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Abstract: O b j e c t i v e: Th e aim of this study was to verify if the exposure to the pulsed electromagnetic 
fi eld (PEMF) infl uenced the  release of proinfl ammatory cytokines from adipose-derived stem cells 
(ADSCs) of normal and overweight rats of various age and sex. Moreover, we compared body temperatures 
of normal-weight and overweight rats.
M e t h o d s: ADSCs of Wistar rats were isolated from the subcutaneous area in females and paratesticular 
region in males, cultured and exposed to PEMF (7 Hz, 30 mT). Concentrations of proinfl ammatory 
cytokines were determined in rat sera and supernatant from ADSCs cultures exposed and non-exposed 
to PEMF. Body temperature (BT) was measured twice a week, using an infrared and rectal thermometer.
R e s u l t s: Irrespective of age and sex, animals maintained on low-fat (LF) diet had higher BT than 
those grown on high-fat (HF) diet. Exposure to PEMF reduced the  release of TNF-α and enhanced 
the production of IL-6 in ADSCs cultures from female pups maintained on LF diet. In contrast, a decrease 
in IL-6 level was observed in PEMF-exposed ADSCs cultures from female pups grown on HF diet. 
A similar phenomenon, i.e. a post-exposure increase in IL-6 level was also observed in male pups fed 
with the LF diet. In the case of ADSCs cultures from adult rats maintained on an HF diet, either males 
or females, PEMF exposure contributed to a dramatic increase in TNF-α production. 
C o n c l u s i o n: Our fi ndings suggest that PEMF exposure may aff ect the production of proinfl ammatory 
cytokines in ADSCs cultures. Th e  intergroup diff erences in BT may result from the  presence of an 
underlying infl ammation in obese rats.
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Introduction

Th e eff ect of electromagnetic fi eld (EMF) as a  modulator of immune response has 
been recently a  subject of many studies [1]. Previous research demonstrated that 
exposure to the  pulsed electromagnetic fi eld (PEMF) might aff ect proliferation, 
diff erentiation and viability of various cell types, as well as their metabolic and 
signal transduction pathways [2–6]. Extremely low-frequency electromagnetic fi elds 
(ELF-EMF) were shown to modulate the  release of infl ammatory mediators and 
keratinocyte proliferation [7]. According to Vincenzi et al., the  treatment of N9 
microglial cell cultures with lipopolysaccharides and exposure to PEMF contributed 
to a decrease in concentrations of proinfl ammatory cytokines, such as tumor necrosis 
alpha factor (TNF-α), interleukin 6 (IL-6) and interleukin-1β (IL-1β), in cell culture 
medium [8]. Also, a  study of adipose-derived stem cells (ADSCs) isolated from 
adipose tissue (AT) of male and female Wistar rats showed that exposure to PEMF 
modulated the  synthesis of proinfl ammatory cytokines and adipokines by these 
cellular population [9].

Almost a half billion people worldwide are obese, and according to one hypothesis, 
the  predisposition to overweight may correlate with metabolic activity and energy 
balance in homeothermy [10]. According to literature, normal body temperature (BT) 
of laboratory rats approximates 37.5–38.5/39.0°C. A decrease below those values may 
be a marker of immune response associated with an infl ammatory process [11–13]. 
A  drop off  in BT below normal values was inter alia observed in adult female rats 
with experimentally-induced cystitis caused by E.coli strains [14].

Th e function of AT later in life is modulated by maternal nutritional status during 
fetal and immediate postnatal period; this phenomenon is referred to as metabolic 
programming [15]. Fat depots forming adipose tissue diff er in terms of their structure 
and function [16]. 

