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Abstract. Together with the dynamic development of modern computer systems, the possibilities of applying refined methods of nonpara-

metric estimation to control engineering tasks have grown just as fast. This broad and complex theme is presented in this paper for the

case of estimation of density of a random variable distribution. Nonparametric methods allow here the useful characterization of probability

distributions without arbitrary assumptions regarding their membership to a fixed class. Following an illustratory description of the funda-

mental procedures used to this end, results will be generalized and synthetically presented of research on the application of kernel estimators,

dominant here, in problems of Bayes parameter estimation with asymmetrical polynomial loss function, as well as for fault detection in

dynamical systems as objects of automatic control, in the scope of detection, diagnosis and prognosis of malfunctions. To this aim the basics

of data analysis and exploration tasks – recognition of outliers, clustering and classification – solved using uniform mathematical apparatus

based on the kernel estimators methodology were also investigated.
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1. Introduction

In contemporary control engineering, the quality of the con-

trol algorithm – although itself a central element responsible

for the correct running of an automatic device – most often

depends considerably on many other factors which are of both

subordinate (e.g. model of an object) and superior (e.g. fault

detection system) function, but are always subject to the main

goal of this algorithm. Despite it seeming that the develop-

ment of innovative methods based on knowledge engineering

and data exploratory analysis will slowly blur the division be-

tween the above factors, these methods are actually only hope

for the future rather than for the present. In today’s method-

ology, in all phases and aspects of design and functioning of

contemporary automatic control systems, notably important is

the correct identification of particular elements (especially an

object), and later estimation of parameters and dependencies

present there [1–3]. This refers essentially to the stages of

preliminary analysis and defining the structure of a control

system, synthesis of the control algorithm itself – with addi-

tional activities e.g. possible creation of observers and filters

as well as prediction subsystems – and also future supervision

of correct work in a real-time regime, in the frame of fault de-

tection. A fundamental problem constitutes here the required

accuracy – on one hand it should guarantee adequate repre-

sentation of the modeled reality, and on the other it should

not cause difficulty in actual use. In practice this is closely

connected to the mathematical apparatus applied.

Generally, the simplest identification methods, closest to

intuition and worthy of recommendation wherever possible,

are deterministic methods. These however can not always be

used, not just because phenomena by their nature are different

in character, e.g. uncertain or imprecise, but even determinis-

tic phenomena may have such complex or unknown structures,

that artificial introduction of a nondeterministic factor may

eventually occur just to describe such phenomena. The most

common of these are probabilistic methods [4], well investi-

gated and known, often with clear and suitable possibilities

for interpretation.

The primary notion of probabilistic methods is the random

variable, followed by its distribution. For simple applications

often a sufficient representation of the distribution seems to

be given by characteristic parameters (expectation value, vari-

ance, median, etc.), though in more complicated cases the

frequent use of functional characteristics, e.g. density or dis-

tribution function, is necessary. The classic approach here is

so-called parametric methods [4]. They are based on mak-

ing an arbitrary choice, at the beginning, regarding distrib-

ution type (e.g. normal or uniform), in practice done with

known properties of reality under consideration, the intuition

of the researcher or preliminary investigation in this area, at

times ratified by hypothesis testing. As a consequence of such

a choice, only values of parameters existing in the definition

of the assumed type of distribution are estimated – this is

why such procedures are referred to as parametric methods.

They are simple, easy to understand, widely available in sub-

ject literature, and robust to errors and inaccuracies, but their

main limited possibilities and the need for preliminary inves-

tigations make them less and less acceptable from the point

of view of contemporary refined applications. This has led

directly to a necessity to find alternative procedures which
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do not need any assumptions concerning the type of distri-

bution under research – to underline the difference, they are

called nonparametric methods [5, 6]. This has become possi-

ble thanks to the rapid development of computer technology,

which becomes particularly apparent in the domain of gath-

ering and storing a large amount of data.

The subject of this publication is the presentation of ap-

plicational possibilities of nonparametric estimation, in par-

ticular based on the near intuitive, in practice often used

functional characteristic of a random variable – the density

of its distribution. Thus, an illustrative description of funda-

mental methods for nonparametric estimation of density is

presented in Section 2 – their concepts, advantages and dis-

advantages will be shown here, after which will be quoted

subject literature containing detailed aspects. The next two

sections, 3 and 4, include a synthetic generalization of results

obtained by the author during applications of the kernel es-

timators methodology – dominant in this type of tasks – to

the representative problems of control engineering. Thus, Sec-

tion 3 presents the use of kernel estimators methodology to

calculate optimal – in the Bayes sense – values of parameters

of automatic control objects, as an example of a subordinate

factor with respect to the control algorithm. Finally, Section 4

describes a fault detection system, after considerations regard-

ing the basic procedures for data analysis and exploration, as

an example of a superior – with respect to such an algorithm

– factor.

2. Nonparametric estimation

of distribution density

This section presents an illustratory comparative analysis of

basic methods of nonparametric estimation for the density

of probability distribution. Such a characteristic of a ran-

dom variable is not only convenient for interpretation and

– therefore – comprehensive specialist applications, but also

enables other characteristics of random variable distribution,

both functional and parametric, to be examined. With regard

to this far-reaching subject, numerous quotations from subject

literature will be given, where one can find more exact aspects

of the above tasks.

For simplicity of interpretation and denotation, the first

considerations are presented for a one-dimensional random

variable. Let then the random variable X : Ω → R be

given, with distribution having the density f . Its estimator

f̂ : R → [0,∞) is calculated on a simple random sample,

i.e. the m experimentally obtained independent values x1,

x2, ..., xm taken by the variable under investigation.

