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 Abstract—In a rectilinear route, a moving sink is restricted to 

travel either horizontally or vertically along the connecting edges. 

We present a new algorithm that finds the shortest round trip 

rectilinear route covering the specified nodes in a grid based 

Wireless Sensor Network.  The proposed algorithm determines the 

shortest round trip travelling salesman path in a two-dimensional 

grid graph. A special additional feature of the new path discovery 

technique is that it selects that path which has the least number of 

corners (bends) when more than one equal length shortest round 

trip paths are available. This feature makes the path more suitable 

for moving objects like Robots, drones and other types of vehicles 

which carry the moving sink. In the prosed scheme, the grid points 

are the vertices of the graph and the lines joining the grid points 

are the edges of the graph. The optimal edge set that forms the 

target path is determined using the binary integer programming. 

 

 Keywords—Minimum bend Shortest Paths, Travelling 

salesman problem, Binary integer programming, Edge orientation 

index, Vertex Bend Index, Vertex-Edge Incident Matrix 

I. INTRODUCTION 

 TRADITIONAL Wireless Sensor Network uses static sensor 

nodes and a static sink that collects data from the sensors 

over multi-hop transmission. But, when the sensors are sparsely 

distributed in a large geographic area, the network may not be 

fully connected because of the limited communication range of 

the sensor nodes. Then the sensors far away from the static sink 

may not be able to send their data to the sink. In such a scenario, 

a mobile sink is used to collect data from the sensors [1-5] by 

physically moving around the WSN. Here, it is assumed that the 

geographical region occupied by the sensors is suitable for the 

physical travel of the mobile sink and it can physically approach 

the area formed by the communication range of the individual 

sensors. In general the mobility and the scheduling of a mobile 

sink are deterministically controlled. The mobile sink provides 

a higher degree of flexibility for the efficient functioning of the 

WSN.   

A. Moving Sink Closed Path 

In general, the Mobile Sink (MS) starts from a home station, say, 

Base Station (BS), travels around the WSN visiting the sensors 

nodes, collects data and returns back to the home station. This 
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forms a round trip tour. This process is repeated periodically 

depending on the nature of the application. The travel of the MS 

that visits different sensor nodes is similar to that of a travelling 

Salesman visiting the specified cities. Therefore the round trip 

path of the MS should be the shortest one that covers all the 

specified sensors.  

Thus the determination of the Moving Sink Closed Path (MSCP) 

is same as solving the Travelling Salesman Problem (TSP). The 

TSP applied to the MS is called the Moving Sink Problem 

(MSP). 

B. Rectilinear Route 

In this paper, we consider a grid based WSN where the sensor 

nodes are placed at selected grid points. The main constraint for 

the MS is that it has to travel along the horizontal and vertical 

grid lines only and thus the MS path is a rectilinear route.  More 

detailed descriptions are given later. 

C. Minimum bend paths 

Bends or corners are unavoidable along the travel path due to 

the topological constraints. The presence of bends or corners 

along the path reduces the velocity of MS and increases the 

energy consumed by the MS. Therefore, the number of bends 

has to be minimized for efficient travel of the MS. 

D. Objective and methodology 

The objective is to solve the MSP with minimum number of 

bends along the rectilinear path as the additional constraint. We 

use the Binary Integer Programming to solve this bi-objective 

optimization problem.  

E. Organization of the paper 

Section II gives a brief discussion about the related work by 

other authors. Section III describes the system model and the 

deployment of sensor nodes on the grid graph. Section IV 

contains the details about the MS path selection problem. 

Section V describes the associated constraints and their 

algebraic formats. Section VI formulates the binary integer 

program to solve the MS optimal path problem. Section VII 

gives the simulation results. Section VIII gives comparison with 

other methods. Section IX contains the conclusion. 

II. RELATED WORK 

V. G. Deineko , B. Klinz , A. Tiskin , G. J. Woeginger [6] 

have solved the Travelling salesman problems by dynamic 

programming. It is a modified and improved version of 

exhaustive search. It’s time complexity is approximately 
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factorial. Here, the computational speed is increased using 

dynamic programming.  

A. Maheshwari, J. R. Sack, and H. N. Djidjev [7] have 

provided a comprehensive survey on minimum bend paths. They 

have described several sequential and parallel methods for 

determining the shortest minimum bend paths. 

C. D. Yang, O. Z. Lee and C. K. Wong [8] have used path-

preserving graphs, obtained the shortest path in the staircase 

form and then they manipulated it by pushing and dragging to 

reduce the bends along that path. The method presented in [8] is 

a multi-stage process and relatively a slow method than our 

proposed method. In our method successive push and drag 

manipulations are absent. 

K. L. Clarkson, S. Kapoor, and P. M. Vaidya, [9] create an 

extended graph called visibility graph and use it to determine the 

shortest path. But this method does not take care of minimum 

bend criterion. 

S. Basagni, A. Carosi, C. Petrioli [10] have used Mixed 

Integer Linear Programming (MILP) to solve for the shortest 

path tour for the mobile sink in a WSN with conservation of 

energy as the main goal. Here, the minimization of the number 

of bends along the path is not discussed. 

D. P. Wagner, R. S. Drysdale, C. Stein [11] have described 

determination of the minimum bend path using successive 

search method for getting 0-bend path, 1-bend path, 2-bends 

path and so on. The method is similar to the exhaustive search 

method and the time taken to get the final result is relatively very 

high.  

M. Diaby [12] has solved the TSP in polynomial time. 

Basically he uses network flow linear model to solve TSP. He 

has also included a non-linear programming method to solve the 

TSP. 

G. Pataki [13] has used linear integer programming to solve 

the TSP. He has applied branch and bound technique to arrive at 

the solution. 