Brown adipose tissue (BAT) is involved in thermogenesis acting via catecholamine 
signaling pathways. Homeostatic hormones, such as leptin and insulin, affect 
a  release of uncoupling protein 1 (UCP-1) and the  generation of thermal energy in 
brown adipocytes [17]. In turn, the primary function of adipocytes in white adipose 
tissue  (WAT) is an accumulation of lipids and endocrine activity. Th us, an excess 
of WAT leads to obesity [18, 19]. In one study, rats maintained on high-fat  (HF) 
diet showed an increase in UCP-1 level, but this eff ect was observed only in males. 
However, the  authors of this study did not analyze changes in BT [20]. In contrast, 
Almeida et al. demonstrated that maternal HF diet contributed to an increase 
in UCP-1 and tyrosine hydroxylase (TH) contents in BAT from female, but not 
male pups [21]. Obesity was shown to cause disorders of BT in nonpregnant rats. 
Consumption of cafeteria diet contributed to a decrease (by up to 0.29°C) in BT of 
overweight female rats during the estrous cycle and pregnancy [22].
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Excessive proliferation of AT can cause adipocyte dysfunction and stimulate secretion 
of proinfl ammatory cytokines [23]. Infl ammatory mediators, such as TNF-α and IL-6, 
are the main proinfl ammatory cytokines associated with the development of endothelial 
dysfunction in obesity and type 2 diabetes mellitus (T2DM) [24]. TNF-α plays a crucial 
role as a chemotactic and activating agent attracting neutrophils and monocytes to the site 
of infl ammation [25]. Overweight is known to be associated with excessive secretion 
of TNF-α in adipose tissue. Rat’s male off spring from mothers maintained on HF diet 
during pregnancy and lactation presented with elevated serum levels of TNF-α [26]. 
An increase in serum TNF-α was also observed in HF diet-fed rats with experimentally 
induced kidney damage [27]. One study demonstrated that the development of low-grade 
infl ammation in mice with diet-induced obesity was associated with upregulation of 
IL-6 [28]. In another experiment, male mice maintained on two types of diet, HF and 
cafeteria feeding, presented with elevated serum levels of IL-6 [29].

Th e aim of this study was to verify if the exposure to PEMF infl uenced the release 
of proinfl ammatory cytokines from ADSCs of normal and overweight rats of various 
age and sex. Before harvesting the AT, we measured BT of the study animals.

Material and Methods
Animal care and preparation

Wistar rats were obtained from the  Animal House of the  Faculty of Pharmacy, 
Jagiellonian University Medical College. Following a  5-day quarantine, 64 animals of 
various sex and age were randomized to eight groups, maintained on low- (LF) and 
high-fat (HF) diet. Th e  rats were kept in an experimental room with controlled air 
temperature (20 ± 5ºC) and humidity (55 ± 10%), under a  12-hour light cycle (light 
on from 7:00 AM to 7:00 PM), with unlimited access to water and chow. Every eff ort 
was made to provide animal welfare in line with the principles of the 3Rs.

Dietary treatment

Th e study animals were maintained on two types of diet: regular low-fat diet (LF, 
Labofeed B, Pasze Kcynia) containing 25% protein, 8% fat and 67% carbohydrates, 
and obesity-inducing high-fat diet (HF, DIO, VERSELE-LAGA Opti Life Adult 
Active) with 32% protein, 22% fat and 40% carbohydrates.

Cell culture and PEMF exposure

Adipose-derived stem cells (ADSCs) were isolated using the  method described by 
Saff ord et al. [30]. AT were obtained from both control and obese animals. Th e tissues 
were washed with phosphate-buff ered saline (PBS, Sigma-Aldrich, Germany) containing 
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1%  penicillin/streptomycin solution (Sigma-Aldrich, Germany), homogenized and 
digested with type 1 collagenase (1 mg/mL; Gibco by Life Technologies, USA) at 
37°C for 1 hour. Enzymatic activity of the  samples was neutralized with Dulbecco’s 
modifi ed eagle’s medium (DMEM, Sigma-Aldrich, Germany) containing 10% fetal 
bovine serum (FBS, Gibco by Life Technologies, USA) and 1% penicillin/streptomycin 
solution. Th en, the  ADSCs were fi ltered (fi lters with a  100-μm pore diameter, Fisher 
Scientifi c, USA) and centrifuged at 300 g for 10 min. Th e cell pellets were suspended 
in DMEM supplemented with  10%  FBS (Gibco by Life Technologies, USA) and 
1%  penicillin/streptomycin solution (Sigma -Aldrich, Germany), and left  overnight in 
T75 fl asks (Corning, Sigma-Aldrich, Germany) in a 5% CO2 incubator set at 37°C and 
90% humidity. Aft er one day of culture, non-adherent cells were washed out with PBS 
containing 1% penicillin/streptomycin solution and resuspended in a fresh cell culture 
medium. Adherent cells were cultured until a  90% confl uence was achieved, with 
cell culture medium changed every 72 hours. When the  cells became confl uent, they 
were treated with trypsin-EDTA solution (Gibco by Life Technologies, USA), followed 
by enzymatic neutralization. Th en, the  cells were centrifuged at 300  g for 10  min. 
Isolated ADSCs were counted with a  hemocytometer and then cultured in triplicates 
onto 96-well plates, at the  density of 0.25 × 106 cells/ ml. Aft er a  24-hour incubation, 
the  cells were exposed to PEMF (7 Hz, 30 mT, three exposures, each lasting 4 hours, 
with 24-hour intervals in between.

