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Shannon theory. Myths and reality
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Abstract. The significance of the famous Shannon’s publication “A mathematical theory of communication” is discussed. The author states

that this theory was a breakthrough for the times it was created. The present-day communications is so highly developed, that some old

maxims should be up-dated, particularly the definition of the lower bound of signal reception. The author claims that this bound is no

longer a constant value, ln(2), as the Shannon’s theory states, but depends on many factors such, as the ratio of bandwidth-to-information

transmission rate, the class of a receiver (adaptive, cognitive, MIMO1), the kind of reception system (on-line or off-line), and – of course –

on the characteristics of noise, including entropy. Then, an absolute limit (Eb/N0)abs = 0 is suggested. An example of an advanced adaptive

system approaching this bound is given.
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1. Introduction

The 60-th anniversary of issue of the classical communica-

tions theory is just passing by. The great scientist Claude

Shannon published in 1948 his famous paper [1], which

caused a crucial turn in understanding the phenomena of

digital communications. He disproved the prevailing views

on communication errors and presented the original powerful

entropy theory. His contribution survived decades and is still

a milestone for the current information/communication theory

and crypto.

The greatest mathematician of that period, A.N. Kol-

mogorov, wrote down [2], “In the ages of increasing spe-

cialization in science C. Shannon emerges as an outstanding

talent combining the deep mathematical thinking with wide,

but concrete reasoning of the current technology. He can be

considered both as the great mathematician and the gifted

engineer of the XXth century”2.

But sixty years passed and the world has changed. The

new systems have appeared, in between the DSSS, MIMO and

adaptive (cognitive) ones. They have changed the old maxims.

One, we challenge in this paper, is the lower reception bound

(Eb,/No)min. This bound is not ln(2), as Shannon’s theory

states, but zero. The architecture of the receiver and environ-

ments facilitating this bound are discussed through this paper.

2. Shannon’s theory in a pill

In the Shannon’s ages the scientists and engineers were con-

vinced that there was no possibility to obtain the errorless

communication as far as the channel is noisy and the rate of

transmission is finite. This false view was disproved through

the insertion of a new formula

C = Blog
2
(1 + S/N). (1)

It is derived in the original paper through 79 pages.

The simplified version is given in Appendix A [3]. The for-

mula (1) states that as far as the rate of communication

does not exceed the bound C – which is called the capac-

ity of a channel and is calculated from its bandwidth B
and signal-to-noise power ratio S/N – the rate of errors

can be reduced to zero. For example, S/N = 15 W/W,

B = 1 MHz, hence, errorless communication can reach as

much as C = 4 Mb/s.

At first glance it looks unbelievable, because the white

Gaussian noise - being an essential assumption for (1) – man-

ifests unlimited magnitudes and causes always some errors.

Right, says Shannon, but the formula (1) reserves so high

redundancy that all the errors can be corrected via adequate,

non-constrained coding. And this was a weak point of his the-

ory. Shannon didn’t manage to define the postulated codes and

left an open field for myths. They appear from time to time in

the literature. The classical example is the case of turbo codes.

The sentence: ‘Turbo codes approach Shannon’s bound’ gives

no information as we will show that such a bound is not a

measure of excellence.

3. Myth I: lower bound of signal reception

The Shannon lower bound of reception is obtained through

boundary transition of (1), [App. B]

C0 = lim
B→∞

Blog(1 + S/N) ⇒ (Eb/N0)min = ln(2). (2)

It follows from (2) that a theoretical lower bound of signal

reception (Eb/N0)min = ln(2), where Eb is energy of signal

∗e-mail: j.pawelec@wil.waw.pl
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entity (bit) and N0 – noise power density. The assumptions

are: channel noise – additive white Gaussian (AWGN), band-

width B → ∞, rate of transmission R = 1/T = C0, where

T – signal duration.

Up to now nobody approached this limit in common non-

spread AWGN systems, but some researchers obtained even

lower values for spread spectrum and non-AWGN systems [3–

5]. So, during this study it is stated that the lower bound of

signal reception depends on many factors such, as the ratio of

bandwidth-to-transmission rate, the kind of reception system

and, of course on the entropy of noise. The absolute limit

is (Eb/N0)abs = 0 [W/W] and it refers to the spread spec-

trum system for B/R → ∞ or to the conventional system for

continuous wave interference [App. B and C, respectively].

4. Myth II: non-constrained coding and turbo

codes

Non-constrained coding stands for an error correction code,

which detects and corrects the maximal number of errors

at the expense of minimal bandwidth loss. Through sever-

al decades nobody found such a code3. In 1993 the French

inventors claimed that their turbo codes are just such candi-

dates, because they permit the detection of signals very close

to Shannon’s bound [6]

We claim, this is misunderstanding. Turbo codes do not

work on-line. If the signal and noise are analyzed (integrat-

ed) for a long time, the samples of random noise compensate

each other, while the steady state samples of signal add one

to another and the ratio SNR improves. Turbo codes are use-

ful, but their higher sensitivity has a little common with the

Shannon’s bound. It is an artificial value refering to specific

conditions and being only in some relation to the real bound.