 Several works have been carried out on different versions of 

TSP and minimum bend paths. But the combination of these two 

has not been discussed by any author. Therefore, the minimum 

bend shortest rectilinear path discovery method for the moving 

sink is an innovative one in WSN.  

III. SYSTEM MODEL 

In a WSN, the sensor nodes can be deployed randomly or 

deterministically. In random deployment, some areas may get 

over populated and other regions may receive less number of 

sensor nodes causing unequal coverage. Also, the location of 

sensor nodes is not under the control of the network designer. 

Therefore, in the proposed scheme, we adopt grid based 

deployment where the locations of the sensors can be fixed 

accurately and the network topology can be designed 

appropriately to suit the present application. Grid based WSN’s 

are efficiently replicable and scalable.    

In our scheme, the WSN layout is modeled as a uniform grid 

graph as shown in Fig. 1. The grid cells are squares of the same 

size throughout. Horizontal and vertical edges are displayed in 

green and magenta respectively. The sensor nodes are sparsely 

deployed at specified grid points and shown in blue. All grid 

points need not be occupied by the sensor nodes. The 

unoccupied grid points can be used for future expansion. 

The size of the layout is taken as W×H where W is the width 

and H is the height expressed in terms of the grid points. Thus 

the total number of grid points is (W×H). A planar undirected 

graph G(V, E) is formed by this grid. The grid points are the 

vertices of the graph and the grid lines are the edges of the graph. 

The total number of grid points (vertices) in the grid graph 

represented by N is N= W*H = |V|. From the grid graph layout, 

we can see that the number of vertical edges between adjacent 

nodes is (H−1)*W and similarly, the number of horizontal edges 

is (W−1)*H. Thus the total number of edges between the 

adjacent vertices in the graph represented by M is M = 

(W−1)*H+(H−1)*W = |E|. The edge set of the graph is denoted 

as, 

             E = [e(1), e(2),…, e(j), …, e(M)]                                     

For convenient representation and usage, the jth edge e(j) is given 

the identification number j itself. The enumerating order could 

be any suitable one. But once numbered, the edges should stick 

to them consistently throughout. Thus E is given by, 

          E = [1, 2,…, j,  …, M]                                (1) 

A. Vertex  numbering 

For the purpose of description, the N vertices of the graph 

are numbered from 1 to N, column-wise. The bottom left corner 

is the starting point and the top right corner is the ending point 

as shown in Fig. 1. The vertices of the graph are identified by 

these numbers. The vertex set of the graph is V ={1: N}. For 

convenience, the ith vertex is designated as v(i). Here, the id of 

v(i) is i itself.  

A special property of this numbering scheme is that, for a 

vertical edge, the ids of its end points differ exactly by 1, 

whereas the ids of end points of any horizontal edge differ 

exactly by H. Let an edge e(j)  be represented by its two end 

points ep(1) and ep(2)  as. 

e(j) = {ep(1)→ep(2)}                                  (2) 

Then we can determine the orientation of that edge by examining 

the difference | ep(1)−ep(2)| as, 

 𝑒(𝑗) is {
     vertical   if  |𝑒𝑝(1) − 𝑒𝑝(2)| = 1

 horizontal   if  |𝑒𝑝(1) − 𝑒𝑝(2)| = 𝐻
              (3) 

This property will be very useful as explained later. For 

example, in Fig.1, for the edge (3→11), the difference is (11−3) 

= 8 = H. Therefore (3→11) is horizontal. On the other hand 

consider the edge (68→67). The difference is 1 and therefore, 

the edge is vertical.  

B. Vertex connectivity  

 Here, we use 4-connectivity for all the vertices. That means 

a non-border vertex is connected to its immediate 4 neighbors, 

one along north, next one along east, another one along south 

and last one along west. Therefore, a non-border vertex has 4 

incident edges. The degree of a vertex is the number edges 

incident on that vertex. Hence, the degree of a non-border vertex 

is four. A boundary-corner vertex has two neighbors whereas a 

non-corner border vertex has three neighbors. For example, in 

Fig. 1, vertex 38 is connected 39 (north), 46 (east), 37(south) and 

29 (west). But no direct connectivity exists between vertex 38 

and 40 because, they are non-adjacent. The lengths of all the 

edges connecting the adjacent vertices are normalized and set to 

1. Thus our graph is an orthogonal graph. The length between 
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the non-adjacent vertices is set to ∞. The vertex-edge 

connectivity information is represented by the vertex-edge 

incidence matrix. This matrix can be obtained from the 

adjacency matrix. 

        

C. Vertex-Edge Incidence Matrix 

 The Vertex-Edge (VE) incidence matrix of size NxM gives 

the information about the end point vertices of each edge. Matrix 

VE has N rows that correspond to the vertices of the graph and 

M columns that correspond to the edges of the graph.  The 

element of VE at row i and column j is set as, 

𝑣𝑒(𝑖, 𝑗) =  {
1, if edge 𝑗 is incident on vertex 𝑖     

 0, otherwise                                             
       (4)             

for i =1 to N  and j = 1 to M. 

D. Properties of VE 

1) VE is a binary matrix of size NxM. 

In the grid graph of Fig.1, each edge is incident on exactly two 

specific vertices which are the end points of that edge. 

Therefore, 

2) The number of ones in every column of VE is always 2. 

3) From definition (4), we see that the index locations of 1’s in 

row i represent the edges incident on vertex i.   

4) Row sum,  ∑ 𝑣𝑒(𝑖, 𝑗) 𝑀
𝑗=1    gives the total number of edges 

incident on vertex i. This total number of edges incident 

on vertex i is the degree of vertex i.  Therefore, the degree 

of vertex i for for i = 1 to N is given by, 

Degree(𝑖) = ∑ 𝑣𝑒(𝑖, 𝑗)

𝑀

𝑗=1

                            (5) 

Example 1: A simple graph having 9 vertices and 12 edges is 

shown in Fig. 2. The edge numbers are shown inside the square 

brackets. The VE matrix for this graph is shown in Table I. 