Euthanasia and tissue harvestings

On the  21st day of the  experiment, animals from all groups were sacrifi ced by 
anesthetic overdose (Pentobarbital, Morbital, Puławy), to harvest adipose tissue 
specimens.

Temperature measurements

BT of rats from all the  study groups was measured twice a week. To minimize stress 
and pain, BT of rat pups was measured with an infrared thermometer (Anima, 
Vivari), whereas the  measurements in adults were taken with a  rectal thermometer 
(Anima, Vivari). 

ELISA tests

Concentrations of cytokines, TNF-α and IL-6, in serum and ADSCs cultures were 
measured using ELISA with commercially available kits purchased from Diaclone 
(SAS, France), strictly following the manufacturer’s instructions. 
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Statistical analysis

All results are presented as arithmetic means ± their standard deviations (SD). 
Intergroup comparisons were carried out with Student t-test, with the  threshold of 
statistical signifi cance set at p<0.05. Statistically signifi cant diff erences were designated 
with asterisks.

Results

Female pups maintained on LF diet had signifi cantly higher BT than female pups 
grown on HF diet. Th e same phenomenon was also observed in the case of male pups. 
BT of rat pups turned out to be lower than in adult rats, but this diff erence might be 
associated with the  fact that the  measurements in these two age groups were  taken 
with diff erent types of thermometer, infrared and rectal one, respectively (Fig. 1 and 2).

*
*
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 ]

Fig. 1. Eff ect of HF/LF diet on body temperature in female and male rat pups. Th e results are presented 
as mean (+SD), the statistical signifi cance of intergroup diff erences verifi ed with Student t-test, * p <0.05.

BT of female adult rats maintained on LF diet was significantly higher than 
the  temperature of adult females kept on HF diet. Also, male adult rats maintained 
on LF diet presented with significantly higher BT than the  males receiving HF 
diet (Fig. 2).

Serum concentrations of cytokines, TNF-α and IL-6, in female pups and adult 
females maintained on HF diet were signifi cantly higher than in their counterparts 
grown on LF diet (Fig. 3). 

Both female and male pups received the  same type of diet (HF or LF) as was 
given to their mothers during pregnancy.



26 Agnieszka Baranowska, Beata Skowron, et al.

* *

ºC
 ]

Fig. 2. Eff ect of HF/LF diet on body temperature in female and male adult rats. Th e results are presented 
as mean (+SD), the statistical signifi cance of intergroup diff erences verifi ed by Student t-test, * p <0.05.
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Fig. 3. Serum concentrations of TNF-α and IL-6 in female pups and adult females maintained on LF and 
HF diet, as determined by ELISA. Th e results are presented as mean (+SD), the statistical signifi cance of 
intergroup diff erences verifi ed by Student t-test, * p <0.05, ** p <0.001.

Serum concentrations of TNF-α and IL-6 in male pups and adult males grown on 
HF diet were signifi cantly higher than in respective groups of male rats maintained 
on LF diet (Fig. 4). 

