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Abstract. The synthesis problem for optimal control systems in the class of discrete controls is under consideration. The
problem is investigated by reducing to a linear programming (LP) problem with consequent use of a dynamic version of the
adaptive method of LP. Both perfect and imperfect information on behavior of control system cases are studied. Algorithms for
the optimal controller, optimal estimators are described. Results are illustrated by examples.
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1. Introduction

The first problems of optimal control stated by engineers
in 40’s of the last century were aimed at the synthesis
of closed-loop control systems with optimal feedbacks.
These problems were investigated for determined math-
ematical models under the assumption that exact values
of state variables had been known in the course of con-
trol processes. In addition, in optimal control problems
constraints on controls were of a great importance. At
present, optimal control theory reached a high level of de-
velopment including series of outstanding results among
which Pontryagin’s maximum principle and Bellman’s dy-
namic programming are the most important and generally
recognized. However, the problem of synthesis of opti-
mal systems which served as the initial impulse to origin
of optimal control theory has remained not completely
investigated. The suitable for synthesis of optimal feed-
backs dynamic programming encounters enormous com-
putational difficulties at synthesizing optimal systems of
high order due to the known “the curse of dimensional-
ity” phenomenon. To avoid “the curse of dimensionality”
at constructing optimal feedbacks under unknown but
bounded initial states and disturbances we use the on-line
control principle. As a result, in every particular process
of control an implementation of optimal feedbacks can be
constructed in real time.

Automatic control in real time (on-line control) repre-
sents one of the results of modern scientific and techno-
logical revolution. This principle is turned out to be an
effective supplement to the classical closed-loop control
principle. Unlike the latter, the on-line control principle
does not demand feedbacks to be synthesized before a
control process, it uses an idea of calculating feedbacks
current values in the course of control processes.

In the paper results on constructing implementations

of optimal state and output feedbacks in real time are pre-
sented. Under discussion are: open-loop and closed-loop
solutions of optimal control problems, linear extremal
problems accompanying observation processes, optimal
on-line controls.

2. Optimal open-loop solutions
Consider a linear optimal control problem

c′x(t∗) → max, ẋ = A(t)x + b(t)u, x(t∗) = x0, (1)

Hx(t∗) = g, |u(t)| ≤ 1, t ∈ T = [t∗, t∗].

Here x = x(t) ∈ Rn is a state vector of (1), u = u(t) ∈ R
is a control function, g ∈ Rm, rankH = m < n; A(t),
b(t), t ∈ T , are given piecewise continuous matrix and
vector function; t∗, t

∗, c, x0 are fixed. Problem (1) is the
simplest problem of optimal control theory but it is non-
trivial and includes principal elements of general optimal
control problems.

At first, we consider the problem of constructing op-
timal open-loop solutions in the class of discrete controls.
Let us give standard notions.

Definition 1. A function u(t), t ∈ T , is said to be
discrete (with a given quantization period h = (t∗−t∗)/N ,
N is a positive integer) if it has the form u(t) = u(t∗ +
kh), t ∈ [t∗ + kh, t∗ + (k + 1)h[, k = 0, N − 1.

Definition 2. A discrete control u(t), t ∈ T , is called
admissible if it together with a trajectory x(t), t ∈ T , of
system (1) satisfies the constraint |u(t)| ≤ 1, t ∈ T, and
the terminal condition x(t∗) ∈ X∗ = {x ∈ Rn : Hx = g}.

Definition 3. An admissible control u0(t), t ∈ T , is
said to be an optimal open-loop control of problem (1)
if the corresponding trajectory x0(t), t ∈ T , satisfies the
equality c′x0(t∗) = max c′x(t∗) where the maximum is
taken over all admissible controls.
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Let τ ∈ Th = {t∗, t∗+h, . . . , t∗−h}, z ∈ Rn. We imbed
problem (1) into the family of problems

c′x(t∗) → max, ẋ = A(t)x + b(t)u, x(τ) = z, (2)

Hx(t∗) = g, |u(t)| ≤ 1, t ∈ T (τ) = [τ, t∗],

depending on the position (τ, z). Let u0(t|τ, z), t ∈ T (τ),
be an optimal open-loop control of problem (2), Xτ be a
set of z ∈ Rn for which problem (2) has solutions at fixed
τ ∈ Th.