A trivial representative of nonparametric estimation meth-

ods is the histogram (Fig. 1) [7, 8]. Its idea is based on the

division of the real numbers set into the bins Hk of identical

width h, while the index k is an integer. Over each of these

bins, the histogram has a constant value equal to the number

of the values of the random sample x1, x2, ..., xm which have

fallen into a given bin, divided by mh, therefore

f̂(x) =
#{xi ∈ Hk}

mh
for every x ∈ Hk and k integer, (1)

where #A denotes a size of the set A. Nowadays the his-

togram is gradually becoming the only effective illustratory

tool – even a layman is able to interpret results presented in

this form. Unfortunately, however, there is no credible method

for selecting the parameter h value or fixing the location of

center of the bins, and the histogram’s shape seems to be ex-

cessively sensitive to these quantities. The derivative of the

histogram exists beyond points of contact of the bins, but it

is constantly equal to zero there, which significantly hinders

even the most basic theoretical analysis. For details see nu-

merous publications, e.g. the textbooks [7, 8].

f x( )
^
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0.2

0.4

H1 H10H9H8H7H6H5H4H3H2... ...

Fig. 1. Histogram

A search for further nonparametric methods provided the

next more advanced proposals on different properties and

practical usability.

Thus, an unusual idea led to the definition of the nearest

neighborhood estimator (Fig. 2) [9, 10]. Its value can be given

by the formula

f̂(x) =
k − 1

2m dk(x)
, (2)

where dk(x) denotes the distance of the argument x from its

k-th nearest neighbor among the elements x1, x2, ..., xm; of-

ten as the parameter k ∈ N\{0, 1} the integral part of the

number
√

m is taken. This estimator is therefore a “conjunc-

tion” of hyperbolas, while in the places of these “joints” the

derivative does not exist. Its graph is therefore irregular and

unnatural in shape. What is more, the obvious – concerning

the estimator of density of probability measure – condition

∞
∫

−∞

f̂(x) dx = 1, (3)

is not fulfilled, as

x̃[1]
∫

−∞

f̂(x) dx and
∞
∫

x̃[m]

f̂(x) dx, where x̃[i]

denotes the i-th with respect to size element of the set

x1, x2, ..., xm, are proportional to

x̃[1]
∫

−∞

1
/

(x̃[k] − x)dx and

∞
∫

x̃[m]

1
/

(x − x̃[m−k+1])dx, that is they equal infinity. Even if
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one narrows the considerations to a bounded interval, then

calculation of an appropriate constant guaranteeing condition

(3) is a difficult task to carry out in practice. For more infor-

mation see the pioneering work [9] and also the book [10].

0

1

2

10 x8642

Fig. 2. Nearest neighbourhood estimator

In turn, the concept of the Fourier estimator (Fig. 3) [11]

results directly from the general theory of Fourier transforma-

tion. Here it is possible to define the estimator only on the

bounded interval D = [a, b]. The Fourier estimator is then

given by the formula

f̂(x) =
a0

2
+

J
∑

j=1

[aj cos(jωx)+bj sin(jωx)], (4)

while J is an appropriately fixed natural number and

aj =
2

(b − a)m

m
∑

i=1

cos(jωxi) for j = 0, 1, 2, ..., J, (5)

bj =
2

(b − a)m

m
∑

i=1

sin(jωxi) for j = 1, 2, ..., J, (6)

ω =
2π

b − a
. (7)

4

2

1 x0.80.60.40.2

f x( )
^

0

0

–1

Fig. 3. Fourier estimator

Estimator (4) has a derivative for any order. Moreover, since

a0 = 2/(b − a) and
∫ b

a
cos(jωx) dx =

b
∫

a

sin(jωx) dx = 0

for j = 1, 2, ..., J , then equality (3) is fulfilled. Unfortunately,

this does not concern the obvious – concerning the estimator

of density of probability measure – condition

f̂(x) ≥ 0 for every x ∈ R; (8)

the Fourier estimator can be negative in some subintervals

of the domain D. Generalizing the Fourier estimator leads

straight to the concept of orthogonal series estimators [12,

13], also defined in the case D = R. Maintaining the basic

idea of a classic Fourier estimator, various changes in defi-

nition (4) are made to the sine/cosine functions, as well as

procedures for calculation of coefficient values, arriving at

a variety of estimator forms, of different properties and appli-

cational possibilities. Further details are found in the classic

work [12] and also the monographs [11, 13].

However a number of further concepts were proposed,

from the simple naive estimator [14] to mathematically ad-

vanced splines [15], although up to formulating the kernel

estimators concept, none of them satisfactorily fulfilled even

the most basic theoretical or practical requirements.

Today, the prevalent method of nonparametric estimation

is that of the kernel estimators [5–7, 16–20]. The idea of

their construction is natural, the interpretations clear, and the

form suitable for analysis. They were created at the end of the

1950’s independently by Rosenblatt [14] and Parzen [21], and

generalized for the multidimensional case by Cacoullos [22],

but until the 80’s they could be of interest to only a small

group of specialists. Widespread research, and above all the

application of kernel estimators, is impossible without com-

puters of relatively high calculational capacity and the possi-

bility to display results effectively – at least in the preliminary

phase – on the screen.

Returning to the general n-dimensional case, let therefore

the n-dimensional random variable X : Ω → Rn, with a dis-

tribution having the density f , be given. Its kernel estimator

f̂ : Rn → [0,∞) is defined in its basic form by the formula

f̂(x) =
1

mhn

m
∑

i=1

K

(

x − xi

h

)

, (9)

where the measurable, symmetrical with respect to zero and

having a weak global maximum in this point, function K :
R

n → [0,∞) fulfils the condition
∫

Rn

K(x) dx = 1 and is

called a kernel, whereas the positive coefficient h is referred

to as a smoothing parameter. In reference to properties of

the estimators presented before, it should be underlined that

conditions (3) and (8) are of course fulfilled here.

The interpretation of the above definition is illustrated in

Fig. 4 for a one-dimensional random variable. In the case of

the single realization xi, the function K (transposed along

the vector xi and scaled by the coefficient h) represents the

approximation of distribution of the random variable X hav-

ing obtained the value xi. For m independent realizations x1,

x2, ..., xm, this approximation takes the form of a sum of these
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single approximations. The constant 1/mhn enables the con-

dition
∫

Rn

f̂(x) dx = 1, required of the density of a probability

distribution. For illustration of a more complex, multimodal

and multidimensional (n = 2) random variable, see Fig. 5.

