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Abstract. A floating point accumulator cannot be obtained straightforwardly due to its pipeline architecture and feedback loop. Therefore, an 
essential part of the proposed floating point accumulator is a critical accumulation loop which is limited to an integer adder and 16-bit shifter 
only. The proposed accumulator detects a catastrophic cancellation which occurs e.g. when two similar numbers are subtracted. Additionally, 
modules with reduced hardware resources for rough error evaluation are proposed. The proposed architecture does not comply with the IEEE-754 
floating point standard but it guarantees that a correct result, with an arbitrarily defined number of significant bits, is obtained. The proposed 
calculation philosophy focuses on the desired result error rather than on calculation precision as such.
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is that a long fixed-point accumulator is required; for single 
precision numbers, the accumulator bitwidth is equal to 
24 + 255 = 279 bits; where 24 is for the standard mantissa 
bitwidth and 255 – for the exponent that is coded on 8-bits. 
However, in some applications the exponent range of the ac-
cumulation result can be reduced. It is determined a priori, 
using rough error analysis or software profiling. This results in 
a smaller and more accurate accumulator than the one based on 
a floating point adder [13]. The solution is adapted by Xilinx 
and implementation results are presented in Table 7. Never-
theless, there is a large number of applications for which the 
accumulator exponent range cannot be easily specified. Fur-
thermore, the approach of customized fixed-point accumulator 
leads to different bitwidth configurations for different types of 
calculations, e.g. when multiplying three matrices.

A similar approach is proposed in the exact accumulation 
of products [14, 15], for which a full-width fixed-point accu-
mulator is employed. This solution utilizes a lot of hardware 
resources as the fixed-point accumulator is 279-bit wide for the 
single precision floating point format and 53 + 2047 = 2100- bit 
wide for the double precision format. The major advantage of 
this method is that the accumulation result does not depend on 
an accumulation order and that it is not sensitive to massive can-
cellation. Consequently, exact arithmetic is strongly supported 
for inclusion of interval arithmetic in the P1788 IEEE standard 
[16]. It will be argued further that the accumulator proposed 
in this paper benefits partially from exact arithmetic without 
utilizing a significant amount of hardware resources.

A hybrid floating-fixed point accumulator for single preci-
sion floating point numbers was presented in [17]. This accu-
mulator divides an exponent section into three parts:

�� EXP [4:0] – the low order exponent. It is used to convert 
floating point numbers to pseudo-fixed point numbers. Con-
sequently, the mantissa is extended by 31 bits (5-bit expo-
nent), which results in 24 + 31 = 55 bitwidth. It should be 

1.	 Introduction

In this paper, a novel architecture for the floating point accumu-
lator is proposed. Floating point adders are widely presented in 
literature, e.g. in [1, 2]. They are now widely used to accelerate 
computing [3–6] and accumulation is commonly used in e.g. 
matrix multiplication [4], neural network [7], signal filtering or 
damage diagnosis [8].

Nevertheless, a floating point accumulator cannot be con-
structed straightforwardly from floating point adders due to their 
strong pipeline architecture. Several different solutions to this 
problem have been presented in the literature. One of them is 
to employ (N –1) parallel adders [9], where N is the number of 
arguments to be accumulated. This solution, however, is limited 
only to a small N due to hardware resources limitations. Another 
solution is to perform several accumulations/additions at the 
same time, different for each pipeline stage. This solution can 
be employed for matrix multiplications, for example, as several 
vector dot products can be carried out in parallel there [10]. The 
interleave factor (the number of computations performed at the 
same time) should be at least equal to the adder pipeline latency. 
A different approach was proposed in [11, 12], where the adder 
latency problem was solved by employing a special input and 
output buffer. This requires additional buffers and control logic 
and increases the total accumulator latency, or even introduces 
stalling states [11, 12].

The time-critical feedback can be easily implemented in 
fixed-point accumulators as the arguments’ exponent does not 
change, thus there is no shift operation in the loop. This ap-
proach was exploited in [13]. The drawback of this method 
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noted that the conversion is performed outside the critical 
accumulation loop, therefore it does not influence the crit-
ical timing path of the accumulation feedback loop.

�� EXP [5] – the decision bit. Two independent accumula-
tors are employed for arguments with EXP [5] bit equal 
to zero or one. At the final stage of accumulation, outside 
the time-critical loop, these two intermediate results are 
added, with one being shifted by 32-bit with respect to 
the other.