 

From Table I, It can be seen that the edges of vertex v(4) are 

given by the locations of 1’s in row 4. They are [3, 5, 8]. The 

degree of v(4) = degree(4) = sum of row 4 is 3 as can be verified 

in Fig. 2. For vertex v(5), degree(5) = sum of row 5 is 4 which 

can be seen in Fig. 2. In this way, we can calculate the degree of 

every vertex from Table I and it can be verified in Fig. 2. 

TABLE I 

VE  MATRIX FOR EXAMPLE 1 
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 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1 1 0 1 0 0 0 0 0 0 0 0 0 

2 1 1 0 1 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 1 0 0 0 0 0 0 

4 0 0 1 0 1 0 0 1 0 0 0 0 

5 0 0 0 1 1 0 1 0 1 0 0 0 

6 0 0 0 0 0 1 1 0 0 0 1 0 

7 0 0 0 0 0 0 0 1 0 1 0 0 

8 0 0 0 0 0 0 0 0 1 1 0 1 

9 0 0 0 0 0 0 0 0 0 0 1 1 

E. Participating Edges and Participating Degree of a vertex 

 Assume that the MS path is formed. All the edges of a vertex 

may not be included in the MS path. Those edges of vertex v(i) 

that lie on the MS path are referred as the participating edges. If 

a vertex does not lie along the MS path, all the incident edges of 

that vertex will not participate in forming the path and therefore, 

the number of participating edges of that vertex is zero, The set 

formed by the participating edges of v(i) is represented by the 

symbol PE(i). Parameter i refers to the vertex v(i) on which 

these edges incident, Thus, set PE(i) gives the ids of the 

participating edges incident on v(i).  

 The count of participating edges of v(i) is denoted as the 

Participating Degree PD(i) of v(i). Thus PD(i) = |PE(i)|. For 

example, in Fig. 2, the full edge set of v(5) is [4, 5, 7, 9] and the 

full degree of v(5) is 4. Let the MS path pass through v(5) as 

H
 =

 8
 

W = 10 

Fig. 1. WSN as a Grid graph.  Width = W = 10 grid points 

Height = H = 8 grid points 

 

Fig. 2.  Grid graph with 9 vertices and 12 edges 
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shown in red. Then, the participating edge set of v(5) is, PE(5) 

=[7, 9]  and  the participating degree is, PD(5) = 2. 

     On the other hand, non-participating edges of v(5) are [4, 5]. 

In general, for a given vertex v(i), the PD(i) is less than or equal 

to its full degree.  

F. Admission Control Variable for edjes 

      In solving the MSP problem, the admissibility of edge j as a 

participating edge is decided by the binary admission control 

variable x(j) associated with edge j, for j = 1 to M. The 

admissibility condition is given by, 

edge 𝑗 is {
    admissible   if  𝑥(𝑗) = 1

 blocked  if  𝑥(𝑗) = 0   
              (6) 

Thus x(j) is the binary decision variable associated with edge j. 

The sequence of all x(i)’s forms the Admission Control Vector 

X as, 

                      X = [x(1), x(2),…,x(j),…,x(M)]                  (7)    

1)   Participating Degree Calculation using the VE matrix 

 From (4), we know that ve(i, j) = 1 gives the incident edge j 

on vertex i. To indicate its participation in the MS path 

formation, we use the product ve(i, j)*x(j). Now from (4) and (6) 

we see that, both ve(i, j) and x(j) have to be 1 for e(j) to be a 

member of the MS path. Then the corresponding Participating 

Incident Edge Count (PIEC) can be expressed as, 

𝑃𝐼𝐸𝐶(𝑖, 𝑗) =  {
1  if 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 1      
 0, otherwise                 

               (8) 

In (8), PIEC(i, j) = 1 means, e(j) is incident at v(i) and also 

participating in the MSP. Otherwise e(j) is ignored. Since, 

𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) is a binary variable, Equation (8) can be rewritten 

as, 

                      PIEC(i, j) = 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗)                     (9) 

 

 Since, the participating degree PD(i) of v(i) is the sum of 

PIEC(i, j)’s from all j’s, PD(i) can be expressed as, 

𝑃𝐷(𝑖) = ∑ 𝑃𝐼𝐸𝐶(𝑖, 𝑗)

𝑀

𝑗=1

                          (10) 

From (10) and (9), 

 

𝑃𝐷(𝑖) = ∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗)

𝑀

𝑗=1

                  (11) 

The PD(i) given by (11) is used to specify the constraints on the 

participating degree of v(i). 

IV. MOVING SINK PROBLEM 

The purpose of the MS is to exchange data with sensors by 

physically visiting the location of the nodes. The following are 

the constraints imposed on the MS. 

A. constraints 

1) The MS should start the present tour at the starting node 

which may be the access point or the BS of the WSN. 

2) It should visit every sensor node vertex exactly once in 

the present tour and should return to the starting node 

at the end of the present tour.   

3) The intermediate non-sensor vertices should not repeat 

along the path travelled by MS.  

4) The total travel distance (length) should be minimum. 

Constraints 1 to 4 above are the standard requirements similar to 

that of the Travelling Salesman Problem. A repeated node 

(except the starting node) along the path creates sub-cycles and 

should be avoided.  Additional constraints are imposed in our 

scheme to provide efficient movement of the MS as follows. 

5) It should travel only along the grid lines of the graph. 

This constraint forces the MS tour path to be a 

rectangular polygon. (Here, the assumption is that 

proper physical paths are available for the MS to move 

along the grid lines).  

      The MS Closed Path along the grid lines is 

abbreviated as MSCP. 