0

0.2

0.4

10 x

f x( )
^

8642

Fig. 4. Kernel estimator for the one-dimensional case

It is worth noting that a kernel estimator allows the mod-

eling of density for practically every distribution, without ar-

bitrary assumptions and most often any preliminary research.

Atypical, complex distributions, also multimodal, are regard-

ed here as textbook unimodal. It also allows the recognition of

properties of a population described by an investigated ran-

dom variable, in particular placement of modal values (i.e.

local maximums of the density f ), symmetries of particular

associated components, as well as features of “tails” – prop-

erties of the function f for extreme values of the argument x.

Furthermore, this information is most often obtained without

additional, tiresome and ambiguous test procedures. In the

multidimensional case kernel estimators also enable the dis-

covery of total dependences between particular coordinates of

the random variable under investigation.

Setting the quantities introduced in definition (9), i.e.

choice of the form of the kernel K as well as calcu-

lation of the value for the smoothing parameter h, is

most often carried out according to the criterion of min-

imum of an integrated mean-square error. Broader dis-

cussion and practical algorithms are found in the books

[5, 6, 19]1. In particular, the choice of the kernel form

has no practical meaning and thanks to this it is possi-

ble to take into account firstly properties of the estimator

obtained (e.g. its class of regularity, boundary of a sup-

port) or aspects of calculations, advantageous from the

point of view of the applicational problem under consid-

eration. Practical applications may also use additional pro-

cedures, some generally improving the quality of the esti-

mator, and others – optional – possibly fitting the model

to an existing reality. For the first group one should rec-

ommend the modification of the smoothing parameter [5 –

Section 3.1; 6 – Section 5.3] and a linear transformation

[5 – Section 3.1; 6 – Section 4.2], while for the second, the

boundaries of a support [5 – Section 3.1; 6 – Section 2.10].

It is worth mentioning also the possibility of applying data

compression and dimensionality reduction procedures – orig-

inal and useful algorithms can be found e.g. in the book [23

– Sections 2 and 3.4].

x1

x2

0
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6

8

2 4 6 8

Fig. 5. Kernel estimator for the multidimensional case (n = 2)

1For calculating a smoothing parameter one can especially recommend the plug-in method in the one-dimensional case [5 – Section 3.1; 19 – Sec-

tion 3.6], as well as the cross-validation method [5 – Section 3.1; 6, 19 – Section 3.6] in the multidimensional. Comments for the choice of kernel may best

be found in [5 – Section 3.1, 19 – Sections 2.7 and 4.5].
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Kernel estimators allow modeling of the distribution den-

sity – a basic functional characteristic of random variables.

Consequently this is fundamental in obtaining other function-

al characteristics and parameters. For example, if in a one-

dimensional case, the kernel K is so chosen that its primitive

I(x) =
x
∫

−∞

K(y)dy may be analytically obtained, then the

estimator of the distribution function

F̂ (x) =
1

m

m
∑

i=1

I

(

x − xi

h

)

(10)

can be easily calculated. Next, if the kernel K has positive

values, the solution for the equation

F̂ (x) = r (11)

constitutes the kernel estimator of quantile of the order r ∈
(0, 1). For details and proof of strong consistencies see the

paper [24].

Polish science has had a sizable input into the progress of

applications of nonparametric methods for control engineer-

ing and related fields, as well as in the broad range beyond

the density estimation task presented earlier. Above all, men-

tion should be made of the team from the Wroclaw University

of Technology – Professors Wlodzimierz Greblicki, Zygmunt

Hasiewicz, Adam Krzyzak (present of the Concordia Univer-

sity, Canada), Miroslaw Pawlak (present of the University of

Manitoba, Canada), Ewaryst Rafajlowicz, with colleagues –

and the research groups led by Prof. Jacek Koronacki (the

Institute of Computer Sciences of the Polish Academy of

Science, Warsaw), Prof. Leszek Rutkowski (the Czestochowa

University of Technology), as well as the author of this arti-

cle in the Cracow University of Technology and the Systems

Research Institute of the Polish Academy of Science, War-

saw. Results have been published in many books and papers

from renowned publishers and scientific journals. For Polish-

speaking readers it is worth mentioning the works [5, 25, 26].

In following parts of this article, the applicational possi-

bilities of nonparametric estimators of distribution density are

shown for kernel estimators, as those which appear to posses

the greatest universal practical potential. First will be pre-

sented results of investigations into the calculation of optimal

values for parameters of automatic control object models, and

next for synthesis of a statistical fault detection system.

3. Bayes parameter identification

with asymmetrical loss function

Besides classic or trivial cases, the creation of an ideal model

for an object under automatic control is neither possible, nor

even required, as it would be far too complicated for effective

use [1–3]. Consequently, absolutely precise determination of

the values of parameters contained within is impossible, not

only from a metrological point of view, but also due to the

fact that such a value does not even exist, while a considered

parameter represents an entire range of phenomena impossi-

ble to describe in a form of a single number. As identification

is in practice always subject to a higher goal (usually condi-

tioned by the control algorithm), then more suitable results

can be obtained thanks to the consideration, in the estimation

of the parameters’ values, of the losses implied through errors

encountered here. Often such losses can be described by the

function assuming the following asymmetrical and polynomi-

al form:

l(x̂,x) =

{

( − 1)ka (x̂ − x)k for x̂ − x ≤ 0

b (x̂ − x)k for x̂ − x ≥ 0
, (12)

with k ∈ N\{0}, while the coefficients a and b are positive,

and may differ, when x and x̂ denote the parameter under

investigation and its estimator respectively. Consider there-

fore the typical situation where one has the m values of the

investigated parameter x1, x2, ... , xm, obtained by inde-

pendent measuring, and requires the estimator which allows

to obtain minimal potential losses. Three basic cases will be

investigated in the following: linear (Section 3.1), quadratic

(Section 3.2), and higher order polynomial (Section 3.3) –

here the cube-case will be described in detail. In every case

the final result will be an algorithm for the calculation of

values for an optimal estimator, ensuring that its practical im-

plementation does not demand of the user detailed knowledge

of the theoretical aspects or laborious research. The results of

numerical verification of the procedures investigated here are

presented in Section 3.4.