�� EXP [7:6] – the high-order bits. Lower high-order bit values 
of the input argument or intermediate accumulation are 
treated as zeros due to at least 64-bit misalignment. This 
misalignment is far from single-precision accuracy.
In the accumulator described above, the critical accumu-

lation loop consists only of an addition operation. To further 
reduce propagation delay, carry-save adders were employed in 
the time-critical accumulation loop.

A similar approach was adopted in [18–21], but only a single 
accumulator is used nevertheless, i.e. the decision bit EXP [5] 
is merged to the high-order bits EXP [7:6]. This, in comparison 
with [17], requires an additional 32-bit right shifter for both 
the input argument and accumulator to be included inside the 
time-critical loop. These shifters are employed when EXP [7:5] 
of the input argument and the accumulator intermediate result 
differ by one. To avoid precision loss, the accumulator un-
derflow scenario may be handled, i.e. when at least 32 MSBs 
of the accumulator are ones or zeros, the accumulator result 
must be shifted left by 32-bits. The accumulator underflow is 
thoroughly considered in our paper as the underflow proper 
handling results in a signaling massive cancellation, which 
leads to precision loss. It should be noted that the accumulator 
underflow scenario was not considered in [17]. In [18], it is 
only suggested not to implement the accumulator underflow 
module due to the large hardware requirements. A similar de-
sign algorithm can be adopted for double precision numbers 
yet the low order exponent should be 6-bit wide, i.e. the 53-bit 
mantissa should be extended by 63-bit, thus the total mantissa 
width is 116-bit [18]. A combination of the hybrid floating/
fixed point accumulator from [18] and the additional buffer 
employed to hide accumulator latency [11, 12] was proposed in 
[22]. For this accumulator, time-critical loop latency is reduced 
only to 1‒4 cycles. The additional buffer is used only for the 
time-critical accumulation loop, therefore the buffer size and 
overall accumulator latency are lower.

2.	 Proposed accumulator

The proposed accumulator is similar to the one presented in 
[18], but more sophisticated shift scheduling is implemented 
outside the time-critical accumulation loop. A block diagram 
of the proposed accumulator for the single precision input is 
presented in Fig. 1. In it, the following parameters are intro-
duced:
E – input exponent (EXP) width
M – input mantissa (MAN) width (excluding the leading one)
G – number of accumulator guard bits.

Figure 1 does not include the conversion from pseudo-fixed 
to floating point format that has to follow the accumulation 
process; this conversion module is further denoted as acc2f loat 
and is described in Section 3.1. In contrast with the solution 
given in [18], the mantissa is extended only by 15 bits in the 
proposed accumulator, i.e. a 16-bit base is introduced, and the 
[3:0] LSBs of the exponent are used to convert the number to 
a pseudo-fixed point format. This conversion is achieved in the 
first two clock cycles. Meanwhile, the [E-1:4] MSBs of the 
exponent remain unchanged. In Fig. 1, the pipeline register is 
instantiated whenever data cross the dash line.

In spite of using only the 16-bit exponent base, the accumu-
lator can be employed for any floating point representation, e.g. 
for single or double precision. Furthermore, the time-critical 
loop consists only of an adder and a 16-bit right shifter (see the 
stage denoted as 1 in Fig. 1), which fits into a single 5-input 
LUT per bit (or 4-input LUT and a flip-flop with synchronous 
reset), commonly incorporated in FPGAs. Consequently, the 
propagation delay within the time-critical path is limited only 
to the smallest possible delay.

The key issue presented in our paper is that the right shift of 
the intermediate accumulation result by 32 bits can be achieved 
by two 16-bit shifts performed in consecutive clock cycles. This 
becomes possible because the successive exponent values can 
be calculated ahead by several clock cycles due to the pipeline 

Fig. 1. Block diagram of the proposed accumulator for single precision
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registers being inserted only on the mantissa path (see the stages 
denoted as 3 and 4 in Fig. 1). The exponent path does not re-
quire any operation at the time. Summing up, the successive 
accumulator exponent value can be anticipated employing the 
following: current accumulator exponent value, accumulator 
overflow logic and maximum exponent value for the different 
pipeline stages of input data. Knowledge of the intermediate 
accumulator exponent value before the accumulation process 
starts allows us to implement greater mantissa shifts as consec-
utive 16-bit shifts.