6) The number of bends along the path should be 

minimum. In the proposed grid graph, the bends are at 

900 and the MS has to spend additional energy and time 

to negotiate the bends. Travel with Minimum bends 

saves the energy and time for the MS. 

The closed path travelled which satisfies the above constraints 

is referred as the Minimum Bend Shortest Closed Path 

(MBSCP). Determination of MBSCP satisfying these 

constraints is termed as the Moving Sink Problem (MSP).   

B. Objective 

 The objective is to solve the MSP by determining MBSCP 

for the given graph. That is to find out the set of edges to be 

traversed by the MS to generate MBSCP.  

 

C. Approach towards the Solution  

 The method adopted by us to solve the MSP is similar to 

solving TSP [12] in the sense that the proposed method also uses 

the Binary Integer Programming [13] as adopted in solving the 

standard TSP. But our main contribution is to convert the 

minimum bend constraint into a linear one and then adopt the 

binary integer programming technique.    

V. FORMULATION OF CONSTRAINTS 

 We express the constraints of section IV in a proper algebraic 

form suitable for the Binary Integer Programming solver. To 

achieve this, we consider the various attributes of the MBSCP. 

 In the grid graph, MSCP is represented as a set of connected 

vertices forming the closed path It can also be represented by a 

set of participating edges that forms the closed path connecting 

all the sensor nodes. A typical MSCP on a grid graph would look 

as shown in Fig. 3, where MSCP is shown in red and the sensor 

nodes in blue. 

 The set of vertices that belong to MSCP is represented by the 

set MSCP_V which is a subset of V. Similarly the set of edges 

which make up the MSCP is represented by the set MSCP_E 

which is a subset of E. Thus, MSCP_V is the vertex set and 

MSCP_E is the edge set of MSCP. 
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A. Sensor Node Vertex Set 

 Let K be the number of sensor nodes deployed in the given 

grid based WSN. These sensor nodes are located at K grid points 

(vertices) of the graph. Let the vertex set occupied by the sensor 

nodes be represented as, 

𝑆 = [𝑠1, 𝑠2, … , 𝑠𝑢 , … 𝑠𝐾  ]                          (12) 

Thus su ∈ S, where S is a subset of V. In the example of Fig. 3, 

the sensor nodes are marked in blue and S = [1, 8, 11, 22, 28] 

and K = 5. These vertices are the locations of the sensor nodes. 

Remaining vertices are non-sensor vertices. Since V is the entire 

set of vertices of the graph, the non-sensor vertices form the 

subset {V−S}. Thus, we have, 

                  S = Sensor node vertex set  

         {V−S} = Non-sensor node vertex set  

B. Participating Degree of vertices belonging to the vertex set 

S 

 The MSCP has to compulsorily pass through all the vertices 

in S. Consider a segment of MSCP passing through su which 

belongs to S.  For example take the segment [17→11→10] from 

Fig. 3, where v(11) belongs to S. The path MSCP has to visit su 

exactly once. That is, the path should enter the vertex su only 

once and leave also only once. Thus the Participating Degree 

PD(su) of su (in the example case, v(11)) has to be 2. This rule 

holds true for all the sensor node vertices of S. This requirement 

can be expressed as, 

             PD(su) = 2     ∀ 𝑠𝑢  ∈ 𝑺                                  (13) 

This means, 

                   PD(i) = 2    ∀ i ∈ 𝑺                                   (14) 

From (14) and (11) 

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 

𝑀

𝑗=1

    for  𝑖 ∈ 𝑺                           (15) 

Subset S is given and fixed. The basic constraint is that the 

MSCP to be determined must pass through all the vertices of S 

exactly once. This constraint, represented by (15), is basically a 

constraint on x(j)’s which are the decision variables.  

C.  Participating Degrees of vertices of subset {V−S})    

 Consider a vertex v(i) ∈ {V−S} which is same as i ∉ S. (In 

the example of Fig. 3, vertices belonging to {V−S} are marked 

in green).  Vertex v(i) may or may not lie on the MSCP. (For 

example, in Fig. 3, v(2) lies on the MSCP whereas v(13) does 

not, even though both the vertices belong to {V−S}). Let us 

consider both the cases. 

Case 1) Vertex v(i) lies on the MSCP, that is i ∈ MSCP_V. 

In this case, MSCP passes through v(i) exactly once. Then, as 

explained earlier in the case of subset S, the PD(i) of v(i) is 2. 

That is, 

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 

𝑀

𝑗=1

      ∀ 𝑖 ∈ 𝑴𝑺𝑪𝑷_𝑽              (16) 

Case 2) Vertex v(i) does not lie on MSCP. 

In this case, MSCP does not pass through the v(i). Since the path 

neither enters nor leaves v(i), the Participating Degree PD(i) is 

0. This constraint is expressed as, 

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 0 

𝑚

𝑗=1

      ∀ 𝑖 ∉ 𝑴𝑺𝑪𝑷_𝑽            (17) 

D.  Admission Control Variable for vertices. 

For each vertex v(i), let us introduce the binary decision variable 

y(i) such that, 

    y(𝑖) = {
1   𝑖𝑓 𝑣𝑒𝑟𝑡𝑥 𝑖 ∈  𝑴𝑺𝑪𝑷_𝑽   
0  𝑖𝑓𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 ∉  𝑴𝑺𝑪𝑷_𝑽   

  ∀𝑖 ∈ 𝑽       (18)   

 From (16), (17) and (18), we see that Equation (16) holds true 

when y(i) = 1 and Equation (17) holds when y(i) = 0. Therefore, 

in the light of (18), Equations (16) and (17) can be represented 

by a single Equation as, 

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 ∗ 𝑦(𝑖) 

𝑚

𝑗=1

      ∀𝑖 ∈ 𝑽           (19) 

From (18), we see that the value of y(i) decides whether v(i) is 

to be included in MSCP_V or not. Therefore y(i)’s form another 

set of decision variables to be determined by the optimization 

solver. The y(i)’s form the  second decision vector Y, {the first 

decision vector being  X  given by (7)}, as, 

Y = [y(1), y(2),…,y(i),…,y(N)]                   (20)    

From (18), we see that the ones of Y represent MSCP_V. The 

optimal solution should satisfy the constraint (15) and (19).  