First, however, the basic aspects of the decision theory,

in particular in the Bayes approach [27], will be briefly de-

scribed. Thus, the main aim of this theory is the selection of

a concrete decision based only on a representation of measure

characterizing the imprecision of states of nature. Let there

be given the nonempty set of states of nature Z = R, and the

nonempty set of possible decisions D ⊂ R. Assume that the

imprecision of states of nature is of probability type and its

distribution is described by the density f : R → [0,∞). Let

there be given also the loss function l:D × Z → R, while its

values l(d, z) can be interpreted as losses occurring in a hy-

pothetical case, when the state of nature is z and the decision

d is taken. If for every d ∈ D the integral
∫

R

l(d, z)f(z)dz

exists, then the Bayes loss function lB : D → R ∪ { ± ∞}
can be defined as

lB(d) =

∫

R

l(d,z) f (z) dz. (13)

Every element dB ∈ D such that lB(dB) = min
d∈D

lB(d) is

called a Bayes decision, and the above procedure – a Bayes

decision rule. The Bayes decision minimizes the mean value

of losses following the decision d. Further details are found

in the book [27].

3.1. Linear case. As an example illustrating the investiga-

tions presented in this section, an optimal control system [28,

29] will be considered. Such systems have shown themselves

in practice to be sensitive to the inaccuracy of modelling. The

control performance index which exists here, however, can al-

so refer to quality of identification allowing the creation of

an optimal procedure for the estimation of model parameter

values, thereby notably lowering this sensitivity.
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Thus, consider the following dynamic system:

[

Ẋ1(t)

Ẋ2(t)

]

=

[

0 1

0 0

] [

X1(t)

X2(t)

]

+





0
1

M



 U (t), (14)

where the positive parameter M represents a mass submitted

to a force according to Newton’s second law of dynamics.

Then X1, X2 and U denotes position and velocity of the

mass, and the force regarded here as a control, respectively.

Such a system constitutes a basis for the majority of research

in the field of robotics, leading in consequence to much more

complex models, specifically suited to the particular problem

under investigation. Consider the time-optimal control task,

the basic form of which consists of bringing the system’s

state to the origin, in minimal and finite time, assuming the

control values are bounded; for details see the textbook [28 –

Section 7]. Fundamental meaning for phenomena existing in

the control system lies in proper identification of value of the

parameter M . The control is defined in relation to the value

of the estimator M̂ , different in fact from the value of the

parameter M in the object. Detailed analysis is found in the

publications [30, 31].

Thus, in the purely hypothetical case of M̂ = M , i.e.

when the value of the estimator of this parameter is equal to

its true value, the process is regular in character. The system’s

state reaches the origin in minimal and finite time. However,

in the event of underestimation (i.e. for M̂ < M), overreg-

ulations occur in the system – its state oscillates around the

origin and reaches it in a finite time, albeit larger than the min-

imal. Next, in the case of overestimation (i.e. when M̂ > M),
the system’s state moves along a sliding trajectory and final-

ly reaches the origin in a finite time, again larger than the

minimal. Figure 6 shows the graph of the performance index

for values of the estimator M̂ . One can note that an increase

in this index is roughly proportional to the estimation error

|M̂ −M |, although with different coefficients for positive and

negative errors. The resulting losses can so be described in

the form of an asymmetrical linear loss function, i.e. given

by formula (12) with k = 1.

J U |( )M
^

0.6 0.8 1 1.2

9

8

7

6

5
^

M

Fig. 6. Value of performance index J obtained for different values

of the estimator M̂ , with M = 1

The parameter under investigation, whose value is to be

estimated, will be denoted by x. In order to adhere to the prin-

ciples of decision theory presented earlier at the beginning of

Section 3, it will be treated here as the value of a random

variable. According to point estimation methodology, it is as-

sumed that the metrologically achieved measurements of the

above parameter, i.e. x1, x2, ..., xm, are the sum of its “true”

(although unknown) value and random disturbances of var-

ious origin. The goal of this research is the calculation of

the estimator of this parameter (hereinafter denoted by x̂),
which would approximate the “true” value – the best from

the point of view of a practical problem investigated. In order

to solve this task, the Bayes decision rule will be used, ensur-

ing a minimum of expectation value of losses. According to

the conditions formulated above, the loss function is assumed

in asymmetrical linear form:

l(x̂, x) =

{

−a (x̂ − x) for x̂ − x ≤ 0

b (x̂ − x) for x̂ − x ≥ 0
, (15)

while the coefficients a and b are positive and not necessari-

ly equal to each other. Thus, the Bayes loss function (13) is

given by the formula

lB(x̂) = b

x̂
∫

−∞

(x̂ − x)f (x) dx − a

∞
∫

x̂

(x̂ − x)f (x) dx, (16)

where f :R → [0,∞) denotes the density of distribution of

a random variable representing the uncertainty of states of

nature, i.e. the parameter in question. It is readily shown that

the function lB fulfils its minimum for the value being a so-

lution of the following equation with the argument x̂:

x̂
∫

−∞

f (x) dx − a

a + b
= 0. (17)

Since 0 < a/(a + b) < 1, a solution for the above equation

exists, and if the function f has connected support, e.g. it is

positive, this solution is unique. Moreover, thanks to equality

a

a + b
=

a

b
a

b
+ 1

, (18)

it is not necessary to identify the parameters a and b sepa-

rately, rather only their ratio.