For double precision numbers, the required accumulator 
intermediate right shift can be 16, 32, 48 and 64 bits. Thus, up 
to four 16-bit consecutive shifts are required. This requires two 
additional dummy pipeline stages (additional stages 5 and 6, 
not marked in Fig. 1) at the accumulator input and some more 
logic to calculate maximum exponent value for the input data 
at different pipeline stages. An alternative solution is to double 
the accumulator base from 16 bit to 32 bits, and employ 32-bit 
shifts instead. However, this would increase the accumulator 
width by 16 bits, which would result in additional hardware 
resources and propagation delay, or even extra pipeline latency, 
required during floating point to pseudo-fixed point format con-
version. Therefore, the authors have decided to add extra pipe-
line stages rather than increase the base size. It should be noted 
that extra registers in the pipeline may increase the maximum 
frequency by reducing the routing propagation time – the FPGA 
place and route program can place logic elements with less 
restraints by employing register balancing.

The accumulator presented in Fig. 1 goes through a number 
of steps to perform its operation. At pipeline stage 4 (direct 
input – in Fig. 1 the pipeline stage number decreases with every 
clock cycle delay) a leading one is inserted at the left most 
position of the mantissa in the case when the input exponent 
is different from zero, i.e. the input number is neither equal to 
zero nor denormalized. For the input exponent equal to zero, 
EXP [0] (the LSB) is set to 1 in order to properly handle denor-
malized numbers. Abnormal states, i.e. NaN (Not a Number) or 
infinity, are also detected and propagated to the accumulator 
output at this stage. Then at stages 4 and 3, the mantissa is 
shifted left by 0 to 15 bits according to EXP [3:0] to obtain 
a base-16 representation. At pipeline stage 2 and for the single 
precision format, the input mantissa is shifted right by 0, 16, 
32 bits or cleared according to the difference between the input 
exponent EXP [E- 1:4] and the predicted accumulator exponent. 
For the double precision format, the input mantissa should be 
shifted right by 0, 16, 32, 48 or 64 bits. At this stage, calcu-
lation accuracy may be improved by extending the mantissa 
(on the LSBs side) by additional G guard bits. These G bits 
significantly reduce the round-off error while improving cal-
culation accuracy.

After the right shift, the input mantissa is converted to one’s 
complement format (every individual bit is inverted), provided 
that the sign bit is equal to one – the sign-magnitude floating 
point mantissa format is converted to two’s complement one. 
The actual accumulation process is performed at stage 1. The 
accumulator is extended by 3 bits at the MSB side: one bit 
due to operating in two’s complement format; two bits are the 

overflow protection bits. These two overflow protection bits 
are employed as the accumulator is strongly pipelined, thus 
one overflow bit does not protect it from catastrophic overflow 
in the case where two consecutive maximum value input data 
are added. Extending the adder by two overflow bits gives 
a margin of three-clock cycle latency to react to the overflow 
conditions.

3.	 Conversion to floating point format

3.1. Acc2f loat module. The intermediate result of accumu-
lation, which is produced by the presented accumulator, is 
converted to the IEEE-754 floating point representation in the 
module denoted as acc2f loat. A block diagram of this module is 
presented in Fig. 2. The acc2f loat module operates as follows: 
at pipeline stage 0, input mxantissa is converted from the two’s 
complement to sign-magnitude format; then the sign-magnitude 
mantissa is normalized, i.e. the most significant bit equal to 
one is found and the mantissa is shifted accordingly. The shift 

Fig. 2. Block diagram of the acc2f loat module
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operation of unrestrained value is performed iteratively in the 
four pipelined steps that are organized as the 32, 16, (8-and-4) 
and (2-and-1) bit shifts. 

Min_valid_bit is an additional parameter of the acc2f loat 
module. This parameter defines the minimum number of 
valid bits of the input mantissa. Consequently, if the value of 
the mantissa is smaller than 2min_valid_bit-1, a catastrophic cancel-
lation event is initiated. A circuit for detection of a catastrophic 
cancellation is small as it contains only an OR gate, which tests 
whether at least one bit on the left of MAN[min_valid_bit – 2] 
is equal to one. An alternative solution is to check if the aggre-
gated shift performed in the acc2f loat module is greater than 
din_man_width – min_valid_bit, where din_man_width is the 
acc2float input mantissa bitwidth. In FPGA implementation, 
the latter solution requires one 6-input LUT and one pipeline 
register per bit only.