Definition 4. A function

u0(τ, z) = u0(τ |τ, z), z ∈ Xτ , τ ∈ Th, (3)

is said to be an optimal (discrete) control of feedback type
to problem (1) (the positional solution).

Close system (1) by feedback (3) and consider its be-
haviour under a piecewise continuous disturbance w(t),
t ∈ T :

ẋ = A(t)x + b(t)u0(t, x) + w(t), x(t∗) = x0. (4)

We define a trajectory x(t), t ∈ T , of (4) as a continuous
solution of the linear equation ẋ = A(t)x + b(t)u∗(t) +
w(t), x(t∗) = x0, where u∗(t) = u0(t∗ + kh, x(t∗ +
kh)), t ∈ [t∗ + kh, t∗ + (k + 1)h[, k = 0, N − 1.

The classical statement of the optimal synthesis prob-
lem assumes the construction of function (3) in an explicit
form and before the process starting. To pass to on-line
control we consider a particular process and assume that
optimal feedback (3) has been constructed. Consider the
behaviour of closed system (4) with an unknown piecewise
continuous disturbance w∗(t), t ∈ T . Let x∗(t), t ∈ T , be
the corresponding trajectory of the closed system

ẋ∗(t) = A(t)x∗(t) + b(t)u0(t, x∗(t)) + w∗(t), (5)

t ∈ T, x(t∗) = x∗
0.

In the course of process the signals u∗(t) = u0(t, x∗(t)),
t ∈ T , are fed to the input of the control system. As
it is obvious from (5), there is no need to calculate op-
timal feedback (3) in all the domain of definition, it is
sufficient to obtain its values along the isolated trajec-
tory x∗(t), t ∈ T . Moreover, it is sufficient at each cur-
rent instant τ ∈ Th to calculate only its current values
u∗(τ) = u0(τ, x∗(τ)) for the time which does not exceed
h (in real-time mode). We call these signals an implemen-
tation of the optimal feedback.

A device which is able to fulfill this work is called Op-
timal Controller (OC).

Thus, the optimal synthesis problem is reduced to con-
structing an algorithm for OC. In the class of discrete
controls the problem (1) is equivalent to the linear pro-
gramming problem∑

t∈Th

c(t)u(t) → max, (6)

∑
t∈Th

d(t)u(t) = g0, |u(t)| ≤ 1, t ∈ Th.

Here

c(t) =
∫ t+h

t

ψ′
c(ϑ)b(ϑ)dϑ, d(t) =

∫ t+h

t

G(ϑ)b(ϑ)dϑ,

g0 = g − Hx0(t∗),

x0(t), t ∈ T , is a trajectory of (1) with u(t) = 0, t ∈ T ;
ψc(t), t ∈ T , is a solution to the adjoint equation

ψ̇ = −A′(t)ψ, ψ(t∗) = c; (7)

G(t), t ∈ T , is a given m × n-matrix function

Ġ = −GA(t), G(t∗) = H.

At small h the matrix of the condition of problem (6)
(d(t), t ∈ Th) is large and has a high density. For that
reason traditional methods of LP for (6) are not quite
effective if h is small. To solve problem (6) a dynamic
version of the adaptive method was elaborated [1]. A new
parameterization of the optimal open-loop controls (opti-
mal programs) is the base of the dynamic version of the
adaptive method. If in Pontryagin’s maximum principle
an optimal control problem is parameterized by an ini-
tial state of the adjoint system then in the suggested ap-
proach switching points of optimal programs are chosen as
parameters. At use of the classical parameterization it is
necessary to integrate primal and adjoint systems on the
whole inteval of control. A new parametrization allows to
do with integrating the adjoint systems (7) on small time
interval where switching points are shifted. As in opti-
mal control to dynamic systems the main time expense is
connected with the integration of differential equations,
then the suggested method of the solution of (6) quickly
obtains the switching points of a new optimal program
u0(t|τ, x∗(τ)), t ∈ T (τ), using the information on switch-
ing points of the optimal program u0(t|τ − h, x∗(τ − h)),
t ∈ T (τ − h).