The modelling of the density f present in condition (17)

will be carried out using statistical kernel estimators, pre-

sented in Section 2. Then one should choose a continuous

kernel of positive values and so that the function I:R → R
such that I(x) =

x
∫

−∞

K(y) dy can be expressed by a relative-

ly simple analytical formula. In consequence, this results in

a similar property regarding the function Ui:R → R for any

fixed i = 1, 2, ..., m defined as

Ui(x) =
1

h

x
∫

−∞

K

(

y − xi

h

)

dy. (19)
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Then criterion (17) can be expressed equivalently in a form

of

h

m

m
∑

i=1

Ui(x̂) − a

(a + b)
= 0. (20)

If the left side of the above formula is denoted by L(x̂), its

derivative is simply

L′(x̂) = f̂(x̂), (21)

where f̂ was given by definition (9). In this situation, the so-

lution of criterion (17) can be calculated numerically on the

basis of Newton’s algorithm [32] as the limit of the sequence

{x̂j}∞j=0 defined by

x̂0 =
1

m

m
∑

i=1

xi, (22)

x̂j+1 = x̂j −
L(x̂j)

L′(x̂j )
for j = 0, 1, . . . , (23)

with the functions L and L′ being given by formulas (20)–

(21), whereas a stop criterion takes on the form

|x̂j − x̂j−1| ≤ 0.01 σ̂, (24)

where σ̂ denotes the estimator of the standard deviation ob-

tained from the sample x1, x2, ..., xm.

3.2. Quadratic case. As an example to illustrate the reason

for the case investigated below, consider the problem con-

cerning the classical task of optimal control for a quadratic

performance index [28 – Section 9.5] with infinite end time

and unit matrix/parameter of the performance index. The ob-

ject is the dynamic system

[

Ẋ1(t)

Ẋ2(t)

]

=

[

Λ 1

0 Λ

] [

X1(t)

X2(t)

]

+

[

0

Λ

]

U (t), (25)

where Λ ∈ R\{0}. Moreover, let Λ̂ ∈ R\{0} represent an

estimator of the parameter Λ. An optimal feedback controller

is defined on the basis of the value Λ̂, not necessarily equal

to the value of the parameter Λ existing in the object. The

values of the performance index obtained for a particular Λ̂,

are shown in Fig. 7. One can see that the resulting graph can

be described with great precision by a quadratic function with

different coefficients for positive and negative errors, which

in fact proves that over- and underestimation of the parameter

Λ have other results on the performance index value.

J U( | )
L
^

^
L

14

13

12

11

10
0.6 0.8 1 1.2

Fig. 7. Value of performance index J obtained for different values

of the estimator Λ̂, with Λ = 1

To use an analogous methodology to that of the linear

case considered in the previous section, the loss function is

assumed in quadratic and asymmetrical form defined as

l(x̂,x) =

{

a (x̂ − x)2 for x̂ − x ≤ 0

b (x̂ − x)2 for x̂ − x ≥ 0
, (26)

while the coefficients a and b are positive and not necessari-

ly equal to each other. Thus, the Bayes loss function (13) is

given by the formula

lB(x̂) = a

∞
∫

x̂

(x̂ − x)2f (x) dx+b

x̂
∫

−∞

(x̂ − x)2f (x) dx. (27)

One can show that the function lB fulfils its minimum for the

value x̂ being a solution of the equation

(a−b)

x̂
∫

−∞

(x̂ − x)f (x) dx−a

∞
∫

−∞

(x̂ − x)f (x) dx = 0. (28)

This solution exists and is unique. As in the linear case, di-

viding the above equation by b, note that it is necessary to

identify only the ratio of the parameters a and b.

Solution of Eq. (28) for a general case is not an easy task.

However, if estimation of the density f is reached using sta-

tistical kernel estimators, then – thanks to a proper choice

of the kernel form – one can design an effective numerical

algorithm to this end. Let, therefore, a continuous kernel of

positive values, fulfilling the condition

∞
∫

−∞

xK(x) dx < ∞ (29)

be given. Besides the functions Ui introduced in Section 3.1,

let for any fixed i = 1, 2, ..., m the functions Vi:R → R be

defined as

Vi(x) =
1

h

x
∫

−∞

yK

(

y − xi

h

)

dy. (30)
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The kernel K should be chosen so the function J :R → R
such that J(x) =

x
∫

−∞

y K(y) dy be expressed by a convenient

analytical formula. If an expected value is estimated by the

arithmetical mean value of a sample, then criterion (28) can

be described equivalently as

m
∑

i=1

[(a − b)(x̂Ui(x̂) − Vi(x̂)) + axi] − ax̂m = 0. (31)

If the left side of the above formula is denoted by L(x̂), then

one can express the value of its derivative as

L′(x̂) =

m
∑

i=1

[(a − b) Ui(x̂)] − am. (32)

In this situation, the solution of criterion (28) can be calculat-

ed numerically on the basis of Newton’s algorithm (22)–(24).

3.3. Higher order polynomial case. In this section, detailed

investigations presented earlier will be supplemented with the

polynomial case, that is where the loss function is an asym-

metrical polynomial of the order k ≥ 2 and is therefore given

by the following formula:

l(x̂,x) =

{

( − 1)ka (x̂ − x)k for x̂ − x ≤ 0

b (x̂ − x)k for x̂ − x ≥ 0
, (33)

while the coefficients a and b are positive, and may differ.

Criterion for the optimal estimator x̂ is given here in the form

( − 1)kak

∞
∫

x̂

(x̂ − x)k−1f (x) dx

+ bk

x̂
∫

−∞

(x̂ − x)k−1f (x) dx = 0.

(34)

The solution of the above equation exists and is unique.

When the statistical kernel estimators are used with re-

spect to the density f , it is possible again to create an efficient

numerical algorithm enabling Eq. (34) to be solved. Let the

kernel K be continuous, of positive values and fulfilling the

following condition:

∞
∫

−∞

xk−1K(x) dx < ∞. (35)

For clarity of presentation, the case k = 3 is presented be-

low. Thus, Eq. (34), after simple transformations, takes on the

equivalent form

(a + b)



x̂2

x̂
∫

−∞

f (x) dx − 2x̂

x̂
∫

−∞

xf (x) dx +

x̂
∫

−∞

x2f (x) dx





− a



x̂2 − 2x̂

∞
∫

−∞

xf (x) dx +

∞
∫

−∞

x2f (x) dx



 = 0.