It should be noted that the 32-bit shifter is optional, and it is 
implemented if: din_man_width > 31 + min_valid_bit. A shift 
by at a maximum of 31-bits can be obtained at pipeline stages 
2 to 4, therefore larger shifts require an additional 32-bit shifter 
at pipeline stage 1.

3.2. Parallel addition/Accumulations. The accumulator pre-
sented herein can be used in various computing data paths, 
and it generates more efficient processing architectures. For 
instance, two or more input data can be accumulated simulta-
neously in a single clock cycle when additional floating point 
adder(s) are employed. An example of two-input parallel accu-
mulation is given in Fig. 3.

and underflow events. The simplified adder output Fadd is rep-
resented as follows:

	 Fadd = (i2i1io . f1 f2 … fk) ¢ 2e,� (1)

where: �i2 i1 i0 – integer mantissa part bits in two’s complement 
format, 

where: �f1, f2, … fk – fractional mantissa part bits (standard man-
tissa bits), 

where: �e – exponent (maximum of the input exponents).
For adding 4 parallel inputs, 3 similar adders should be 

employed. The final adder’s result is in a range from –8 to 8, 
thus four additional integer bits are required. The mantissa of 
the adder result Fadd is represented in two’s complement rather 
than the sign-magnitude format, thus mantissa format conver-
sion is not required in the adder. However, the sign-magnitude 
format would simplify the normalization process.

4.	 Error estimation

4.1. Detection of catastrophic cancellation. The main fea-
ture of the proposed architecture is that the event of the cata-
strophic cancellation is automatically detected on the output of 
the hybrid floating-fixed point accumulator. Thus, whenever 
the mantissa value is equal to zero or close to zero, and the 
exponent is different from zero on the accumulator output, 
a catastrophic cancellation occurs. It should be noted that 
the catastrophic cancellation can be cancelled, i.e. in some 
cases, it does not influence the final result, unlike the NaN. 
For example, (1.00000001 ¡ 1.00000000) + 0.99999999 will 
generate a proper result equal to 1.00000000, even though the 
intermediate result (1.00000001 ¡ 1.00000000) may generate 
the catastrophic cancellation event.

A similar solution was proposed for the quadrupled pre-
cision sticky accumulator [24]. However, the exact hardware 
architecture for the sticky accumulator was not presented. In 
our accumulator, detection of the catastrophic calculation is 
a by-product, which significantly simplifies the accumulator 
architecture. In [17, 18], a similar hybrid floating-fixed point 
accumulator was proposed yet detection of catastrophic can-
cellation was not considered.

To reduce the catastrophic cancellation occurrence, the 
number of accumulator guard bits g (see Fig. 1) can be in-
creased. The increasing of g significantly improves calculation 
accuracy, especially when a large number of values are accu-
mulated. For example, adding more than 224 single precision 
numbers may result in a large error, but increasing g may sig-
nificantly reduce this error. When g is large enough, our archi-
tecture can become an alternative to higher precision accumula-
tors, e.g. the proposed single precision accumulator can replace 
the double precision or exact accumulation [14]. Replacement 
of the exact accumulator with our accumulator significantly 
reduces hardware resources. In the exact accumulator, either 
the LSBs influences the final result in an insignificant manner 
or MSBs are not used (zero). The proposed accumulator with 
large g offers advantages of both the floating point data format 

Fig. 3. Two-input accumulation in a clock cycle

In this scheme, a simplified floating point adder should be 
employed, as a standard floating point adder normalizes the 
result according to the floating point standard, which may 
cause a loss of the catastrophic cancellation information. Conse-
quently, the simplified floating point adder is similar to a stan-
dard floating point adder, such as the one proposed in [23], but 
final normalization is skipped. The normalization process is 
performed later by the acc2f loat module. The lack of the nor-
malization process reduces the required hardware resources of 
the adder, and this is the main feature for which the simplified 
adder was previously used. In this paper, the simplified adder 
is also used for detection of catastrophic cancellations. The 
lack of normalization causes the adder’s result exponent to 
become equal to the greater of the input exponents. The man-
tissa of the adder’s result is in the range of – 4 to 4 (it is from 
–2 to 2 in a standard floating point adder). As normalization 
is skipped, the introduction of three additional mantissa bits, 
i.e. i2, i1 and i0, is necessary to properly handle both overflow 
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and the exact accumulator. Unlike in the case of exact accu-
mulation, the proposed accumulator does not guarantee that the 
final result is independent of the accumulation order. Neverthe-
less, the calculation order has an insignificant effect on large g 
(effect similar to that for the exact accumulator). Besides, the 
proposed accumulator detects a catastrophic cancellation which 
is closely related to the cases when a calculation order might 
significantly influence the final result.