The main tool of the method is a base Tb. This is a
set {t1, . . . , tm} consisting of m moments of the discrete
interval Th.

Definition 5. A set Tb is said to be a base if the ma-
trix Db =

(
d(t), t ∈ Tb

)
is nonsingular. The matrix Db is

called the basic matrix.
The basic matrix can be constructed using one inte-

gration of primal (1) or adjoint (7) systems if m processors
are used. Every base Tb is accompanied by
1) the vector of Lagrange’s multipliers ν = ν(I), I =
{1, 2, . . . ,m} that is a solution of the equation ν′Db =
c′b, cb = (c(t), t ∈ Tb),
2) co-trajectory ψ(t), t ∈ T , that is a solution of

ψ̇ = −A′(t)ψ, ψ(t∗) = c − H ′ν,

3) co-control

∆(t) =
∫ t+h

t

ψ′(ϑ)b(ϑ)dϑ, t ∈ Th,

4) pseudocontrol ω(t), t ∈ T . Nonbase values ω(t), t ∈
Tnonb = Th\Tb, are defined as

ω(t) = −1 at ∆(t) < 0; ω(t) = 1 at ∆(t) > 0;
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ω(t) ∈ [−1, 1] at ∆(t) = 0, t ∈ Tnonb.

Base values ω(t), t ∈ Tb, of the pseudocontrol satisfy the
equation ∑

t∈Tb

d(t)ω(t) +
∑

t∈Tnonb

d(t)ω(t) = g0.

5) quasicontrol ω̃(t), t ∈ T : ω̃(t) = ω(t), t ∈ Tnonb;
ω̃(t) =sat ω(t), t ∈ Tb.

Any quasicontrol ω̃(t), t ∈ T , produces a discrepancy
of endpoint constraints g̃(Tb) = ‖g −Hx̃(t∗)‖ where x̃(t),
t ∈ T , is a trajectory of system (1) generated by ω̃(t),
t ∈ T .

A base Tb is said to be regular if ∆(t) 6= 0, t ∈ Tnonb.
A base Tb is called optimal if it is accompanied by some
pseudocontrol which satisfies the condition

|ω(t)| ≤ 1, t ∈ Tb. (8)

In case (8), ω(t), t ∈ T , is the optimal open-loop control.
On the base of introduced concepts several methods of

constructing optimal open-loop controls for problem (1)
were justified [1 – 4].
Example 1. Open-loop controls. Consider the optimal
control problem∫ 25

0

u(t)dt −→ min, 0 ≤ u(t) ≤ 1, t ∈ [0, 25[,

ẋ1 = x3, ẋ2 = x4,

ẋ3 = −x1 + x2 + u, ẋ4 = 0.1x1 − 1.02x2 (9)

x1(0) = x2(0) = 0, x3(0) = 2, x4(0) = 1,

x1(25) = x2(25) = x3(25) = x4(25) = 0.

If we interpret u(t) as a fuel consumption per second, then
problem (9) is to damp oscillations of a two-mass system
with the minimal fuel consumption. The problem (9) was
solved with the quantization period h = 25/1000 = 0.025.
As an initial base, a set Tb = {5, 10, 15, 20} was taken.

The problem of effectiveness of methods is principal
in constructive theory of optimal control. It is not always
reasonable to estimate the effectiveness of methods by the
amount of iterations because different methods consist of
different types of iterations. It is more natural to use as
the measure of effectiveness the quantity of full integra-
tions of the primal and the adjoint systems which are used
to construct the optimal solution [5]. In the case, as a unit
of complexity, one can take one integrations on the whole
control interval T .

In problem (9) the complexity of the algorithm turned
out to be equal to 2.41 (one integration was used to con-
struct Db, one to test optimality conditions and only 0.43
of the complete integration to obtain the optimal open-
loop control).

