we can isolate 4 instances of (−1−λ) terms:

.

Without loss of generality,

.
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Now, when τ ≥ 3, every instance of τ that is not the first or last τ in the matrix is 
able to isolate 1 additional (−1−λ) term. Therefore, we can assume that this is true 
for some arbitrary value of τ:

,

where

.

and matrix CT is the transpose of matrix C. The C and CT components of the matrix 
exist due to the need to connect each K4 subgraph. Therefore, there are τ−1 instanc-
es of C and CT when τ>1. These components of the matrix—namely the 1 element 
in C and CT —prevent column-matrix algebra from isolating values of λ=−1 into 
either the column in which it is located, or into either the preceding or subsequent 
columns. The implication is that for any given matrix, we can isolate τ+2 values of 
λ=−1 for any value of τ. The same process is relevant for τ+1. The corresponding 
matrix for τ+1 is

From this preceding matrix for τ+1, one can see by visual inspection that there are 
τ instances of the C and CT components of the matrix.

Now we can compute the number of λ=−1. Based on our assertion, we should 
have τ+2 instances of λ=−1. Because our τ=τ+1, then our adjusted value of λ=−1 
is τ+3. Because the first and last block of columns of K4(−λI),C, and CT yield 2 in-
stances of λ=−1, we have τ−1 K4 subgraphs of the matrix remaining without any 
λ-values isolated. We know that each of the interior components of the full adjacency 
matrix yield another λ=−1, which gives us an additional τ−1 instance of λ=−1. 
Summing these two values together, our adjusted number of occurrences for λ=−1 
is 4+(τ−1)=τ+3. Thus, our assertion holds for all K4 chain matrices.

B. –1 eigenvalues for K4 subgraph connected by nodes

Theorem 3. The number of –1 eigenvalues for K4 subgraphs directly connected by 
nodes can be calculated with,

where τ denotes the number of K4 subgraphs.
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Proof.
By induction. Again, this argument utilizes the C matrix; as for Appendix A, the 

same process holds for the W matrix, with the isolated eigenvalues being  rather 

than −1. The process is the same as the proof for Theorem 2. Again for τ=1, the 
number of −(λ+1) is 3.

In contrast with the Appendix A proof, we need to perform all columnar oper-
ations first, and then perform the row operations. We continue using the standard 
column and row symbols, Ci and Ri. For τ=2, the column subtractions are as follows: 
C3−C2=C3; C4−C2=C4; C5−C7=C5; C6−C7=C6

Next, we work on manipulating the rows of the new matrix. We perform the fol-
lowing operations: R2+R3=R2; R2+R4=R2; R7+R6=R7; and, R7+R5=R7.

From here, we continue by changing the final rows R3−R1=R3 and R4−R1=R4, and 
then performing the final operation of R1−(2−λ)R2=R1:

 

These results indicate that there is one λ=2 and four solutions of λ=−1.
For τ=3, we do the same process:
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These results indicate that we can isolate λ=2 and 6 instances of λ=−1. We can 
generalize these matrices as follows:

where K3(−λI) is a subset of the K4(−λI) matrix such that

 
.

Therefore, we can assume these matrices to be true for some value of τ such that

where τ is the K3(−λI) subset of the number of K4 subgraphs in the graph of interest. 
Next, we show this to be true for τ+1 so that

From our assumption, we claim that we can isolate 2τ values of −λ=−1. Further-
more, we can isolate one λ=2 from our first K4 matrix. If we are to determine the τ+1 
matrix, we should expect to isolate 2(τ+1)=2τ+2 values of λ=−1.

Because three columns exist for each value of τ, and we utilize one column to 
isolate the two other columns, we are able to isolate two λ=−1, and unable to isolate 
the λ in the third column. Due to the extra column for τ=1, we are able to isolate only 
one λ=2. As expected, for τ+1, we are able to isolate 2τ+2 values of λ=−1.
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Corollary 1. For the K4 chain connected by single nodes, the maximum percent-

age of –1 eigenvalues is equivalent to .
Proof.
As illustrated in Theorem 3, one can isolate at most two values of λ=−1 when 

τ>1 for each K4 subgraph. Furthermore, in the corresponding −1(λI) matrix, three 
columns exist that represent each instance of τ, ∀ τ>1. That said, 4 columns repre-
sent that particular subgraph for τ=1. Regardless, the assertion is that ∀ τ, one can 
isolate at most two columns of λ=−1. Therefore,

This implies that

.

As τ → ∞, then the percentage λ− converges to 

.

C – Additional Links Attached to a Common Node

Theorem 4. For every m additional sets of nodes/links separately attached to 
a common node in a K4 graph, λ=0 occurs with multiplicity m−1.

Proof.

We examine graphs composed of K4 subgraphs and additional links (edges and 
nodes) attached to a common node in it. To begin, we focus on a graph composed of 
a single K4 subgraph and additional nodes and edges, as illustrated in Figure 23.

Fig. 23. Additional links attached to a common node
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Let m be the number of additional links and nodes added to the K4 subgraph. For 
m=1, the A−λI connectivity matrix is as follows: 

.
Similar to the previous two proofs, we focus on isolating columns of this matrix 

by using row and column matrix operations:

.

In this instance, we cannot isolate any values of λ equal to zero; however, we can 
isolate two instances of λ=−1 from the K4 subgraph. This supports our theorem, as 
we would expect the number of λ=0 to be m−1=1−1=0.

For m=2, we follow the same process concerning λ-values with row and column 
operations:

.

In this case, we can isolate one λ=0, and in doing so, maintain the other columns 
that we previously isolated.

Again, for m=3, we follow the same process:

.

Notice now that we isolate two instances of λ=0, while still maintaining the pre-
vious isolated λ-values of the remainder of the graph, with the exception of the addi-
tional edges. Furthermore, notice that for the previous examples, the only elements 
that change values when attempting to isolate the columns of the additional nodes 
are the elements of those columns, as well as the elements of column 1 associated 
with the aforementioned columns.

These elements in column 1 are denoted in blue in the previous three matrices.



Let S be the subgraph A−λI matrix that does not include the additional node row/
columns. As shown for K4+1, K4+2, and K4+3, we always can isolate the possible col-
umns of S, regardless of the size of m, with the additional nodes separately attached 
to the common node; these additional nodes only affect row and column 1, with 
their remaining elements being zero. We cannot isolate m=1 because it is needed to 
rearrange the other m-columns to isolate λ=0.

Now, let m=k, where k is an arbitrary number of additional edges. Then, the re-
spective A−λI matrix is of the form

,

where S is the adjacency matrix for the graph without the additional nodes. As before, 
isolating the columns through column and row matrix operations, the new matrix 
becomes

.

We can isolate k−1 additional edges, again leaving m=1 to help isolate the sub-
sequent columns. Note that the S component of the matrix ultimately expands this 
matrix, in this example expanding it by three rows/columns, because the first row 
of the K4 subgraph is included in the pre-existing matrix. Furthermore, note how the 
elements of column 1 decrease from k to 1 after the last element of the S matrix.

This matrix can be extended to an arbitrarily large size, and the process remains 
the same.
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