The exact accumulator guarantees the correct result pro-
vided that the input values carry no errors, e.g. round-off errors. 
Let’s consider the following operation for the following single 
precision numbers: (264 + 1) ¡ 264. The proposed accumulator 
results in the catastrophic cancellation event. The exact accumu-
lator gives a proper result, i.e. one. Nevertheless, the rounding 
error for the number, 264, is much greater than one. Therefore, 
to obtain a correct result, the input mantissa width should be at 
least 64-bit, which is not the case for single precision numbers. 
Summing up, the exact accumulator still generates erroneous 
and random results.

4.2. Cancellation-effect input error magnification. The ac-
cumulator described herein can signal when the input error 
(e.g. round-off error) significantly disturbs the final result, i.e. 
when the catastrophic cancellation magnifies the input error. 
This error is further denoted as cancellation-effect input error 
magnification (CIEM). As it will be proven, detection of CIEM 
can be achieved by monitoring the maximum value of inputs’ 
exponents. According to Fig. 1, the input exponent, after trun-
cating four LSBs, is compared to the accumulator exponent, 
and the greater of the values is selected. This operation is sim-
ilar to the finding of the maximum exponent value, thus our 
accumulator exponent roughly represents the maximum input 
exponent. However, as the input’s exponent is deprived of the 
four LSBs, this results in a rather inaccurate detection of the 
maximum input exponent. Besides, the accumulator overflow 
causes the accumulator exponent to become enlarged. Summing 
up, the accumulator described herein detects the CIEM effect 
with limited accuracy.

In the case where the number of accumulated inputs N is 
relatively small, it is possible to build a tree of adders to add 
many input elements in parallel without employing the pro-
posed accumulator, as has been described in Section 1. The 
exponent field is fully represented in the adders tree (unlike the 
base-16 format employed in the proposed accumulator), thus the 
maximum exponent value is straightforwardly obtained. This 
allows for more accurate catastrophic cancellation detection 
as compared with the accumulator. Therefore it may be used 
as an alternative solution for parallel arithmetic, presented in 
e.g. [25, 26], which requires significant hardware overheads in 
comparison with straightforward arithmetic.

Much better results can be obtained when the maximum 
value of input exponents is monitored by dedicated logic. 
When the difference between the maximum input and the 
final accumulator exponent value is greater than the arbitrarily 
selected threshold t, the CIEM event is generated. The moni-
toring logic is very simple and requires insignificant hardware 
overheads.

The mathematical background for the above consideration 
is as presented below. Let us consider accumulation of N input 
numbers x1, x2, …, xN ̇ :

	 y = 
i =1

N

∑xi .� (2)

Each number xi can be represented as:

	 xi = (mi ±∆i) ¢ 2ei� (3)

where: mi is the mantissa, ei is the exponent and ∆i is the man-
tissa error.

If ∆i is limited only by the round-off error, then ∆i ∙ 0.5 
LSB = 2–M –1; where M is the number of mantissa bits. Con-
sequently, the maximum accumulation error ∆MAX can be up-
per-bounded by:

	 ∆MAX ∙ 
i =1

N

∑2–M –1 ¢ 2ei ∙ N ¢ 2–M –1 ¢ 2emax� (4)

where: emax is the maximum exponent value of ei.
The main drawback of the above method is that the max-

imum error ∆MAX may be significantly overestimated. This 
proves true especially in the case of large N and an average 
exponent value significantly lower than emax. The advantage 
of this method lies in the insignificant hardware overheads, i.e. 
the calculation of maximum value emax = MAX(ei) requires 
insignificant hardware.