3. Optimal positional solutions
Suppose that OC has been acting during the time {t∗, t∗+
h, . . . , τ} producing control signals u∗(t∗), u∗(t∗ +h), . . . ,

u∗(τ). These signals and realized disturbances w∗(t∗),
w∗(t∗ + h), . . . , w∗(τ) transfer the dynamical system at
τ +h in the state x∗(τ +h). The task of OC at τ +h is to
calculate a current signal u∗(τ +h) = u0(τ +h, x∗(τ +h)).
By assumption, at the previous moment τ OC calculated
u∗(τ) , i.e. it solved the problem∑

t∈Th(τ)

c(t)u(t) → max, (10)

∑
t∈Th(τ)

d(t)u(t) = g − G(τ)x∗(τ),

|u(t)| ≤ 1, t ∈ Th(τ),

and it knows the optimal base T 0
b (τ). Problem (10) at

the initial moment τ = t∗ coincides with (1) and can be
solved by OC before the beginning of the real control pro-
cess to get T 0

b (t∗), u∗(t∗). The current state x∗(τ + h) is
connected with the previous state x∗(τ) by the Cauchy
formula

x∗(τ + h) = F (τ + h)F−1(τ)x∗(τ)+∫ τ+h

τ

F (τ + h)F−1(t)b(t)dtu∗(τ)+

+
∫ τ+h

τ

F (τ + h)F−1(t)w∗(t)dt.

Here F (t), t > t∗, is fundamental matrix of (1), u(t) ≡ 0.
Because the value w∗(τ) is bounded, the difference be-
tween two states x∗(τ) and x∗(τ + h) is small. Therefore
the problem ∑

t∈Th(τ+h)

c(t)u(t) → max,

∑
t∈Th(τ+h)

d(t)u(t) = g − G(τ + h)x∗(τ + h),

|u(t)| ≤ 1, t ∈ Th(τ + h),

that OC has to solve at τ + h differs from (10) a little if
h is small. At such situation the dual method under con-
sideration [1] is very effective. OC uses T 0

b (τ) as an initial
base Tb(τ + h), constructs the optimal base for T 0

b (τ + h)
and calculates u∗(τ + h).
Example 2. Positional control. Let the perturbed
system (9) be closed by the optimal feedback u∗ =
u0(x1, . . . , xn),

ẋ1 = x3, ẋ2 = x4, ẋ3 = −x1 + x2 + u, (11)

ẋ4 = 0.1x1 − 1.02x2 + w

where the unknown for OC disturbance has the form

w∗(t) = 0.3 sin 4t, t ∈ [0, 9.75[; w∗(t) ≡ 0, t ≥ 9.75.

In this example the complexity of the correction of
current bases by the dual method does not exceed 0.02.
It means that the computer calculated u∗(τ) for the time
less than 0.02α where α is the computer time for one in-
tegration of system (11) on T .
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4. Optimal on-line control for dynamical
system under uncertainty

On the interval T = [t∗, t∗] consider the system

ẋ = A(t)x + B(t)u + M(t)w. (12)

Here A(t) ∈ Rn×n, B(t) ∈ Rn×r, M(t) ∈ Rn×nw ,
t ∈ T, are given piecewise continuous matrix functions;
x = x(t) ∈ Rn is a state of the control system at an instant
t; u = u(t) ∈ U ⊂ Rr is a value of a discrete control with
a quantization period h: u(t) ≡ u(τ), t ∈ [τ, τ + h[, τ ∈
Th = {t∗, t∗ + h, . . . , t∗ − h}, (h = (t∗ − t∗)/N , (N > 0),
U = {u ∈ Rr : u∗ ≤ u ≤ u∗} is a bounded set ; w = w(t),
t ∈ T , is a disturbance function w(t) = Λ(t)v, t ∈ T,
where Λ(t) ∈ Rnw×nv is a given piecewise continuous ma-
trix function; v ∈ Rnv is a vector of disturbance param-
eters taking values from a bounded set V = {v ∈ Rnv :
w∗ ≤ v ≤ w∗}.

