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Pitch shifter based on complex dynamic representation rescaling
and direct digital synthesis
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Abstract. In this paper a new pitch shifter using a complex instantaneous frequency rescaler and direct digital synthesizer is presented aimed
at an application in a handset calling signal composer. The pitch shifter introduced here exhibits an excellent performance as a generator of
different melodies, where the sound of each note in a melody, e.g., imitating a popular hit, is derived from a short recording of a voice of a
chosen creature via complex dynamic representation processing.
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1. Introduction

With the advent of commercial worldwide information sys-
tems an interest arises, especially among young mobile hand-
set holders, in having at disposal unusual, original, and amus-
ing individual calling signals. Our paper contains a proposal of
creating such signals.

Up to now the most popular calling signals in use have
been segments of digitized melodies generated by electronic
musical instruments. Our proposal generalizes this for sounds
generated by a chosen creature.

The core of the concept lies in composing a melody dig-
itally from a set of sounds (the musical scale) derived on the
basis of a short record of a living creature voice, e.g., a canary
chirp [1]. The set is created using an original pitch-shifting
method applied to the basic record. The method consists in
complex dynamic representation (CDR) modification (scaling)
and direct digital synthesis (DDS) [2], [3,4]. Ordering of the di-
atonic scale is performed using the MIDI (Musical Instrument
Digital Interface standard) note number to frequency conver-
sion chart. In this way a scale of sounds is created having
the same shape of the CDR real-valued components but dif-
ferent magnitude introduced using different pitch-shifting fac-
tors. The semitones of our scale are assigned to the notes of the
composed melody.

The utility of the proposed method is illustrated by an ex-
ample of a calling signal record. The pitch shifter introduced
here exhibits an excellent performance as a generator of dif-
ferent melodies, where the sound of each note in a melody is
derived from a short recording of a voice of a chosen creature
via the CDR processing.

2. The proposed pitch-shifting method

Figure 1 shows a block scheme of the processing aimed at
pitch shifting of a real-valued bandlimited discrete-time sound

record

{x} ∆= {x[n]}N−1
n=0 = {x[0], x[1], . . . , x[N − 1]} (1)

where
x[n] = a[n] cos ϕ[n] (2a)

represents a primary continuous-time signal

x(t) = a(t) cos ϕ(t) (2b)

uniformly discretised with a sampling periodT in seconds. In
(2a) a[n] is the instantaneous amplitude andϕ[n] is the in-
stantaneous phase ofx[n]. The right-hand side of (2b) is the
so-called AM· FM representation of an arbitrarily modulated
signalx(t), wherea(t) is the AM factor andcosϕ(t) is the FM
factor.

In order to convert the signalx[n] into polar form and next
to define its instantaneous angular frequency one has to create
a complex Hilbertian signal (HS) [5–7], otherwise called the
Hilbertian equivalent ofx[n]

xH [n]
∆= x[n] + jx̃[n] (3)

whose real part isx[n]. The imaginary part ofxH [n]

x̃[n]
∆= HH{x[n]} (4)

is the Hilbert transform ofx[n]. The linear operatorHH in (4)
is known under the name of Hilbert transformer (HT). Its ideal
frequency response is defined as

HH(f)
∆=−j sgn(f), 0 < |f | < 0.5 (5)

wheref = FT stands for the ’digital’ (normalised) frequency,
F stands for the physical frequency in Hz,T is the sampling

period andj2 ∆=−1.
It is further assumed that the AM· FM factors ofx[n] ful-

fill the Bedrosian theorem which states that the Hilbert trans-
form of the product of two signals with nonoverlapping spectra
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equals the product of the low-pass term by the Hilbert trans-
form of the high-frequency term. In other words, only the high-
frequency term is transformed [6,7].

On the grounds of the Bedrosian theorem, the imaginary
partx̃[n] of xH [n] (3) can be written as

x̃[n] = a[n] sin ϕ[n] (6)

and the complex HS,xH [n], for x[n] is given by

xH [n] = a[n]{cosϕ[n] + j sinϕ[n]}
= a[n] exp(jϕ[n])

(7)

The instantaneous angular frequency (IF) [8] of the HS (7), as
well as ofx[n], is defined as

ω[n]
∆=

dϕ(t)
dt

∣∣∣∣
t=nT

(8)

In our experiments, in Sect. 3, we create the Hilbertian signal
xH [n] by using a digital linear-phase FIR (finite impulse re-
sponse) Hilbert filter (HF in Fig. 1), approximating the ideal
frequency response

H(f)
∆=

{
2, 0 < f < 0.5

0, −0.5 < f < 0 (9)

The impulse response of the HF is complex-valued. The IF
ω[n] (8) ofxH [n] is estimated digitally by the IFE, the instanta-
neous angular frequency estimator in Fig. 1, without any need
to resort to the primary continuous signalx(t). We have used
the following estimator

ω[n] = Arg(xH [n]x∗H [n− 1]) ∈ [−π, π)
rad

sample
(10)

for the IFE block, where Arg() stands for the principal value of
the argument of the product in parantheses and asterisk stands
for the complex conjugate.