4.3. Exponent-based maximum error estimator (EMEE). 
The maximum error can be more accurately estimated by the 
following formula:

	 ∆MAX ∙ 
i =1

N

∑2–M –1 ¢ 2ei = 2–M –1 ¢ 
i =1

N

∑2ei.� (5)

The hardware structure for calculations given by (5) is fur-
ther denoted as an exponent-based maximum error estimator 
(EMEE). The core of the EMEE is an evaluation of ∑N

i =12ei. 
At first approach, the EMEE can be seen as an accumulator of 
floating point numbers for which the mantissa value is hard-
wired to 1.0 (or 2–M –1). Therefore only one bit of mantissa 
is non-zero. The hardware requirements for the floating point 
accumulation are relatively high and, consequently, several sim-
plifications were introduced to the EMEE. The most signifi-
cant is the internal number representation, as the floating point 
representation suffers from the time-critical loop. Therefore, 
similarly to the proposed floating point accumulator, the EMEE 
also introduces the hybrid floating-fixed point data format. 
Nevertheless, instead of a base-16, a much smaller base-4 is 
selected, thus 2 LSBs of the intermediate exponent are hard-
wired to zero. Besides, the EMEE mantissa bitwidth can be 
significantly smaller, e.g. 4 to 16 bits, as the accumulation error 
needs not be calculated as accurately as the accumulation value.
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When adding (accumulating) two floating point numbers, 
the maximum exponent emax of these two input numbers is first 
evaluated and then the mantissa associated with the smaller 
exponent ei is shifted right by (emax ¡ ei) bits. Then these two 
mantissas are added. Similar calculations are performed for the 
EMEE module presented in Fig. 4. The maximum of input ei 
and current exponent emax is evaluated at pipeline stage 1. At 
pipeline stage 2, mantissa shifting and accumulation take place. 
The input number mantissa is hardwired to 1.0, therefore in-
stead of the shifter, the binary to one-hot transcoder is used 
to form input mantissa mi. Then mantissa mi is accumulated 
with the accumulated mantissa msum. Accumulator msum is the 
mantissa part of the hybrid floating-fix point representation of 
the result.

The width of the msum can be parameterized by a designer 
(parameter width in Table 5 and Table 6) and its bitwidth is 
usually set between 4 and 16, plus 3 bits due to base-4 represen-
tation, plus 1 bit due to overflow protection. Therefore, the total 
bitwidth of the msum is 4 bits wider than the parameter width. In 
the case where the accumulator overflows or the input exponent 
ei is greater than the maximum exponent emax, the accumulation 
result msum is shifted right. This path is time-critical, therefore 
base-4 was introduced; thus, the shifter shifts only by the mul-
titude of 4 bits, e.g. 0, 4, 8, 12, … bits.

The EMEE final result should be coded similarly to its 
input, i.e. the output mantissa should be hardwired to 1.0. 
Consequently, at the end of the accumulation process (pipe-
line stage 3), the most significant one bit of msum is found and 
transcoded from the one-hot to binary code to form exponent 
esum. This exponent esum is then added to the maximum exponent 
emax to form the output value eEMEE.

The difference between the EMEE output, eEMEE, and the 
floating point accumulator exponent, eacc, represents how many 
ULP bits of the final accumulator are incorrect due to the can-
cellation.

At first glance, the hardware requirements of the EMEE are 
high – similarly to the accumulator. Nevertheless, the input and 
output data bitwidth (exponent) and the intermediate bitwidth 
are significantly smaller. The exponent width is usually only 
8-bit (single) or 11-bit (double precision). Similarly, the internal 
EMEE accumulator (signal msum) width can be 4‒16 bits. For 
the input exponent, ei, much lower than maximum exponent 
emax, the mantissa is incremented at the LSB – always rounding 
up. Therefore, shortening the EMEE accumulator width causes 
the EMEE module to overestimate the calculation error more. 
Nevertheless, this overestimation is insignificant: e.g. for the 
number of accumulated inputs equal to 216, and the 16-bit ac-
cumulator, the worst case possible error overestimation is dou-
bling the error.

In this section the typical round-off error was considered 
mainly, i.e. the maximum error was assumed to be 0.5 ULP. 
However, it is also possible to assume another value of the error. 
The only constraint is that the error must be upper-bounded by 
the value of ULP that is a power of two. In the case where the 
maximum error (expressed in ULP) for every input is the same, 
the final result of the EMEE can be proportionally increased, 
i.e. the parameter min_valid_bit can be increased accordingly. 
Otherwise, every input should be represented by two values: the 
standard floating point and the error expressed in the exponent 
value which is processed by the EMEE module. This requires 
only additional input data width, and no extra hardware is re-
quired to compute the maximum error.