Assume that the initial state x(t∗) of system (12) is
an unknown element of a bonded set X0 ⊂ Rn. Let

X0 = x0 + GZ,

where x0 ∈ Rn, G ∈ Rn×nz are an known vector and a
matrix; Z = {z ∈ Rnz : d∗ ≤ z ≤ d∗} is a bounded set
of unknown parameters z of the initial state x(t∗).(d∗, d∗

are given)
Let the measurement device be of the form

y(θ) =
∫ θ

θ−h

C(t)x(t)dt + R(θ)ξ(θ), θ ∈ Th \ t∗, (13)

where C(t) ∈ Rq×n, t ∈ T , is a given piecewise continuous
matrix function; R(θ) ∈ Rm×nξ , θ ∈ Th \ t∗; y(θ) ∈ Rq,
θ ∈ Th \ t∗, is an output signal of (16) ; ξ(θ) ∈ Rnξ ,
θ ∈ Th \ t∗, are measurement errors satisfying

ξ∗ ≤ ξ(θ) ≤ ξ∗, θ ∈ Th \ t∗; 0 < ‖ξ∗ − ξ∗‖ < ∞.

Discrete closed-loop control of system (12) is per-
formed in the following way. On the interval [t∗, t∗ + h[
the control function u(t) ≡ u(t∗), t ∈ [t∗, t∗ + h[, is fed to
the input of system (12) where u(t∗) ∈ U is chosen upon a
priori information. At the instant τ = t∗+h measurement
device (13) obtains the first signal y(t∗ +h), generated by
the realized initial state x(t∗), the error ξ(t∗) and the dis-
turbance w(t), t ∈ [t∗, t∗ + h[. Using the signal y(t∗ + h),
a vector u(t∗ + h) = u(t∗ + h, y(t∗ + h)) ∈ U is chosen
following the rules selected in advance (before the process
starting). The control function u(t) ≡ u(t∗ +h) is fed into
system (12) for t ∈ [t∗ + h, t∗ + 2h[. This control and the
realized disturbance w(t), t ∈ [t∗+h, t∗+2h[, transfer the
system into the state x(t∗ + 2h), and together with the
error ξ(t∗ + 2h) generate the output signal y(t∗ + 2h). At
arbitrary moment τ ∈ Th \ t∗, based on the measured out-
put signal y(τ), a vector u(τ) = u(τ, yτ (·)) ∈ U is chosen
and the control function u(t) ≡ u(τ), t ∈ [τ, τ + h[, is fed
into the control system.

Here yτ (·) = (y(θ), θ ∈ Th(τ)), Th(τ) = {t∗ + h, t∗ +
2h, . . . , τ}.

Let Yτ be a set of all output signals yτ (·) of (13) that
can be obtained by the moment τ .

Definition 6. A functional

u = u(τ, yτ (·)), yτ (·) ∈ Yτ , τ ∈ Th \ t∗, (14)

and the control functions u(t, yt(·)) ≡ u(τ, yτ (·)) ∈ U ,
t ∈ [τ, τ + h[, τ ∈ Th \ t∗, generated by (14), are said to
be a feedback for system (12) under uncertainty.

Let X(t∗|ut∗(·, yt∗(·))) be a set of all terminal states
of the closed system

ẋ = A(t)x + B(t)u(t∗) + M(t)w, t ∈ [t∗, t∗ + h[;

ẋ = A(t)x + B(t)u(t, yt(·)) + M(t)w, t ∈ [t∗ + h, t∗];

with all possible initial states x(t∗), disturbances w(t),
t ∈ T , and errors ξ(τ), τ ∈ Th \ t∗, able to generate the
signal yt∗(·).

Introduce a terminal set X∗ = {x ∈ Rn : g∗ ≤ Hx ≤
g∗}, where H ∈ Rm×n, g∗ < g∗ are given. Feedback con-
trol (14) is called admissible if X(t∗|ut∗(·|yt∗(·)) ⊂ X∗.
Evaluate the quality of admissible control by the func-
tional

J(u) = min c′x, x ∈ X(t∗|ut∗(·|yt∗(·)) (c ∈ Rn).