5. Myth III: optimal reception in color noise

It is easy to show that white Gaussian noise presents maxi-

mal entropy and hence it is the most destructive for reception.

Some authors judge from here that BER for AWGN is greater

than for any other noise. There are, however, empirical data,

which show that BER for AWGN can be a little lower than for

color one, when using an optimal cross-correlation receiver

[3–5]. To explain these discrepancies we use the Shannon’s

expanded formula [1]

Blog
2

(

1 +
S

Ne

)

≤ C ≤ Blog
2

(

N + S

Ne

)

(3)

where N – average power of noise (σ2); Ne – its entropy

power (geometric mean)

Ne = exp

[

B−1

∫ B

0

lnF (ω)dω

]

(4)

where B – channel bandwidth; F (ω) – power spectrum of

noise.

It follows from (3), that in case of Ne = N (white noise)

the capacity C = CN = Blog
2
(1 + S/N), while in the oppo-

site case, Ne < N (color noise, Eq. 4) the ratio (N + S)/Ne

and C = Ce obtain higher values than CN . The phenomenon

is known in the theory for a long time, but in practice it was

unsolved till the year 2002, when the concrete operating sys-

tem was developed [5]. The obtained reduction of SNR in this

system for typical non-AWGN environment is 10 ÷ 20 dB in

comparison with the cross-correlation receiver data [App. D].

6. Myth IV: magic wand of entropy

Shannon objected to the use of the term ‘entropy’ as it de-

fines completely another quantity in thermodynamics. The

man, who inclined him towards a new term was von Neu-

mann himself. He might say, “No one understands entropy

very well, so in any discussion you will be in a position of

advantage” [7]. And the proposal was accepted.

What does the entropy mean? It has many applications and

definitions. In communications it stands for a measure of infor-

mation contained in a random event. For example, if the prob-

ability of twin birth is P (x) = 10−3, then the Hartley entropy

H(x) = 1/P (x) = 103. The less the probability of event, the

more the information contained in it and the greater H(x).
Because of problems with summation of entropies for sets of

events Shannon introduced log[1/P (x)]. Hence the mean en-

tropy for a series of events is:
∑

P (xi) · log[1/P (xi)]. There

are also other entropy definitions, e.g. Kolmogorov-Sinaj and

Rènyi [7].

The most widely used in communications is the mean

conditional entropy (equivocation) [1]

H(X |Y ) = −
n

∑

i=1

m
∑

j=1

P (yj)P (xi|yj) log2 P (xi|yj) (5)

where P (yi) – a priori probability of appearing the state j
at the channel output; P (xi|yj) – conditional probability of

appearing the state i at input, while j is observed at the output

Example 1.

Let us consider the binary symmetric channel with BER =
0.01 i.e. P (x0|y1) = P (x1|y0) = 0.01. Let a priori proba-

bility of states 0 and 1 be the same, P (y = y0) = P (y =
y1) = 0.5. We want to know the mean conditional entropy

H(X |Y ), which in this case defines the loss of information.

After substitution of the given data into (5): P (x1|y0) = 0.01,

P (x0|y1) = 0.01 and P (x1|y1) = 0.99, P (x0|y0) = 0.99,

we obtain H(X |Y ) = 0.081. Hence, although the BER is

1%, the equivocation or loss of information is more than

8%. It is interesting, that for BER = 0.5, this loss is 100%.

Shannon put the equivocation H(X |Y ) = 0 in derivation of

the formula (1). This is a reason, upon which we can ex-

pect the errorless communication, whenever (1) is satisfied

[App. A].

Therefore, where are the sources of myths raised at the

beginning of this paper? They reside in assumptions. For ex-

3One of the optimal systems is the convolution code plus Viterbi decoding, but it could not get the Shannon’s bound.
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ample, we assume the infinite bandwidth of noise, but at the

same time we put the finite density of its power (N0). Hence,

the integral can reach infinity, which can be hardly imagined

(σ2 < ∞).

The entropy, although highly deserved for informa-

tion/communication theory, does not remove all the discrep-

ancies due to the imperfect correspondence between analog

medium of transmission of signals and their digital nature.

Hence, some disagreements have to occur.