The instantaneous amplitude (otherwise called envelope)
a[n] of xH [n] is defined as

a[n] = |xH [n]| (11)

It is estimated in Fig. 1 by the IAE – an instantaneous am-
plitude estimator.

Further on we call the pair

λ[n]
∆= ln a[n] and ω[n] (12)

complex dynamic representation (CDR) ofx[n]. The CDR has
two real-valued components. The first of them,λ[n], is the in-
stantaneous level otherwise called log-envelope of the Hilber-
tian signalxH [n] and the second,ω[n], is the instantaneous
angular frequency ofxH [n]. The CDR components represent
the HS corresponding to the primary real-valued signalx(t).

By the following remapping of the CDR

λ[n], ω[n] ⇒ λκ[n] = κλ[n] + λ0, ωκ[n] = κω[n] (13)

we obtain a new CDR having the components:λκ[n] and
ωκ[n]. This CDR modification, which constitutes the core pro-
cessing block in Fig. 1 indicated by broken line, results in pitch
shifting of a given sound signalx[n] with a pitch modification
(scaling) factorκ > 0. As a result of the CDR rescaling in ac-
cordance with (13) not only the pitch but also the instantaneous
levelλ[n] responsible for audibility of the sound is changed. In
order to counteract the latter, the maximal value of the instan-
taneous level change has to be compensated for by adding to
κλ[n] a correction termλ0(κ), as seen in Fig. 1, computed by
using

λ0(κ)
∆= λmax(1− κ)

whereλmax stands for the maximal level of the primary signal.
Hence, in Fig. 1, firstly, the input signalx[n] is filtered by

the HF. Next the filtered signal is mapped into its CDR{λ, ω}.
The CDR components are extracted using the IAE,ln(·) and
IFE blocks. Further on both CDR components are multiplied
by the same coefficientκ having a positive value as above and
the instantaneous levelκλ[n] undergoes the above-mentioned
correction byλ0(κ). Finally, after this remapping, performed
in accordance with (13), the new CDR,{λκ, ωκ}, is demapped
into the target pitch-shifted sound signal record{xκ} using the
DDS shown in Fig. 2a.

The main processing block of the DDS is phase accumula-
tor (PA). Functioning of the PA is presented in Fig. 2b. Driven
by ωκ[n] the PA wraps the instantaneous phase to the interval
ϕp[n] ∈ [−π, π)∀n (principal phase wind).

Fig. 1. Block scheme of the processing of a discrete-time sound record aimed at pitch-shifting with pitch scaling factorκ
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Fig. 2. DDS basic architecture (a) with the phase accumulator opera-
tion (b) revealed

It is worth emphasizing that the fundamentals of the HS ap-
plication to sound processing were formulated in [9] and [10].
Also in [11] examples of shifting the spectrum of an analytic
audio signal are given, where, however, similarly as in [9] and
[10], the instantaneous amplitude (IA) remained unaffected.
Opposite to that the original method and algorithm conceived
here do not violate the amplitude-phase relationships typical
of natural signals (speech sounds, animal voices, etc.). This is
achieved by simultaneous modification via remapping of both:
the IA and IF.

Fig. 3. Exemplary waveforms of a canary song processed via CDR
remapping aimed at pitch down shifting withκ = 1/10: (a) in-
put waveform{x}, (b) remapped waveform{xκ} and (c) demapped

waveform{x̂}

Our approach applied in the aim of pitch rescaling, guar-
antees invertibility of the proposed pitch-shifter even for
very small values of the pitch modification factorκ. Such
a favourable result has been reached yet neither in a phase
vocoder nor in the processing of the IA or the IF solely.

Fig. 4. Normalized magnitude spectra of signals from Figs. 3a, 3b
and 3c, respectively, and magnitude response of an FIR Hilbert filter

of length 229 (d) used here
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An important issue is that only the complete CDR process-
ing assures the recovery of the original signal from its pitch-
shifted counterpart. However, the key for an implementation
to be a success lies in using, as a primary signal for generation
of the scale, a signal which, at least approximately, fulfills the
Bedrosian theorem.