Definition 7. An admissible feedback u0(τ, yτ (·)),
yτ (·) ∈ Yτ , τ ∈ Th \ t∗, is said to be optimal if J(u0) =
max J(u), where the maximum is calculated over all ad-
missible feedbacks (14).

According to the definition, the introduced optimal
feedback provides the best result under the worst condi-
tions (optimal guaranteed feedback).

4.1. Optimal on-line control. Now we describe the
optimal on-line control principle for a concrete control
process where a signal y∗(θ), θ ∈ Th, would be realized.
The control process starts at the moment τ = t∗ with
the control u∗∗(t) = u0(t∗), t ≥ t∗, where u0(t), t ∈ T , is
an optimal open-loop control constructed on the a priori
information. At the instant τ = t∗ + h the measurement
signal y∗(t∗ + h) is obtained. Using it, a control signal
u∗(t∗ +h) is calculated in time s(t∗ +h) < h. The control
function u∗∗(t) = u0(t∗) is fed into the control system on
the interval [t∗ + h, t∗ + h + s(t∗ + h)[. Starting from the
moment t∗ + h + s(t∗ + h), the control function switches
on u∗∗(t) = u∗(t∗ + h).

At an arbitrary τ the control function

u∗∗(t) = u0(t∗), t ∈ [t∗, t∗ + h + s(t∗ + h)[;

u∗∗(t) = u∗(ϑ), t ∈ [ϑ + s(ϑ), ϑ + h + s(ϑ + h)[,

ϑ ∈ {t∗ + h, t∗ + 2h, . . . , τ − 2h};

u∗∗(t) = u∗(τ − h), t ∈ [τ − h + s(τ − h), τ [;

has been fed into the input of (12) and a current mea-
surement y∗(τ) is obtained. The calculation of the con-
trol signal u∗(τ) = u00(τ, y∗

τ (·)) is required to be made in
time s(τ) < h. Before it is calculated the previous signal
u∗(τ − h) is fed into the system.
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To describe the rules for the calculation of u∗(τ), we
will present the signal y∗(τ) in the form

y(τ) =
∫ τ

τ−h

C(t)(xw(t) + xu(t))dt + R(τ)ξ(τ),

where xw(t), t ∈ [t∗, τ ], is a trajectory for

ẋ = A(t)x + M(t)w, x(t∗) = Gz, (15)

xu(t), t ∈ [t∗, τ ], is a trajectory for

ẋ = A(t)x + B(t)u, x(t∗) = x0, (16)

with u(t) ≡ u∗∗(t), t ∈ [t∗, τ [. Omitting the known part of
the trajectory xu(t), t ∈ [τ − h, τ ], from the signal y∗(τ),
we obtain

y∗
0(τ) = y∗(τ) −

∫ τ

τ−h

C(t)xu(t)dt.

Thus, the signal y∗
0τ (·) = (y∗

0(θ), θ ∈ Th(τ)\t∗) is available
by τ . It coincides with the signal that would be obtained
by measurement device (13) for (15) and represents addi-
tional information about the parameter vector realized in
the process. This information is contained in a posteriori
distribution.

A set Γ̂(τ) = Γ̂(τ ; y∗
0τ (·)) is called a posteriori dis-

tribution of parameters (z, v) if and only if it consists of
vectors γ = (z, v) ∈ Γ = Z×V , to which there correspond
the initial state x(t∗) = Gz of (15) and the disturbance
w(t) = Λ(t)v, t ∈ [t∗, τ [, able together with some errors
ξ(θ), θ ∈ Th(τ), to generate y∗

0τ (·).
A control uτ (·) = (u(t), t ∈ [τ, t∗]) is called an admissi-

ble open-loop control if for every γ ∈ Γ̂(τ) at the moment
t∗ it together with u∗∗(t), t ∈ [t∗, τ [, transfer system (12)
to X∗, i.e.