While the  exposure to PEMF contributed to a  significant decrease in the 
release of TNF-α from ADSCs obtained from female pups grown up on LF diet, 
the  amount of TNF-α synthesized by PEMF-exposed ADSCs from female pups 
maintained on HF diet was significantly higher than in non-exposed ADSCs 
from the  same group of animals. Conversely, the  exposure to PEFM resulted in 
a  signifi cant increase in the  amount of IL-6 secreted by ADSCs from female pups 
maintained on LF diet, but PEMF-treated ADSCs from female pups grown on HF 
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diet produced significantly lesser amounts of this cytokine than the  non-treated 
cells (Fig. 5). 

PEMF-exposed ADSCs from adult females grown on either LF or HF diet produced 
signifi cantly larger amounts of TNF-α than respective non-exposed ADSCs cultures. 
While the exposure to PEMF contributed to a  signifi cant decrease in the amount of 
IL-6 synthesized by ADSCs from adult females maintained on LF diet, no signifi cant 
differences were found in the  concentrations of this cytokine in PEMF-treated 
and non-treated ADSCs cultures from females grown on HF diet (Fig. 6).
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Fig. 4. Serum concentrations of TNF-α and IL-6 in male pups and adult males maintained on LF and 
HF diet, as determined by ELISA. Th e results are presented as mean (+SD), the statistical signifi cance of 
intergroup diff erences verifi ed by Student t-test, * p <0.05, ** p <0.001.
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Fig. 5. Concentrations of TNF-α and IL-6 in supernatants from adipose-derived stem cell (ADSCs) 
cultures from female pups maintained on LF and HF diet, as determined by ELISA. Th e  results for 
control cultures and cultures treated with the  pulsed electromagnetic fi eld (PEMF) are expressed as 
mean (+SD), statistical signifi cance of intergroup diff erences verifi ed by Student t-test, * p <0.05.

ADSCs 
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Fig. 6. Concentrations of TNF-α and IL-6 in supernatants from adipose-derived stem cell 
(ADSCs) cultures from adult females maintained on LF and HF diet, as determined by ELISA. 
Th e  results for control cultures and cultures treated with the  pulsed electromagnetic fi eld (PEMF) 
are expressed as mean (+SD), statistical signifi cance of intergroup diff erences verifi ed by Student 
t-test, * p <0.05.

Irrespective of the  diet type, exposure to PEMF contributed to a  significant 
increase in the concentration of TNF-α in the supernatants of ADSCs cultures from 
male pups. While IL-6 concentration in PEMF-exposed ADSCs cultures from male 
pups maintained on LF diet was signifi cantly lower than in non-exposed cells, an 
opposite eff ect, i.e. post-exposure increase in IL-6 level was observed in ADSCs from 
male pups fed with HF diet (Fig. 7).
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Fig. 7. Concentrations of TNF-α and IL-6 in supernatants from adipose-derived stem cell (ADSCs) 
cultures from male pups maintained on LF and HF diet, as determined by ELISA. Th e results for control 
cultures and cultures treated with the pulsed electromagnetic fi eld (PEMF) are expressed as mean (+SD), 
statistical signifi cance of intergroup diff erences verifi ed by Student t-test, * p <0.05.
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Following the exposure to PEMF, ADSCs from adult male rats maintained on HF 
diet, but not from animals kept on LF diet, produced signifi cantly more TNF-α than 
non-treated cells. Irrespective of the diet type, the exposure to PEMF contributed to 
a signifi cant increase in the production of IL-6 by ADSCs (Fig. 8).

Fig. 8. Concentrations of TNF-α and IL-6 in supernatants from adipose-derived stem cell (ADSCs) 
cultures from adult males maintained on LF and HF diet, as determined by ELISA. Th e results for control 
cultures and cultures treated with the pulsed electromagnetic fi eld (PEMF) are expressed as mean (+SD), 
statistical signifi cance of intergroup diff erences verifi ed by Student t-test, * p <0.05.