7. Conclusions

Shannon’s theory was a breakthrough for the times it was

issued. Some its notions are still valid such, as entropy mea-

sures, capacity dependence on the signal-to-noise ratio and

bandwidth, the rules for ideal crypto etc. There are also

some shortcomings. The most doubtful, from the present-

day view, is the famous lower bound of signal reception,

(Eb/N0)min = ln 2. The author shows that a real recep-

tion bound is defined by many factors such, as the ratio

of bandwidth-to-transmission rate, the intelligence of the re-

ceiver and, of course, on the noise characteristics, including

entropy. If this entropy is small and the bandwidth is wide

enough in reference to the rate of information transmission

and the receiver presents an advanced design, the bound of

reception can be made much lower than ln2 [4, 5]. In the op-

posite case, this bound is always much higher than ln2 [8, 9].

The knowledge of noise behavior in the channel is of prime

importance. The paper presents an adaptive system, which ob-

serves this behavior and adjusts receiver parameters to noise

changes. The gain obtained this way for typical non-AWGN

environment is 10÷20 dB in comparison with the “optimal”

cross-correlation receiver [4, 5].

It should be also noted that a lower bound in off-line

systems may be made arbitrary low for arbitrary noise (e.g.

in space systems). Similarly, the capacity of MIMO system,

composed of infinite number of antennas, can be made in-

finite too, nevertheless the narrowband frequency channel is

used [10] Hence, the only reasonable absolute lower bound

of reception is Eb/N0 = 0.

Appendix A

Derivation of Shannon’s formula

The fundamental aim of Shannon’s work [1] was to define the

maximal errorless transmission rate of digital signals through

the noisy channel. As far as the entropy is a measure of infor-

mation contained in a sequence of signals, then the maximal

value of entropy per signal duration T can be used to asses

this searched transmission rate

Cmax = max[H(Y ) − H(Y |X)]/T,

H(Y ) = H(X) + H(N)
(A1)

where H(Y ) – entropy of signal at the channel output;

H(Y |X) – equivocation; H(X) – signal entropy at the in-

put; H(N) – noise entropy.

In general, the following relationship for entropies can be

used for the binary symmetric channel

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y )

⇒ H(Y |X) = H(Y ) + H(X |Y ) − H(X).
(A2)

If the transmission has to be errorless, then H(X |Y ). Hence

H(Y |X) = H(Y ) − H(X)

= [H(X) + H(N)] − H(X) = H(N) = 0.
(A3)

Equation (A3) expresses the peculiarity that only factor,

which differs output Y from its input equivalent X , is noise

N . Hence H(Y |X) is replaced by H(N). Substitution of (A3)

into (A1) gives

Cmax = max[H(Y ) − H(N)]/T. (A4)

Entropy of an individual sample of noise is

Hi(n) = −
∫

∞

−∞

(

σ
√

2π
)

−1

exp(−n2/2σ2).

· ln
(

σ
√

2π
)

−1

exp(−n2/2σ2)dn = log2

(

σ
√

2πe
)

.

(A5)

Taking into account that AWGN samples are independent

each other and that as many as 2BT signals can be fitted in

bandwidth B (Nyquist theorem), then the overall entropy is

H(N) =
∑2BT

i=1
Hi(n) = BT log

2
σ22πe. (A6)

The output entropy of noise plus signal – per analogy to

(A6) – assuming its Gaussianity is

H(Y ) = BT log2[(2πe)(σ2 + S)] (A7)

where S is the useful signal power.

Substituting (A6) and (A7) into (A4) we finally obtain

Cmax = B log2(1 + S/N) (A8)

where N represent the noise power (σ2).

Appendix B

Shannon’s bound and its discussion

The capacity C in formula (1) for B → ∞ is

C0 = lim
B→∞

{B log2[1 + S/N ]}

= lim
B→∞

{

B log
2
[1 +

[

Eb/T

N0B

]}

= lim
x→0

{

log2[1 + (Eb/N0T )x

x

}

(B1)

where x = 1/B, Eb – energy of signal bit, T – its time

duration.

Using the L’Hospital rule for the expression in curly brack-

et we obtain [8]

C0 = lim
x→0

{

1

1 + (Eb/N0T )x

[

Eb

N0T

]

log
2
e

}

=
Eb

N0T ln 2
.

(B2)
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Assuming further that Eb = ST and C0 = 1/T , the

searched capacity and lower bound are, respectively

C0 =
S

N0 ln 2
and

(

Eb

N0

)

min

= ln 2. (B3)

Please note, that despite of infinite channel bandwidth,

the capacity C0 is finite and depends only on signal power S
(assuming N0 = const). This looks a little suspicious.

Let us consider the more realistic case of B >> C (in-

stead of B → ∞).

Example 2.

Let S = 1 W, N0 = 10−9 W/Hz and B = 109 Hz.