(36)

Now, with any fixed i = 1, 2, . . . , m, let the functions Ui

and Vi defined by dependencies (19) and (30) be given, and

furthermore Wi:R→ R be introduced as

Wi(x) =
1

h

x
∫

−∞

y2K

(

y − xi

h

)

dy. (37)

Making use of the above notations, condition (36) can be ex-

pressed in the following form:

m
∑

i=1

[

(a + b)
(

x2Ui(x) − 2xVi(x) + Wi(x)
)

+ 2axix

− lim
z→∞

Wi(z)
]

− amx2 = 0.

(38)

The solution of the above equation exists and is unique. If its

left-hand side is denoted as L(x), then the derivative is

L′(x) =

m
∑

i=1

[2(a + b) (xUi(x) − Vi(x)) + 2axi] − 2amx.

(39)

Finally, the desired estimator can be calculated numerically

through Newton’s algorithm (22)–(24), while the functions L
and L′ are given by formulas (38)–(39). The above investi-

gations can be analogously transposed to a higher order of

asymmetrical polynomial loss function (12), although on ac-

count of their extreme nature, they seem to be useful mainly

for atypical applicational tasks.

3.4. Numerical simulation results. The operation of the al-

gorithm designed here has been checked in detail using a nu-

merical simulation, also for the optimal control tasks con-

sidered as motivation in Sections 3.1 and 3.2. In the case

a = b, the results were close to medium value, however,

when a 6= b, the algorithm provided possibilities that cannot

be achieved using classical methods, by appropriately shift-

ing the value of the estimator in the direction associated with

smaller losses, where intensity of this process was stimulated

by the parameter k depending on the nature of the system

under research. Many different distributions were examined

including also multimodal with asymmetrical modes. In each

case, as the size of a random sample m increases, the mean

estimation error and its standard deviation tend to zero. From

an applicational point of view, these fundamental properties

are demanded of estimators used in practice. This above all

states that, as the sample size increases, the estimators’ val-

ues achieved tend to the desired value, and their dispersion

decreases. This allows for the obtaining of any required pre-

cision, although the proper sample size must be guaranteed.

In practice this implies a necessity for compromise between

these two quantities. A satisfactory degree of precision was

obtained when the size of the sample was between 10 and

200, i.e. for m ∈ [10, 200]; in particular, the bigger values

became necessary when the difference between parameters

a and b increased.

One may construe that the benefits arising from applica-

tion of the method presented here are greater the more com-

plex the control system is, and over- and underestimation of
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a model’s parameters have a more differing influence on per-

formance index, i.e. when asymmetry of the loss function is

more distinct.

This section also contains material worked on together

with Malgorzata Charytanowicz and Aleksander Mazgaj, in-

cluded in the common publications [33–36].

4. Fault detection

The task of fault detection and diagnosis has lately become

one of the most important challenges in modern control en-

gineering [37–39]. Although it plays a superior role in the

hierarchy of layers of a control system, from the perspective

of its total utility it has proven most advantageous to adapt the

methodology used in this respect to the conditions prevailing

in the lower layers, in particular the control algorithm. The

result in practice is an enormous, indeed excessive diversi-

ty of concepts used in the design of fault detection systems.

Among many different procedures used with this aim, the

most universal are statistical methods. These very often con-

sist of generating a certain group of variables that characterize

the technical state of the device (i.e. its working condition),

and then making a statistical inference based on their current

values, as to whether or not the device functions correctly,

and in the event of a negative response, as to the nature of

the anomaly appearing.

This paper presents the concept of a statistical fault de-

tection system covering:

– detection, so discovery of the existence of potential anom-

alies in the technical state of a supervised device;

– diagnosis, that is identification of these anomalies;

– prognosis, i.e. warning of the threat of their occurrence in

the near future, together with anticipated classification.

The mathematical apparatus will be based on statistical infer-

ence using kernel estimators methodology. First, Section 4.1

presents possible applications of kernel estimators to fun-

damental problems of data analysis and exploration. In the

concept dealt with here, kernel estimators will be applied to

tasks of recognition of atypical elements (outliers), cluster-

ing and classification. It is worth noting that use of a single

methodology for all investigated tasks significantly simplifies

the process of synthesis of a fault detection system being

worked upon. Consequently, Section 4.2, where the fault de-

tection system designed here is described, will consist mainly

of references to earlier material, and integrate them into one

coherent idea. Results of numerical verification are described

in Section 4.3.

4.1. Kernel estimators for data analysis and exploration

procedures. The application of kernel estimators in basic

tasks of data analysis and exploration (for an original ap-

proach see also [40]) will be considered in this section, as

subsequently will the recognition of atypical elements (out-

liers), clustering and classification. In all three cases the n-

dimensional random variable X : Ω → Rn is considered.

First, in many problems of data analysis the task of recog-

nizing atypical elements (outliers) – those which differ greatly

from the general population – arises. This enables the elimi-

nation of such elements from the available set of data, which

increases its homogeneity (uniformity), and facilitates analy-

sis, especially in complex and unusual cases. In practice, the

recognition process for outliers is most often carried out using

procedures of statistical hypotheses testing [41]. The signif-

icance test based on the kernel estimators methodology will

now be described [42].

Let therefore the random sample x1, x2, . . . , xm treated

as representative, and so including a set of elements as typi-

cal as possible, be given. Furthermore, let r ∈ (0, 1) denote

an assumed significance level. The hypothesis that x̃ ∈ Rn

is a typical element will be tested against the hypothesis that

it is not, and therefore should be treated as an outlier. The

statistic S : Rn → [0,∞), used here, can be defined by

S(x̃) = f̂(x̃), (40)

where f̂ denotes a kernel estimator of density obtained for

the random sample x1, x2, . . . , xm mentioned above, while

the critical set takes the left-sided form A = (−∞, q̂] when

q̂ constitutes the kernel estimator of quantile of the order r
(for its description see the end of Section 2) calculated for

the sample f̂(x1), f̂(x2), . . . , f̂(xm), with the assumption

that random variable support is bounded (see also Section 2)

to nonnegative numbers. Further details can be found in the

publication [42].