g∗i ≤ minh′
(i)(xw(t∗) + xu(t∗)); (17)

max h′
(i)(xw(t∗) + xu(t∗)) ≤ g∗i ; i = 1,m;

where h(i) is the i-th row of the matrix H, g∗i , g∗i are the
i-th components of g∗, g∗; xu(t∗) is a terminal state of (16)
under u(t) = uτ (t), t ∈ [τ, t∗[. Let X̂∗

w(τ) be a set of all
terminal states xw(t∗) of (15) generated by (z, v) ∈ Γ̂(τ).
The problems arising in (17)

χ∗
i (τ) = max h′

(i)x, x ∈ X̂∗
w(τ), i = 1,m; (18)

χ∗i(τ) = min h′
(i)x, x ∈ X̂∗

w(τ), i = 1,m;

are called extremal problems accompanying the optimal
control problem under uncertainty.

Thus, for the control uτ (·) to be admissible for
(τ, y∗

0τ (·)) it is necessary and sufficient that at τ = t∗ it
moves determined system (16) with the initial condition
x(τ) = xu(τ) to the set X∗(τ) = {x ∈ Rn : g∗(τ) ≤ Hx ≤
g∗(τ)}, where g∗(τ) = g∗−χ∗(τ), g∗(τ) = g∗−χ∗(τ) . Let
the quality of the admissible control uτ (·) is evaluated by
I(u) = min c′x(t∗), γ ∈ Γ̂(τ). Then the optimal open-loop
control uτ0(·) = u0(t|τ, y∗

τ (·)), t ∈ [τ, t∗], is a solution to
the problem

c′x(t∗) → max, ẋ = A(t)x + B(t)u, x(τ) = xu(τ), (19)

x(t∗) ∈ X∗(τ), u(t) ∈ U, t ∈ [τ, t∗].

We call (19) a determined problem of optimal control
accompanying the optimal control problem under un-
certainty. Let u∗(τ) = u0(τ |τ, y∗

τ (·)). On [τ, τ + h[ the
following control function is fed into the input of (12):
u∗∗(t) = u∗(τ − h), t ∈ [τ, τ + s(τ)[;u∗∗(t) = u∗(τ), t ∈
[τ + s(τ), τ + h[.

The optimal open-loop control u0(t), t ∈ T , introduced
above, is a solution to

c′x(t∗) → max, ẋ = A(t)x + B(t)u, x(t∗) = x0,

g∗ − χ∗i(t∗) ≤ Hx(t∗)g∗ − χ∗
i (t∗);

where

χ∗i(t∗) = min h′
(i)x, x ∈ X∗

w(t∗), i = 1,m;

χ∗
i (t∗) = max h′

(i)x, x ∈ X∗
w(t∗), i = 1,m;

X∗
w(t∗) is a set of all terminal states xw(t∗) of system (15)

for all possible parameters (z, v) ∈ Γ.
According to the scheme presented, to construct a con-

trol signal u∗(τ) one has to solve:
1) 2m accompanying extremal problems (18);
2) one determined problem of optimal control (19).

A device solving the accompanying extremal problems
is called Optimal Estimator (OE). If the time s(τ) needed
to OE and OC to solve problems (18) and (19) is less than
h, then we say that they are suitable for optimal on-line
control for the system under uncertainty.

Consider the problem

χ∗(τ) = min p′x, x ∈ X̂∗
w(τ), (20)

which includes accompanying extremal problems (18).
Problem (20) is equivalent to the linear programming
problem

p′zz+p′vv → max, ξ∗ ≤ y∗
0(θ)−D(θ)z−H(θ)v ≤ ξ∗, (21)

θ ∈ Th(τ), d∗ ≤ z ≤ d∗, w∗ ≤ v ≤ w∗;

where p′z = p′F (t∗), p′v = p′P (t∗),

D(θ) =

θ∫
θ−h

C(t)F (t)dt, H(t) =

θ∫
θ−h

C(t)P (t)dt;

F (t), t ∈ T : Ḟ = A(t)F, F (t∗) = G; P (t), t ∈ T :

Ṗ = A(t)P + M(t)Λ(t), P (t∗) = 0.