E.  Edge subset formats 

 A subset of edges in a graph can be represented in two 

formats. The conventional format and index format (bit mask 

format). In conventional format, the edge id’s (edge numbers 

when edges are numbered) are used as the members of the 

subset. For example, consider the MSCP shown in Fig. 2. The 

MSCP is the path represented by MSCP_V=[1, 2, 3, 4, 5, 6, 7, 

8] and is shown in red.  

Fig. 3. A typical closed path with 16 participating nodes 
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The edge subset of MSCP is represented by MSCP_E. The 

conventional format is represented as MSCP_EC. In Fig. 2, 

MSCP_EC is, 

          MSCP_EC = [1, 2, 3, 6, 7, 8, 9, 10] 

Here, the edges are arranged in the ascending order. The 

members of MSCP_EC are the corresponding edge numbers. 

1)  Index format of edge subset representation 

The index format representation of MSCP_E is designated as 

MSCP_EI (symbol I is appended to indicate the index format). 

MSCP_EI is a binary vector of length M. The jth element of 

MSCP_EI is set to 1 if edge j is a member of MSCP_EI, else it 

is set to 0. That is the jth element of MSCP_EI, represented by 

mscp_ei(j)  is set as, 

𝑚𝑠𝑐𝑝_𝑒𝑖(𝑗) = {
1   𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 ∈  𝐌𝐒𝐂𝐏_𝐄𝐂   
0  𝑖𝑓 𝑒𝑑𝑔𝑒 𝑗 ∉  𝐌𝐒𝐂𝐏_𝐄𝐂   

  ∀𝑗 ∈ 𝑬     (21) 

           

For example, in Fig. 2,  

MSCP_EI = [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0] 

The number of 1’s in MSCP_EI is same as the number of edges 

in MSCP_EC. Therefore, the number of edges in MSCP_EC 

represented by L, is given by, 

L= sum(MSCP_EI)                               (22) 

For example, In Fig.2, 

L = sum(MSCP_EI) = sum([1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0]) = 8 

In Matlab notation, MSCP_EC can be obtained from MSCP_EI 

as,  

       MSCP_EC = find(MSCP_EI)                    (23) 

In the index format representation, the main (full) set is the 

binary vector of all 1’s. 

F.   Length of MSCP 

The edge set of MSCP, represented by MSCP_EC, is a 

subset of E. In our optimization method, the edges of MSCP_EC 

are selected based on the calculated value of the admission 

control variable x(j)’s as follows. 

𝑗 ∈ 𝑴𝑺𝑪𝑷_𝑬𝑪   𝑖𝑓 𝑥(𝑗) = 1

𝑗 ∉ 𝑴𝑺𝑪𝑷_𝑬𝑪  𝑖𝑓 𝑥(𝑗) = 0 
}                     (24) 

Thus x(j) acts as the admission criterion to include edge j as a 

member of MSCP_EC. From (21) and (24) we see that 

mscp_ei(j) and x(j) are same for ∀𝑗 ∈ 𝑬. Therefore   

                                MSCP_EI = X                                    (25) 

Therefore, from (25) and (22), the length of MSCP in terms of 

the number of edges is, 

𝐿 = 𝑠𝑢𝑚(𝑋) = ∑ 𝑥(𝑗)                                      

𝑀

𝑗=1

 

Since L is a function of the decision variable X, we use L(X) 

instead of just L. Therefore the above equation is rewritten as, 

𝐿(𝑋) = sum(𝐗) = ∑ 𝑥(𝑗)                              (26)

𝑀

𝑗=1

 

In solving MSP, the first objective function is L(X). 

G.  Minimum Bend Paths 

Consider two different paths starting from vertex 1 and ending 

with vertex 16 as shown in Fig. 4. Path P1 and P2 are made up 

of vertices as, 

 

P1 = [1, 2, 6, 7, 11, 12, 16]  

P2 = [1, 5, 9, 13, 14, 15, 16] 

Both P1 and P2 have the same length 6. But the number of bends 

in P1 and P2 are different. P1 has 5 bends while P2 has only one 

bend. Now, consider the positions of vertical and horizontal 

edges in P1 and P2. Horizontal edges in green are represented 

by ‘g’ and vertical edges in magenta are represented by ‘m’. 

Then, in terms of horizontal and vertical edges, 

P1 = [m, g, m, g, m, g] 

P2 = [g, g, g, m, m, m] 

Now, consider any two adjacent edges along the path. A bend 

occurs if the two adjacent edges have different orientations (one 

horizontal and the other vertical) and there is no bend if the two 

adjacent edges have the same orientation (both horizontal or 

both vertical). To distinguish the horizontal and vertical edges 

we introduce the Edge Orientation Index which is a numerical 

representation of the edge orientations. The numerical 

representation provides an easy way to calculate the number of 

bends along the MSCP.  

H.  Edge Orientation Index  

Edge Orientation Index (eoi) of edge j is defined as 

𝑒𝑜𝑖(𝑗) =  {
+1   if edge 𝑗 is vertical          
−1   if edge 𝑗 is horizontal   

  ∀ 𝑗 ∈ 𝑬           (27) 

That is, the orientation of vertical edges is represented by +1 

whereas that of the horizontal edges by −1. For example, the 

eoi’s are marked along the edges of Fig. 4.  