Secondly, the aim of clustering is the division of a data

set – for example given in the form of the random sample x1,

x2, . . . , xm – into subgroups (clusters), with every one in-

cluding elements “similar” to each other, but with significant

differences between particular subgroups [43, 44]. In practice

this often allows the decomposition of a large data set with

differing characteristics of elements into subsets containing

elements of similar properties, which considerably facilitates

further analysis, or even makes it possible at all. The follow-

ing clustering procedure [45, 46] based on kernel estimators,

taking advantage of the gradient methods concept [47] will

be presented now.

Here the natural assumption is made that clusters are as-

sociated to modes – local maximums of the density kernel

estimator f̂ calculated for the considered random sample x1,

x2, . . . , xm. Within this procedure, particular elements are

moved in a direction defined by a gradient, according to the

following iterative algorithm:

x0
j = xj for j = 1, 2, ..., m, (41)

xk+1
j = xk

j + b
∇f̂(xk

j )

f̂(xk
j )

for j = 1, 2, ..., m

and k = 0, 1, ... ,

(42)

where b > 0 and ∇ denotes a gradient. In practice the value

b = h2/(n + 2) may be used.

As a result of the following iterative steps, the elements

of the random sample move successively, focusing more and

more clearly on a certain number of clusters. They can be

Bull. Pol. Ac.: Tech. 56(4) 2008 355



P. Kulczycki

defined after completing the k∗-th step, where k∗ means the

smallest number k such that

|Dk − Dk−1| ≤ c D0, (43)

where c > 0, D0 =
m
∑

i=1

m
∑

j=i+1

d(xi, xj), Dk−1 =

m
∑

i=1

m
∑

j=i+1

d(xk−1
i , xk−1

j ) and Dk =
m
∑

i=1

m
∑

j=i+1

d(xk
i , xk

j ), i.e.

they are the sums of the distances d between particular ele-

ments of the random sample under consideration before the

beginning of algorithm (41)–(42) and having performed the

(k − 1)-th and k-th step, respectively. For practical purpos-

es c = 0.001 may be used. Thus, after the k∗-th step, one

should calculate the kernel estimator for mutual distances of

the elements xk∗

1 , xk∗

2 , . . . , xk∗

m (under the assumption of non-

negative support of the random variable), and next, the value

can be found where this estimator takes on the local minimum

for the smallest value of its argument, omitting a possible min-

imum in zero. Finally, particular clusters are assigned those

elements, whose distance to at least one of the others is not

greater than the above value.

Thanks to the possibility of change in the smoothing para-

meter value, it becomes possible to affect the range of a num-

ber of obtained clusters, albeit without arbitrary assumptions

concerning the strict value of this number, which enables it to

be suited to a true data structure. Moreover, possible changes

in intensity of the smoothing parameter modification proce-

dure allow influence on the proportion of clusters located in

dense areas of random sample elements to the number of clus-

ters on the “tails” of the distribution. For a detailed description

of the above procedure see the publications [45, 46].

Thirdly, the application of kernel estimators in a clas-

sification task [43, 44] is considered. Let the number J ∈
N\{0, 1} be given. Assume also, that the possessed random

sample x1, x2, . . . , xm has been divided into J nonempty

and separate subsets {x′

1, x
′

2, ..., x
′

m1
}, {x′′

1 , x′′

2 , ..., x′′

m2
}, ... ,

{x′′
···

′

1 , x
′′
···

′

2 , ..., x
′′
···

′

mJ
}, while

J
∑

j=1

mj = m, representing

classes with features as mutually different as possible. The

classification task requires deciding into which of them the

given element x̃ ∈ Rn should be reckoned.

The kernel estimators methodology provides a natural

mathematical tool for solving the above problem in the op-

timal – in the sense of minimum for expectation of losses

– Bayes approach. Let thus f̂1, f̂2, ..., f̂J denote kernel es-

timators of density calculated for subsets {x′

1, x
′

2, ..., x
′

m1
},

{x′′

1 , x′′

2 , ..., x′′

m2
}, ... , {x′′

···
′

1 , x
′′
···

′

2 , ..., x
′′
···

′

mJ
}, respectively,

treated here as samples. If sizes m1, m2, . . . , mJ are pro-

portional to the “frequency” of appearance of elements from

particular classes, the considered element x̃ should be reck-

oned into the class for which the value

m1f̂1(x̃), m2f̂2(x̃), ..., mJ f̂J(x̃) (44)

is the greatest. Some additional information can be found in

the publication [48].

4.2. Statistical fault detection system. The procedures pre-

sented in the previous section, for recognition of atypical ele-

ments (outliers), clustering and classification, based on kernel

estimators, provides a complete and methodologically consis-

tent mathematical tool to design an effective statistical fault

detection system for dynamical systems, covering detection,

diagnosis, and also prognosis associated with them.

Assume that the technical state of a device under super-

vision may be characterized by a finite number of quantities

measurable in real-time. These will be denoted in the form of

the vector x ∈ Rn, called a symptom vector. One can interpret

this name noting that symptoms of any occurring anomalies

should find the appropriate reflection in the features of a such-

defined vector. More strictly, it is required that both correct

functioning conditions and any type of diagnosed fault are

connected with the most different sets of values and/or dis-

similar relations between coordinates of the above vector as

possible.

Assume also the availability of a fixed set of values of the

symptom vector, representative for correct functioning condi-

tions of a supervised device

x1, x2, ..., xm0 , (45)

as well as the set

x∗

1, x∗

2, ..., x
∗

m∗
, (46)

characteristic in the case of occurrence of anomalies. From

the point of view of transparency of the designed fault detec-

tion system, in particular its function of diagnosis, it is worth

dividing set (46) into J ∈ N\{0, 1} the most possibly differ-

ent – in the sense of the values of particular coordinates of

the symptom vector and/or relations between them – subsets

assigned to the previously assumed types of diagnosed faults:

x′

1, x′

2, ..., x
′

m1
, (47)

x′′

1 , x′′

2 , .., x′′

m2
, (48)

...

x
′′
···

′

1 , x
′′
···

′

2 , ..., x
′′
···

′

mJ
, (49)

while
J
∑

j=1

mj = m∗. Where there is no such division, one can

automatically divide set (46) into subsets (47)–(49) using the

clustering algorithm presented in Section 4.1, although this

then often requires laborious interpretation concerning each

of them.