The approach of two-values-representation of inputs can 
be employed to calculate approximated error of complex op-
erations. For example, multiplication of two matrices 

¡
A ¢ B

¢
 

can generate a catastrophic cancellation, which can be roughly 
tracked by the proposed accumulator alone. Nevertheless, mul-
tiplication of three matrices 

¡
A ¢ B ¢ C

¢
 requires two cascaded 

matrix multiplication operations: P = 
¡
A ¢ B

¢
 and then P ¢ C . 

These cascaded operations may generate two consecutive can-
cellations which aggregate onto one another. Therefore the 

Fig. 4. Block diagram of exponent–based maximum error estimator 
(EMEE)
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second (final) EMEE result (EMEE2) is fed by the result of 
the first EMEE (EMEE1) module plus an exponent part of an 
appropriate element eci, j of the matrix C.

	 EMEE2i, j = 
k =1

N

∑(EMEE1k, j + ecj, k + 1)� (6)

where
i, j, k – index of matrix element
N – matrix dimension.

This holds as the product p ¢ c can be approximated by:

	
p ¢ c = (mp ¢ 2ep±2EMEE1) ¢ (mc±∆c) ¢ 2ec ¼

p ¢ c ¼ (mp ¢ mc ¢ 2ep+ec) ±mp ¢ 2EMEE1+ec
� (7)

where:
mp, mc – mantissa, (upper-bounded by 2)
ep, ec – exponent
2EMEE1, ∆c – error of input p, c.

5.	 Implementation results

The implementation results are given for the Xilinx Virtex-6 
xc6vlx75t-ff484‒3 FPGA, ISE 12.2 development tools, and 
a differing number of guard bits g. The implementation results 
are expressed in the number of look-up tables (LUTs), regis-
ters (flip flop – FF), and the minimum clock period T. As it 
can be seen in Tables 1, 3 and 4, the resources applied for the 
proposed accumulators and the floating point adders, all from 
Xilinx’s CORE Generator, are similar. In comparison to Table 1, 
Table 2 gives only the implementation results of the proposed 
accumulator, and the acc2f loat module is not included. The 
acc2f loat conversion module occupies a significant amount 
of FPGA resources. However, for matrix multiplications, for 
example where several accumulators are usually used in par-
allel, many simplified accumulators and only the one acc2f loat 

module can be used [13]. This holds as every accumulator uti-
lizes a large number of input values in order to produce a single 
output value. An example of such a system is given in Fig. 5. 

Table 1 
Proposed accumulator (with the acc2float module) for the single 

precision floating point format and a different number of the 
accumulator guard bits g

g 0 8 16 32
LUT 408 468 528 581
FF 349 426 495 566

T [ns] 4.40 4.18 3.62 4.13

Table 2 
Implementation results for the proposed accumulator (without 

acc2f loat module) for the single precision floating point format

g 0 8 16 32
LUT 233 249 275 341
FF 184 200 259 313

T [ns] 3.891 3.56 4.16 5.04

Table 3 
Implementation results for the proposed accumulator (with 

acc2f loat module) for the double precision floating point format

g 0 8 16 32
LUT 761 887 887 960
FF 733 842 729 777

T [ns] 5.33 5.50 5.23 4.84

Table 4 
Implementation results for the floating point adders created by  

the Xilinx’s CORE Generator tool [1]

width / 
optimization

32 / high
speed

32 / low
latency

64 / high
speed

64 / low
latency

LUT 404 507 730 977
FF 546 615 944 1,157

T [ns] 1.834 2.274 2.775 3.375

Table 5 
EMEE implementation results for the 8-bit exponent  

(for the single precision floating point format)

width 4 8 16
LUT 75 96 130
FF 37 43 52

T [ns] 2.33 2.43 2.54

Fig. 5. Block diagram of the system employing several simplified 
accumulators and only one acc2f loat converter
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Summing up, the proposed accumulator significantly simplifies 
system design in comparison to floating point addition, and 
therefore the accumulator loop-back signal is not time-critical 
although it usually is for floating point adders. Besides, the 
proposed accumulator may significantly reduce the hardware 
requirements in parallel calculations.

The given accumulator can also be compared with the full 
or limited range accumulator [13] described in Section 1 and 
provided by Xilinx as a full range or quarter range solution [27]. 
It can be seen from Table 1 and 3 (the proposed accumulator) 
vs. Table 7 (Xilinx design) that the proposed accumulator offers 
significant reduction of hardware resources.