Hence, using (1) and putting N0B instead of N we obtain

C09 = 109 log
2
(1 + 1/10−9 · 109)

= 109 log2(2) = 109 b/s.
(B4)

Now, let B >> C, e.g. B = 1011 Hz. Hence

C11 = 1011 log2(1 + 1/10−91011)

= 1011 · 0.0144 = 1.44 · 109 b/s.
(B5)

We can see, that capacity C11 has increased a little in ref-

erence to C09, but the SNR has decreased significantly, from

1 to 0.01⇔ −20 dB.

Let B be further increased to 1013 Hz

C13 = 1013 log2(1 + 1/10−9 · 1013)

= 1013 · 0.0001442 ≈ 1.44 · 109 b/s.
(B6)

We see, that capacity is nearly the same (C13 ≈ C11 ≈
1.44 Gb/s), while signal-to-noise ratio has been further de-

creased by 20 dB and its final value is SNR = −40 dB. So,

we can deduce, that for B >>> C, SNR ⇒ 0 [W/W]. Be-

cause of constant C = 1/T , we can also write Eb/N0 → 0
for B → ∞.

This is in contrary to (B3b). The source of discrepan-

cy resides in the silent assumption of the transition (B1) →
(B2). It is supposed that capacity C follows B (according

Nyquist theorem 2BT = const). However, if C is constant and

B increases to infinity (B → ∞) the signal-to-noise ratio de-

creases to 0 and this is an absolute bound (Eb/N0)abs = 0.

This phenomenon is commonly known in spread spectrum

systems, where the bandwidth is exchanged for the SNR.

Appendix C

Signal reception in Dirac noise

Let the noise is expressed by the two-component function [3]

F (ω) = α(ω) + β(ω) for 0 < ω < B. (C1)

Let α(ω) = α = const for ω0 < ω < ω0 + δω,

β(ω) = β = const for ω = B\δω, α >> β and

∫ B

0

F (ω)dω = σ2. (C2)

After substitution of (C1) into (4) the formula for the en-

tropy power takes the form

Ne = exp{B−1[(δω) lnα + (lnβ)(B − δω)]}. (C3)

In the boundary case for δω → 0, β → 0 and α → ∞
limNe = exp{B−1[lnα0 +B lnβ]} = elnβ = β = 0. (C4)

It follows from (C4) that Dirac noise possess an entropy

power equal to 0. Hence – in accordance with (3) – both the

signal-to-noise ratio and the channel capacity approach infin-

ity. Such an interference is produced by the continuous sine

wave (CW) of the constant amplitude, constant frequency and

endless duration. It is easy to conclude that CW is not able to

interfere reception even at its infinite growth. Hence, we can

write down: (S/A2/2)min ⇔ (Eb/N0)abs = 0.

At this moment the question arises, whether fighting

against myths we do not create the new ones? The response

is, no. We have strong support from experiment. If the sine

interference is inserted into the channel, we can remove it via

infinitely narrowband filter, which makes no harm to useful

signal. One can ask, is it possible to build such a filter? It is

difficult within analog technology, but in digital technology

it is feasible, at least up to the small error depending on the

number of the filter cells. Then, an asymptotic bound Eb/No

exists and it is zero (not ln2).

Appendix D

Optimal reception under arbitrary noise

The term ‘arbitrary noise’ stands for the stationary noise

(interference), at least of the second order, and of arbitrary cor-

relation function (power spectrum). The term ‘optimal’ refers

to the lowest signal-to-noise ratio. The appropriate scheme is

shown in Fig. 1.

Whitening filter

Matching filter

LMS Estimator

kk
NS +

''

kk
NS +

''''

kkk
NSS +×

*

*

k
S

'*

k
S

Fig. 1. The scheme of optimal adaptive receiver for arbitrary noise

It operates as follows. The consecutive samples of signal

and noise, Sk and Nk enter the input whitening filter. Noise

dominates over the signal, σ2

N >> σ2

S . Parameters of the

input filter are controlled by an estimator LMS (least mean

square). This estimator observes output samples and adjusts

filter weights so, as the difference between the estimate of

n-th sample4 output and its real value (Sn + Nn) is minimal.

This way the resulting output process (∼ N ′

k) becomes white.

4This estimate is: S′

n + N ′

n =
n−1
∑

i=n−N

(Si + Ni) · hn−i where hi are weights of the filter and N is its order
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The whitening filter changes also the shape of useful sig-

nal. To match its new shape to the replica, the last one is

transferred via similar filter as the signal does. So, the replica

undergoes the same filtration process as the signal undergoes

(see dotted lines in Fig. 1). Hence, both conditions of opti-

mality are satisfied: the signals entering the multiplier, S′

k and

S∗

k
′ are matched one to another, and the noise N ′

k is white.

The receiver can be directly applied in spread

spectrum systems. In other systems the more so-

phisticated estimator should be thought up, e.g. one

basing on the difference of known useful spec-

trum and the estimated signal plus noise spec-

trum.
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