I. Edge Orientation Index Vector for the entire grid graph 

The orientation of edge e(j) is given by (3) and is known for 

the edges in the given grid graph. Then from (27) we can 

Fig.  4. Two different paths having the same length, 

but different number of bends 
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calculate the eoi’s for all the edges of the graph. The collection 

of eoi’s form the Edge Orientation Index Vector (EOIV) as, 

 EOIV = [eoi(1), eoi(2),…,eoi(j), …, eoi(M)]              (28) 

The size of EOIV is 1xM and it is a vector of +1’s and −1’s. For 

example, the EOIV vector for the graph of Fig. 2, is given in 

Table II.The first row gives the edge number  

TABLE II 

EOIV FOR THE GRID GRAPH OF FIG. 2. 

E 1 2 3 4 5 6 7 8 9 10 11 12 

EOIV +1 +1 −1 −1 +1 −1 +1 −1 −1 −1 +1 +1 

 

J.  Formation of bends along a closed path  

 Consider a vertex v(i) lying along MSCP. Now the 

participating edges are those edges of v(i) which lie on MSCP. 

Here the participating degree PD(i) = 2. The two participating 

edges incident on the vertex can form four possible 

combinations of bends and two bend-free combinations as 

shown in Fig. 5.  

 

From Fig. 5, we see that for the two participating incident edges 

forming a bend (corner), the eoi’s are [−1, +1] or [+1, −1]. But, 

for a bend-free vertex (junction), the eoi’s are [−1, −1] or 

[+1,+1]. An important conclusion from these observations is, a 

vertex with two incident edges, the sum of eoi’s is 0 if the vertex 

hosts a bend. Else the sum of eoi’s is ±2. This fact is used to 

detect the presence of a bend at a vertex. The absolute value of 

the sum of the eoi’s of the two incident edges decides the 

existence of a bend at that vertex.  

 Consider vertex v(i) which is a member of MSCP_V. Let the 

two relevant participating incident edges forming the set be 

represented as PE(i) = [e(i,1) and e(i,2)]. Edge Orientation 

Indices of these two edges are represented as eoi{e(i, 1)}and 

eoi{e(i, 2)}. Then, the absolute value, abs(eoi{(e(i, 1)} + eoi{e(i, 

2)}) decides the presence of a bend at that vertex. This deciding 

value is called the Vertex Bend Index (vbi) of that vertex. 

Then the vbi(i) of v(i) is defined as, 

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑒𝑜𝑖{𝑒(𝑖, 1)} + 𝑒𝑜𝑖{𝑒(𝑖, 2)})                     (29) 

Then, a bend at v(i) depends on vbi(i) as, 

 Bend at  𝑣(𝑖) does {
 exist   if 𝑣𝑏𝑖(𝑘) =  0          

not exist if 𝑣𝑏𝑖(𝑘) = 2   
  (30) 

Equation (30) means,   

No. of bends at  𝑣(𝑖) =  {
1   if 𝑣𝑏𝑖(𝑘) = 0       

0   if 𝑣𝑏𝑖(𝑘) = 2      
         (31) 

From (31), we can express the number of bends at v(i), 

represented by nbv(i) as, 

𝑛𝑏𝑣(𝑖) =  
2 − 𝑣𝑏𝑖(𝑖)

2
= 0.5 ∗ (2 − 𝑣𝑏𝑖(𝑖))             (32) 

K.   Total number of bends in MSCP 

The MSCP passes through the vertex set MSCP_V. The 

corresponding edge set MSCP_EC is determined according (24) 

and MSCP_ EI is same as the admission control vector X as 

given in (25).  Number of bends, nbv(i), at an individual vertex 

is given by (32). Therefore the total number of bends in MSCP 

is given by the summation of nbv(i)’s for those i’s belonging to 

MSCP_V. That is, the Total Number of Bends (TNB) can be 

expressed as,  

𝑇𝑁𝐵 = ∑ 𝑛𝑏𝑣(𝑖)

𝑖∈𝑴𝑺𝑪𝑷_𝑽

                              (33) 

Here, nbv(i) is the number of bends at vertex v(i) as given by 

(32). Substituting for nbv(i) in (33) from (32), we get, 

𝑇𝑁𝐵 = ∑ 0.5 ∗ (2 − 𝑣𝑏𝑖(𝑖))

𝑖∈𝑀𝑆𝐶𝑃_𝑉

                        

The RHS is simplified to get, 

𝑇𝑁𝐵 = ∑ 1

𝑖∈𝑴𝑺𝑪𝑷_𝑽

 −  0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑖∈𝑴𝑺𝑪𝑷_𝑽

                    

This can be rewritten as, 

𝑇𝑁𝐵 = |𝑴𝑺𝑪𝑷_𝑽|  −  0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑘∈𝑀𝑆𝐶𝑃_𝑉

         (34) 

From (18) and (20), 

|𝑴𝑺𝑪𝑷_𝑽| = sum(𝒀)                                               (35) 

From (34) and (35), 

𝑇𝑁𝐵 = sum(𝒀)  −  0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑘∈𝑀𝑆𝐶𝑃_𝑉

                         (36) 

Since vertices outside MSCP_V have no incident edges, they do 

not contribute to vbi(i). Hence, when i in (36) is extended to all 

edges of the grid, ∑ 𝑣𝑏𝑖(𝑖)𝑖∈𝑀𝑆𝐶𝑃𝑉
 remains same. Therefore 

when the range of i is extended to I ∈ 𝑽 the RHS of (36) remains 

same. Therefore, (36) can be rewritten as, 

𝑇𝑁𝐵 = sum(𝒀)  −  0.5 ∗ ∑ 𝑣𝑏𝑖(𝑖)

𝑁

𝑖=1

                           (37) 

L.   Determination of Vertex Bend Index, vbi(i) 

 From (29), 𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑒𝑜𝑖{𝑒(𝑖, 1)} + 𝑒𝑜𝑖{𝑒(𝑖, 2)}).   To 

determine vbi(i), we should find e(i, 1) and e(i, 2) which are the 

edges incident on v(i) and also lie on the MSCP. The resulting 

participating edge set PE(i) is, 

         PE(i) = [e(i, 1), e(i, 2)]                            (38) 

+1 

+1 

+1 +1 

+1 

+1 

−1 −1 

−1 −1 −1 −1 

Fig. 5.  Formation of bends at a vertex 
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Here [e(i, 1), e(i, 2)] belong to the edge set MSCP_EC and 

also incident on v(i). This condition is represented as, 

         PE(i) ⊆ MSCP_EC                                        (39) 

Now, represent the set relation (39) in the index format as,  

         PEI(i) ⊆ MSCP_EI                                     (40) 

Here, PEI(i) is the index format representation of PE(i).  