3. Experiments

Firstly, we experimented with an exemplary waveform ful-
filling the above-mentioned Bedrosian theorem, in order to
show the abilities of the algorithm from Fig. 1. The algorithm
operates on-line. A recording of three consecutive chirps of
a canary song shown in Fig. 3a was processed. The results
are presented in Figs. 3b and 3c in the discrete-time domain,
and in Fig. 4 in the frequency domain. The processing was
aimed at pitch down shifting using the pitch modification fac-
tor κ = 1/10. It results in waveform expansion as well as si-
multaneous spectrum compression and down shifting, both by
a factor ofκ.

As depicted in Fig. 3b the remapped waveform became
expanded with a factor ofκ, relative to the input waveform
from Fig. 3a. Accordingly, the input signal spectrum magni-
tude, presented in Fig. 4a, changed into a compressed byκ,
as shown in Fig. 4b. This waveform was then demapped back
to κ = 1 and resynthesised. The demapped waveform is pre-
sented in Fig. 3c and the magnitude spectrum of this wave-
form is shown in Fig. 4c. It may be interesting to note that the
invertible operations of mapping and demapping work effec-
tively even for relatively great values ofκ, depending on the
oversampling ratio of the signal under processing, as well as
for very smallκ values, for example, forκ = 1/1000.

In our further experiments we processed a single chirp, the
first one from Fig. 3a. Fig. 5a shows this chirp of 3000 sam-
ples having 22.050 kHz sample rate. Figs. 5b and 5c present
the chirp AM · FM representation factors and Fig. 5d depicts
the chirp instantaneous angular frequency waveform. Next, we
computed amplitude spectra (Fig. 6) as well as spectrograms
(Fig. 7) in order to have better insight into the properties of the
chirp. The value of spectrograms lies in that they bring to light
the dependence of the signal spectrum properties on time.

Fig. 6 is very important. It reveals that the magnitude spectra
of the AM and FM factors of the canary chirp are practically
non-overlapping in their information bearing (useful) parts with
the approximate accuracy of – 30 dB, as seen in Fig. 6a.

The spectrograms in Figs. 7b and 7c disclose that it holds
for every instant of time. Moreover, Figs. 6 and 7 confirm that
the chirp after the processing by the algorithm from Fig. 1 can
be inverted back to the original one. The accuracy of this in-
version, see Fig. 6b, depends on the accuracy of approximation
of the ideal Hilbert filter frequency response (9) by its realis-
able counterpart. Further on, using the proposed pitch-shifting
method, incorporated into the algorithm from Fig. 1, and data
gathered in Table 1, we created the canary scale. Its perfor-
mance is shown in Figs. 8. Finally, on this basis we composed
a melody whose waveform, spectrogram scale and CDR com-
ponents are presented in Figs. 9, 10 and 11.

Fig. 5. The original canary sound record of 3000 samples (a), its AM
(b) and FM (c) factors, and instantaneous angular frequency (d) of the

chirp obtained by processing according to Fig. 1 withκ = 1
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Fig. 6. Magnitude spectra of AM (upper) and FM (lower) factors of
a canary chirp (a) and of original (upper) and recovered (lower) chirp
(b) after direct, according to Fig. 1, and inverse processing withκ = 1

Table 1
ISO note names, frequencies in Hz and MIDI note numbers; the

boldface number stands for the frequency relative to which all the
values of pitch scaling factorκ were computed

Pitch Frequency [Hz] MIDI

A4 440.000 69
A#4 466.164 70
B4 493.883 71
C5 523.251 72
C#5 554.365 73
D5 587.330 74
D#5 622.254 75
E5 659.255 76
F5 698.457 77
F#5 739.989 78
G5 783.991 79
G#5 830.609 80
A5 880.000 81

All our experiments were performed in the MATLAB en-
vironment.

4. Conclusions

The CDR processing introduced in this paper appears to be a
powerful means for pitch shifting of chirp-like sound signals
fulfilling practically the assumption of the Bedrosian theorem.
The quality of the CDR processing depends strongly on the
quality of the Hilbert filter. The role of this filter in Fig.1 is
twofold. Firstly, it creates a Hilbertian signal from a given real-
valued signal. Secondly, it serves as an antialiasing filter.

The CDR remapper as a pitch shifter can serve, e.g., for
entertainment. It exhibits an excellent performance as a gener-
ator of different melodies of calling signals, where the sound
of each note in a melody is derived from a short recording of a
voice of a chosen creature via the CDR processing.

Fig. 7. Spectrograms of a canary chirp (a), its AM factor (b) and FM
factor (c); frequency in Hz, time in seconds
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Fig. 8. Synthesised (a) canary scale and (b) its spectrogram

Fig. 9. Calling signal (a) synthesized by remapping original sound and
(b) its spectrogram

Fig. 10. Canary scale CDR components: (a) logenvelope and (b) in-
stantaneous angular frequency waveform

Fig. 11. Calling signal CDR components: (a) logenvelope and (b) in-
stantaneous angular frequency waveform
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