Problem (21) has (τ − t∗)/h + 1 general constraints
and nz + nv variables. Taking into account that number
of the general constraints tends to infinity at h → 0, one
can call problem (21) a semi-large extremal problem. The
algorithm for the suitable OE is based on the dual adap-
tive method of LP. The main operations of the method
follow the scheme proposed in [6].

OC and OE can work in parallel when before the con-
trol process starting, they solved problems (18), (19) using
a priori information and preserving the results. At an ar-
bitrary τ they use the information obtained for τ−h. And
the problem of on-line control is reduced to the fast cor-
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Fig. 1. The linear estimates

Fig. 2. Projections of optimal trajectories on the planes xẋ
and φφ̇

rections of the solution of the problems (18), (19).
Another way of on-line control consists in calculating
χ∗i(t∗), χ∗

i (t∗), i ∈ I, on [t∗, t∗+h] and only after the fin-
ishing of these calculations at t∗ + max si(t∗), i ∈ I, the
optimal controller is involved to the process. As a result
in this case OC has a lag of value h with respect to E.
Example 3. Consider the control system which repre-
sents a mathematical half-model of the car

ẍ = −2.1x + 0.31ϕ − u1 + u2 + w1, (22)
ϕ̈ = 0.93x + 6.423ϕ + 1.1u1 + 0.9u2 + w2, t ∈ T = [0, 15],

with x(0) = 0.1, ϕ(0) = 0 and unknown ẋ(0) = z1,
ϕ̇(0) = z2: (z1, z2) ∈ Z = {z ∈ Z : |z1| ≤ 0.1, |z2| ≤
0.33}, and disturbances of the form w1(t) = v1 sin(4t),
w2(t) = v2 sin(3t), t ∈ T : (v1, v2) ∈ V = {v ∈ R2 :
|vi| ≤ 0.01, i = 1, 2}. Let the sensor at moments t ∈ Th =

{0, h, . . . , 15 − h}, h = 0.02, satisfies

y1 = −x + l1ϕ + ξ1, y2 = x + l2ϕ + ξ2,

where ξi = ξi(t), |ξi(t)| ≤ 0.01, t ∈ Th, are bounded er-
rors.

The aim of control is to transfer system (22) at t∗ = 15
to the sets X∗ = {x ∈ R2 : |x1| ≤ 0.05, |x2| ≤ 0.1}; Φ∗ =
{ϕ ∈ R2 : |ϕ1| ≤ 0.05, |ϕ2| ≤ 0.2}; (0 ≤ ui(t) ≤ 0.02),
i = 1, 2, t ∈ T ; minimizing the functional

J(u) =
∫ 15

0

(u1(t) + u2(t))dt.

Let in a concrete control process z∗1 = −0.1; z∗2 =
0.33; v∗

1 = −0.005; v∗
2 = 0.01; ξ∗1(t) =

0.01 cos(2t), ξ∗2(t) = −0.01 cos(4t), t ∈ Th. The opti-
mal value of the cost function turned out to be equal to
0.104. The complexity of iterations did not exceed 0.043.

The Figure.1 presents the plots for the linear estimates
χ∗i(τ), χ∗

i (τ), i = 1, 2; t ∈ [0, 2]. When t > 1.52 values
χ∗i(τ), χ∗

i (τ), i = 1, 2, almost coincide. The projections
of optimal trajectories on the planes xẋ and ϕϕ̇ are given
in Figure 2.

Remark. The problem of guaranteed control of dy-
namical systems under not finite parametric disturbances
with set-membership constraints generates several type
of optimal feedbacks. In dependence on the used infor-
mation unclosable, one-time-closable, multi-closable feed-
backs are usually investigated [7].

5. Conclusion
An approach to the synthesis problem of optimal control
of feedback type is discussed. Algorithms for controllers
which calculate values of optimal feedbacks during each
particular control process in real-time are considered. A
linear systems with unknown (but bounded) initial states,
disturbances and errors of the measurement device are
investigated. Linear extremal problems are introduced
which generate in real-time estimates used by OC.
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