Discussion

Non-shivering thermogenesis in mammals is associated with the  activity of BAT, 
and is responsible for the  maintenance of BT, especially during infl ammatory 
processes [31]. BAT diff ers morphologically and functionally from WAT as it contains 
small intracellular lipid droplets, a  greater number of mitochondria, synthesizes 
UCP-1 and shows enhanced metabolic activity [32]. Some published evidence suggests 
that the  activity of BAT may be limited in obese humans [33]. In our present study, 
male and female rat pups grown on a  standard LF diet had similar BT, 35.5ºC ± 0.1 
and 35.6ºC ± 0.9, respectively [34]. Our fi ndings are consistent with the  results 
published by Tsushima et al. who demonstrated that HF diet had an eff ect on BT in 
adult male rats, which was lower than in the controls [35]. Also in another study, in 
which BT was measured twice a day, male adult rats fed with HF diet presented with 
lower body temperatures than the  controls [36]. We observed that male and female 
rats maintained on an HF diet, either pups or adults, had increased piloerection (not 
shown) which may indicate disturbances at the BAT function level. 

The results of our study are consistent with the  observations made by De 
Almeida et al. according to whom male offspring from mothers grown on HF 
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diet during lactation period (with light and dark cycle kept) had lower BT then 
the controls maintained on LF diet [37]. However, another study conducted in mice 
produced contradictory fi ndings, since 4-week-old animals that were grown on HF 
diet presented with higher BT than their counterparts maintained on LF diet; this 
eff ect was observed during the  day and was followed by a  decrease in early-night 
thermogenesis [38]. Finally, some authors did not find significant diet-related 
diff erences in rectal temperatures of adult male rats [39].

Maternal HF diet is known to promote the signs of early obesity, excessive prolif-
eration of white adipocytes and enhanced accumulation of BAT in the off spring [40]. 
Male and female off spring from dams fed with HF diet during mating, gestation 
and lactation were overweight and showed greater body adiposity. However, some 
sex-specifi c diff erences were observed in the off spring’s response to HF diet, as only 
males presented with hyperleptinemia and had higher energy expenditures  [41]. 
Maternal HF diet was also shown to contribute to elevated plasma levels of TNF-α 
and IL-β in the  off spring [42]. Our fi ndings are consistent with the  results of an in 
vitro study conducted by Tinkow et al., in which the levels of IL-6 in adult female rats 
maintained on HF diet were signifi cantly higher than in animals grown on a standard 
LF diet. Also, serum concentrations of IL-6 in male adult mice and rats grown on 
HF diet were shown to be higher than in control groups fed with LF diet [43, 44]. 
Likewise in our study, Díaz-Rúa et al. demonstrated that HF diet had an eff ect on 
serum TNF-α level in adult male rats [45]. Another study, conducted in overweight 
rodents, showed that elevated concentration of TNF-α was a  marker of underlying 
infl ammation [46]. An increase in serum TNF-α level was also previously observed in 
young male mice grown on HF diet [47]. Elevated levels of TNF-α and IL-6 were also 
found in visceral adipose tissue (VAT) harvested from male off spring grown on HF 
diet. Interestingly, however, the  level of TNF-α in subcutaneous adipose tissue (SAT) 
from female pups maintained on the HF diet was similar as in the controls [48].

PEMF treatment is a non-invasive method to deliver electric and magnetic fi elds 
to tissues especially those affected by various pathological processes. Published 
evidence from clinical studies in humans and animal experiments suggests that PEMF 
treatment may produce benefi cial eff ects in bone and wound healing, infl ammation, 
treatment of post-operative pain and edema [49]. In vitro studies demonstrated that 
PEMF exerts an anti-infl ammatory eff ect in cell culture models [50, 51].

Following the  exposure to PEMF, the  cells of the  nucleus pulposus from adult 
male rats released less IL-1β and TNF-α to cell culture medium [52]. In another 
study, low-frequency PEMF treatment (2.5 ± 0.3 mT, 75 Hz, 1.3 ms pulse duration) 
maintained at low levels the production of proinfl ammatory cytokines (IL-1β, TNF-α 
and IL-6) in mononuclear cells obtained from adult male rats [53]. To the best of our 
knowledge, none of the previous studies except those conducted by our group [9, 54], 
have analyzed the  eff ect of PEMF on ADSCs in an animal model for obesity. Our 
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findings suggest that the  exposure to PEMF may alter the  profile of biomarkers 
synthesized in vitro by undiff erentiated ADSCs and that this eff ect may depend on 
animal age, sex and the type of diet.
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