For example in Fig. 2,   for vertex v(5), the value of  PE(5) = 
[7, 9]  and PEI(5) = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0].  

From (40) and (25),  

                     PEI(i) ⊆ X                                    (41) 

Full set of the edges of v(i) are given by the 1’s of row i of 

edge-vertex matrix EV. (See property 3 of EV matrix, Section 

III. D). Thus row i represented by EV(i, :) gives the set of all 

edges of vertex v(i). Therefore, PEI(i) is a sub set of EV(i, :). 

This constraint is expressed as,  

 

PEI(i) ⊆ EV(i, :)                                  (42) 

 

Both (41) and (42) are to be satisfied by PEI(i). Therefore, it is 

given by the intersection of the two sets X and EV(i, :) as, 

PEI(i) = X ∩ EV(i, :)                          (43)  

In (43), all the terms are the subsets of E and are in the index 

form. Since X and EV(i :) are in the binary vector format with 

1’s representing the set elements, the intersection X∩ EV(i, :) 
can be represented by the logical AND of them as, 

                                     X ∩ EV(i, :) = X ⋀ EV(i, :)                 (44)            
The logical operation can be converted to arithmetic 
operation as, 

                            X ⋀ EV(i, :) = X .* EV(i, :)                          (45) 
The RHS of (44) is the Matlab notation for the element wise 
product of two vectors. 
From (43), (44)  and (45), 

PEI(i) = X . * EV(i, :)                            (46) 
For the example of Fig. 2, the values X, EV(5, :) and PEI(5) are 

shown in Table III. 
TABLE III. 

VALUES OF X, EV(5,:), PEI(5) AND EOI(5) 

 1 2 3 4 5 6   7 8   9 10 11 12 

X 1 1 1 0 0 1   1 1   1 1 0 0 

EV(5, :) 0 0 0 1 1 0   1 0   1 0 0 0 

PEI(5) 0 0 0 0 0 0   1 0   1 0 0 0 

2)  Determination of eoi’s of e(i, 1) and e(i,2) 

 The Edge Orientation Index Vector, EOIV for the given 

graph is known and is given by (28). EOIV gives the orientation 

of all the edges of the full edge set E. That is, eoi(j) gives the 

orientation of edge e(j) whose index location is j in E for all j’s 

from j = 1 to M. But we have to select only those two eoi’s of 

edges which are specified by PEI(i). The position of these two 

edges e(i, 1), e(i, 2) are given by PEI(i) in the index form.  To 

select the corresponding eoi’s, we use the bit-mask technique as, 

 [ eoi {e(i,1)}.  eoi {e(i, 2)} ]= PEI (i).*EOIV               (47)   

The element wise multiplication selects those eoi’s of EOIV 
for which the index locations e(i, 1) and e(i, 2) are ones in 
PEI(i),. Thus the respective eoi’s are stored in PEI(i).*EOIV.   
Let us designate the LHS of (47) by EOI(i) as, 

EOI(i) =[ eoi {e(i, 1)}.  eoi {e(i, 2)} ]               (48) 

Then, from (47) and (48), 

                  EOI(i) =  PEI(i).*EOIV                                     (49) 

From (46) and (49), 

EOI(i) =  PEI(i).*EOIV  = X.*EV(i, ;).*EOIV           (50) 

Here, EOI(i) is a binary vector of size  1xM. 

        In (50), EOIV and EV(i, :) are known and constants for 
the given grid graph. Vector X is the decision variable to be 
determined by the optimization solver.  Equation (50) 
expresses the Edge Orientation information in terms of X. 
For the example of Fig. 2, for k = 5, 

             X = [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0], 

From Table I, 

EV(5, :) = [0, 0, 0,  1,  1,  0,  1,  0, 1, 0, 0, 0] 

From Table II, 

EOIV = [+1, +1, −1, −1, +1, −1, +1, −1, −1, +1, −1, +1] 

From (50) 

EOI(5) = [1,    1,    1,   0,    0,   1,   1,   1,   1,   1,    0,   0], * 

                [0,    0,    0,   1,    1,   0,   1,   0,   1,   0,    0,   0]. * 

              [+1,  +1,  −1, −1, +1, −1, +1, −1, −1, +1, −1, +1]  

EOI(5) = [ 0,    0,    0,    0,   0,   0, +1,   0,  −1,   0,   0,   0] . 