It should be noted that the modules described herein are 
a compromise between clock frequency and occupied hardware 
resources. Nevertheless, they meet most system clock frequency 
requirements. Otherwise, extra pipeline stages can be added. It 
can be seen in Table 1 and Table 2 that the acc2f loat module sig-
nificantly reduces the maximum clock frequency – this module 
is the source of the maximum signal propagation time. The 
acc2f loat module can be significantly sped-up by introducing 
a higher level of pipelining. The pipeline’s stage 1 in Fig. 1 will 
be denoted as facc_core in further discussion. In the proposed 
design, the facc_core module contains the time-critical accumu-
lation loop, but this does not influence the clock period. This is 
very fortunate as only this module cannot be easily sped-up by 
introduction of additional pipeline stages. The authors’ exper-
iments showed that FPGA hardware resources and maximum 
signal propagation time in facc_core are roughly the same as 
for the ripple-carry adder of the same bitwidth, i.e. roughly one 
LUT and 20 ps for an additional carry-chain bit. The total hard-
ware resources for facc_core are 100 LUTs, and its minimum 
clock period is 3.62 ns for 100 bitwidth (29 guard bits for the 
double precision format).

When the critical accumulation loop significantly slows 
down the operation frequency, the carry-save adder, which is 

preferred in FPGAs, can be employed instead of standard rip-
ple-carry adders [19]. It must be noted also that the minimum 
clock period reported here is a rough value only, and it can vary 
for different implementations.

The hardware requirements for the exponent-based max-
imum error estimator (EMEE) and the different internal accu-
mulator widths are given in Table 5 and Table 6.

6.	 Conclusions

The proposed floating point accumulator presents a novel ap-
proach to reducing the delay of the critical accumulation loop. 
Only the adder and 16-bit shifter are employed inside the loop. 
Consequently, the proposed floating point accumulator can be 
efficiently employed in many applications as the hardware re-
quirements for the accumulator and the corresponding adder are 
very similar or even lower for parallel version of the proposed 
accumulator. It should be noted that for fixed point arithmetic 
an accumulator is commonly used, and for DSPs multiply and 
accumulate (MAC) operations rather than multiply and add 
operations are commonly employed. Another aspect of the 
presented accumulator is a detection of the catastrophic can-
cellation, which is an extra advantage of the presented architec-
ture. As a result, out-of-order (parallel) accumulation might be 
employed, as in the case where an addition order influences the 
final result, as indicated by the catastrophic cancellation event. 
The alternative solution to parallel arithmetic is given in [25], 
but it requires significant hardware overheads as compared to 
straightforward arithmetic.

It should be noted that addition is a critical operation due to 
the (catastrophic) cancellation. Floating point multiplication, di-
vision, etc. guarantee proper results within 0.5 ULP. Even more 
complicated mathematical operations, such as exponent calcula-
tions, guarantee maximum error of 1 ULP [28, 29]. Therefore, 
the error evaluation of the accumulation operation is crucial for 
obtaining proper results. Consequently, the idea behind the pre-
sented paper is to stop complying with the IEEE 754 standard, 
which does not guarantee proper results but only, in theory, 
the same (possible incorrect) results on different computing 
machines. In [30], a software application detects cancellation 
in order to balance the speed and accuracy of floating point 
operations. This paper presents a circuit for rough error evalu-
ation, which might serve as a foundation for similar hardware 
approaches: limiting the bitwidth (precision) of floating point 
operations and roughly evaluating the calculation error. When 
a calculation error is unacceptable, increasing the floating point 
precision is required. A similar software approach was proposed 
in [31]. The calculation error might even be a threshold to 
generating sparse matrix operations to increase the calculation 
speed [4].
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Table 7 
Implementation results for the floating point full-range  

and quarter-range accumulator provided by Xilinx [27] (Kintex-7)

Single precision Double precision
Full 

range
Quarter 

range
Full 

range
Quarter 

range
LUT 2980 921 31 142 6538
FF 3424 1183 24 340 7056

f [MHz] 436 465 338 421

Table 6 
EMEE implementation results for the 11-bit exponent  

(for the double precision floating point format)

width 4 8 16
LUT 100 122 155
FF 46 53 61
T [ns] 3.13 3.15 3.26
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