Fault detection will first be considered. With this aim the

procedure for the recognition of atypical elements, described

at the beginning of Section 4.1, can be applied. Assume there-

fore that the random sample considered there, including ele-

ments treated as typical, constitutes set (45) representing the

correct functioning conditions for a supervised device, while

x̃ denotes its current state. Applying the above-mentioned pro-

cedure for the recognition of atypical elements, one can con-

firm if the present conditions should be regarded as typical or

rather not, thus showing the appearance of anomalies.
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For fault diagnosis, if one already is in possession of sam-

ples (47)–(49) characterizing particular types of faults being

diagnosed, then after the above-described detection of anom-

alies, one can – by applying directly the procedure for Bayes

classification presented at the end of Section 4.1 – infer which

of them is being dealt with.

Finally, if subsequent values of the symptom vector, ob-

tained successively during the supervising process, are avail-

able, then it is possible to realize fault prognosis. It can be

carried out by separate forecasts of values of the function f̂
given by dependence (40) and m1f̂1, m2f̂2, ..., mJ f̂J to be

seen in formula (44), and inferences based on these forecasts

for detection and diagnosis, according to guidelines present-

ed in the previous two paragraphs. To calculate the values of

forecasts of the functions f̂ , f̂1, f̂2, ... , f̂J it is recommend-

ed to use the classical linear regression method separately,

though in a version enabling easy updating of a model dur-

ing successive collection of subsequent current values of the

symptom vector. Appropriate formulas are found in the books

[39 – Chapter 4; 49 – Chapter 3 and additionally Chapter 4].

4.3. Numerical simulation results. The proper operation of

the fault detection system investigated in this section has been

verified experimentally, on the basis of an example which is

simple yet useful in illustrative interpretation. The supervised

object was a mechanical system whose dynamics were mod-

eled by the differential inclusion

ÿ(t) ∈ H(ẏ(t)) + u(t), (50)

where y expresses the position of the object, u is a control

with values limited to the interval [−1, 1], and the function H
represents a multi-valued discontinuous model of resistance

to motion. In the event of no resistance to motion, i.e. when

H ≡ 0, inclusion (50) is reduced to a differential equation

expressing Newton’s second law of dynamics. The above task

constitutes therefore a problem of fundamental importance

in the control of industrial manipulators and robots. Object

(50) was subjected to a robust time-optimal control, which

took on the values +1 or −1, depending on where among

the distinguished sets the system state is located; for details

see the papers [50, 51]. The symptom vector was assumed as

a 3-dimensional vector whose coordinates designate the ab-

solute values of control, resistance to motion, and velocity, i.e.

|u( · )|, |H( · )|, and |ẏ( · )|, respectively. Diagnosis consisted

of recognizing two types of faults. The first was assumed to

be the reduction of maximum absolute value of the admissi-

ble control, which in practice indicates anomalies in the drive

system. The second type of diagnosed fault was taken to be

an increase in resistance to motion (whose values are strong-

ly dependent on velocity) – in practice this would indicate

that the displacement mechanisms are malfunctioning. Thus

the first type of fault to be diagnosed entailed recognizing

changes in the value of a single coordinate of the symptom

vector, while the second involved the relations among partic-

ular coordinates.

The results of these experiments positively verified the

concept presented above and confirmed the proper function-

ing of the statistical inference system designed here. In cas-

es where the symptoms appeared abruptly, the anomalies of

the device were promptly discovered and correctly recognized

within the scope of detection and diagnosis. If, on the oth-

er hand, the fault was accompanied by a slow progression of

symptoms, it was forecast with a correct indication of the type

of fault about to occur (scope of prognosis), and later it was

also discovered and identified in detection and diagnosis. One

should underline that fault prognosis, still rare in practical ap-

plications, proved to be highly effective in the case of slowly

progressing symptoms, discovering and identifying anomalies

before the object’s characteristics transgressed the range for

correct conditions for a system’s functioning, thanks to the

proper recognition of the change in the trend of values of the

symptom vector, which indicates an unfortunate direction of

its evolution.

This section also contains material included in the arti-

cles [52, 53] as well as worked on together with Malgorzata

Charytanowicz, Karina Daniel, Piotr A. Kowalski, and Cypri-

an Prochot, described in the common publications [43, 46–

48, 54].

5. Summary and final comments

In this paper a problem from the area of applications of non-

parametric estimation for control engineering tasks was con-

sidered. The subject of research was limited to the task of

estimation of density of distribution – a convenient and of-

ten used basic functional characteristic of a random variable.

Firstly an illustratory comparative analysis of most common

methods was carried out. Next the results were generalized

and synthetically presented for many years of author’s research

into the application of the most useful – for this purpose –

kernel estimators, in particular to the tasks of optimal para-

meter identification, as well as a fault detection system, after

considerations regarding the basic procedures for data analy-

sis and exploration: the recognition of outliers, clustering and

classification. The material collected here point to the great

possibilities of application of this methodology – convenient

for interpretation and implementing – in tasks of widely un-

derstood automatic control, as well as experimental research

confirmed its suitability.

Kernel estimators were also the subject of applicational in-

vestigations in practical problems of general systems analysis,

among others the demand-based design of an optimal base-

station system of wireless data transmission LMDS [55] and

the design of a marketing support strategy for a mobile phone

operator [54]. They were also successfully used for statistical

inference [56] and data exploration procedures [57]. These

cases, however, go beyond the assumed scope of this article.

The main ideas shown above were briefly described as

the conference-paper [58]. This work also contains material

widely presented in the book [5].
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world of science and research, distinctive for his own Cracov-

ian school of control engineering.
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