From (29), we know that, 

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑠𝑢𝑚([𝑒𝑜𝑖{𝑒(𝑖, 1)}, 𝑒𝑜𝑖{𝑒(𝑖, 2)}]))           

From (29) and (47), 

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(sum(𝑷𝑬𝑰(i).∗ 𝑬𝑶𝑰𝑽 ))               (51) 

From (51) and (50) 

𝑣𝑏𝑖(𝑖) = 𝑎𝑏𝑠(𝑠𝑢𝑚(𝐗.∗ 𝐄𝐕(𝑖, : ).∗ 𝐄𝐎𝐈𝐕))         ( 52) 

Substituting for vbi(i) in (37) from (52), we get, 

𝑇𝑁𝐵 = 

sum(𝒀) − 0.5 ∗ ∑ 𝑎𝑏𝑠(𝑠𝑢𝑚(𝑿.∗ 𝑬𝑽(𝑖, : ).∗ 𝑬𝑶𝑰𝑽))

𝑁

𝑖=1

    (53) 

Since TNB is a function of X and Y, it is represented as, 

𝑇𝑁𝐵(𝑿, 𝒀)  = 

sum(𝒀) − 0.5 ∗ ∑ 𝑎𝑏𝑠(𝑠𝑢𝑚(𝑿.∗ 𝑬𝑽(𝑖, : ).∗ 𝑬𝑶𝑰𝑽))    (54)

𝑁

𝑖=1

 

From (54), we see that TNB(X,Y) is a linear function of decision 

variables X and Y. The derivation of formula (54) is the main 
contribution of this work. 
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 In solving for MBSCP, we have to minimize both the total 

length L(X) of the MBSCP given by (26) and also minimum 

bend term TNB(X,Y) as given by (54). Thus MBSCP is a Bi-

objective Minimization. 

VI. FORMULATION OF MBSCP.     

The scalarized objective function for solving the MBSCP 

designated by F(x) is taken as, 

Minimize        F(X) = L(X) + 𝜆*TNB(X,Y)                (55) 

The scalarizing parameter 𝜆 is experimentally determined to 

give the best result.  The optimization problem is, to 

minimize F(X) given by (55) subjected to the constraints 

specified by (15) and (19) which are repeated here. The 

constraints are, 

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 

𝑀

𝑗=1

    for  𝑖 ∈ 𝑺                            

 

∑ 𝑣𝑒(𝑖, 𝑗) ∗ 𝑥(𝑗) = 2 ∗ 𝑦(𝑖) 

𝑚

𝑗=1

      ∀𝑖 ∈ 𝑽                  

over i = 1 to N. Here x(j)’s and y(i)’s are the binary decision 

variables  for edges and vertices respectively. These are 

determined by the Binary Integer Program solver.  The 

process of finding the optimal MBSCP in this way is referred 

as the MBSCP  method. 

A.  Selection of the scalarizing parameter 𝜆 

      Scalariziation converts the bi-objective optimization into 

single weighted objective one. When 𝜆 = 0, only minimum 

length objective is satisfied. TNB will be relatively high. 

When 𝜆 increases, more weightage is given to the minimum 

bends criterion and TNB decreases. However, certain upper 

bound exists for 𝜆 and if it is increased beyond that threshold, 

the MBSCP does not converge. A judicious value for 𝜆 is 

chosen experimentally by solving MBSCP for different values 

of 𝜆. In our examples, we found that 𝜆 = 0.3 minimizes TNB 

with fast convergence. Minimization of F(X)) is carried out 

using the binary integer programming.   

VII. SIMULATION RESULTS 

Example1. 

Here, W = 8 and H= 9. The number of vertices are N = 72 

and the number of edges are M = 127.  The number of sensor 

nodes is 17 and the sensor node vertex set S  is, 

S = [1, 8, 11, 22, 28, 32, 34, 38, 42, 47, 48, 52, 54, 57, 58, 60, 63]; 

Sensor node vertices are marked in blue. 

The optimal MBSCP is determined for 𝜆 = 0, 0.15 and 0.3. 

The Length of the path and TNB are shown in Table IV.   

The corresponding MBSCP paths are shown in red in Fig. 6, 

Fig. 7 and Fig. 8 respectively. From simulation result of Table 

IV, an important observation is that the length of the optimal 

MBSCP remains same as 𝜆 varies. 

TABLE IV. 

VALUES OF LENGTH AND TNB OF THE MSCP 

Scalarizer  𝜆 Length of MBSCP TNB of MBSCP 

0.00 38 22 

0.15 38 20 

0.30 38 16 

 

VIII.  COMPARISON WITH OTHER METHODS 

Clarkson’s method [9] determines the minimum bend shortest 

rectilinear path. Therefore, initially, the MSCP is solved without 

considering the minimum bend criterion. Once the target points 

of the path are obtained, Clarkson’s method is applied to 

determine the minimum bend shortest paths between successive 

points on the path. Another method by Basagni [10] uses MILP 

to get the optimal MSCP. But in [10], minimum bend criterion 

is not discussed. Therefore an additional method is needed to 

minimize the number bends. Compared to Clarkson’s and 

Bagsani’s two stage processes, MBSCP is a single stage 

integrated process and therefore takes less time. 

The comparison of time consumed by Clarkson’s and Bagsani’s 

method with the proposed minimum bend shortest closed path, 

MBSCP is shown in Fig. 9. Here, the number of grid points N, 

is incremented in multiples of 50. In each case,  

the number of sensor nodes K, present is set to 10 % of N.  The 

location of the sensor node grid points are selected randomly 

over the grid graph.  

From Fig. 9, it can be seen that for smaller number of grid points, 

MBSCP is better compared to the other two methods. At higher 

number of nodes, all of them have almost the same execution 

time. 

Fig. 6. Optimal MSP with 𝜆 = 0 and TNB = 22 
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Fig. 9. Execution time versus N, the number of nodes 

IX. CONCLUSION 

 A new technique is presented to determine the minimum 

bend shortest rectilinear path for a moving sink in a Wireless 

Sensor Network. The total number of bends along the path is 

expressed as a linear function of the decision variables. Then the 

linear integer program is used to solve the optimization problem. 

In this method, both the shortest path and the minimum bend 

criterion are met simultaneously. This integrated approach is a 

novel and unique solution to solve the moving sink path problem 

in a wireless sensor network.  
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Fig. 7. Optimal MSP with 𝜆 = 0.15 and TNB = 20 

Fig. 8. Optimal MSP with 𝜆 = 0.3 and TNB = 16 


