www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

10.24425/acs.2019.129386

Archives of Control Sciences
Volume 29(LXV), 2019
No. 2, pages 339-386

Dual hesitant Pythagorean fuzzy Bonferroni mean
operators in multi-attribute decision making

XIYUE TANG, GUIWU WEI

In this paper, we investigate the multiple attribute decision making problems based on
the Bonferroni mean operators with dual Pythagorean hesitant fuzzy information. Firstly, we
introduce the concept and basic operations of the dual hesitant Pythagorean fuzzy sets, which
is a new extension of Pythagorean fuzzy sets. Then, motivated by the idea of Bonferroni mean
operators, we have developed some Bonferroni mean aggregation operators for aggregating
dual hesitant Pythagorean fuzzy information. The prominent characteristic of these proposed
operators are studied. Then, we have utilized these operators to develop some approaches to
solve the dual hesitant Pythagorean fuzzy multiple attribute decision making problems. Finally,
a practical example for supplier selection in supply chain management is given to verify the
developed approach and to demonstrate its practicality and effectiveness.
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sets, dual hesitant Pythagorean fuzzy Bonferroni mean (DHPFBM) operator, dual hesitant
Pythagorean fuzzy geometric Bonferroni mean(DHPFGBM) operator, supplier selection, supply
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1. Introduction

Atanassov [1] introduced the concept of intuitionistic fuzzy set (IFS) char-
acterized by a membership function and a non-membership function, which
is a generalization of the concept of fuzzy set [2] whose basic component
is only a membership function. Xu [3] developed some aggregation opera-
tors, such as the intuitionistic fuzzy weighted averaging operator, intuition-
istic fuzzy ordered weighted averaging operator and intuitionistic fuzzy hy-
brid aggregation operator for aggregating intuitionistic fuzzy values and es-
tablished various properties of these operators [4] developed some new ge-
ometric aggregation operators, such as the intuitionistic fuzzy weighted geo-

Guiwu Wei (corresponding author) and Xiyue Tang are with School of Business, Sichuan Normal
University, Chengdu, 610101, P.R. China. E-mail: weiguiwu@ 163.com

This publication arises from research funded by the National Natural Science Foundation of China
under Grant No. 61174149 and 71571128 and the Humanities and Social Sciences Foundation of Ministry
of Education of the People’s Republic of China (No. 15XJA630006).

Received 25.02.2018. Revised 09.05.2019.



www.czasopisma.pan.pl P N www.journals.pan.pl
N
S~

340 X. TANG, G. WEI

metric (IFWG) operator, the intuitionistic fuzzy ordered weighted geometric
(IFOWG) operator and the intuitionistic fuzzy hybrid geometric (IFHG) op-
erator, which extend the WG and OWG operators to accommodate the envi-
ronment in which the given arguments are intuitionistic fuzzy sets which are
characterized by a membership function and a non-membership function. Li,
Gao and Wei [5] extended the Hamy mean (HM) operator, the Dombi Hamy
mean (DHM) operator, the Dombi dual Hamy mean (DDHM), with the in-
tuitionistic fuzzy numbers (IFNs) to propose the intuitionistic fuzzy Dombi
Hamy mean (IFDHM) operator, intuitionistic fuzzy weighted Dombi Hamy
mean (IFWDHM) operator, intuitionistic fuzzy Dombi dual Hamy mean (IFD-
DHM) operator, and intuitionistic fuzzy weighted Dombi dual Hamy mean
(IFWDDHM) operator. Xu and Yager [6] developed an intuitionistic fuzzy
Bonferroni Mean (IFBM) and discuss its variety of special cases. Su, Xia,
Chen and Wang [7] proposed a new aggregation operator called induced gen-
eralized intuitionistic fuzzy ordered weighted averaging (IG-IFOWA) opera-
tor. Agarwal, Hanmandlu and Biswas [8] defined a probabilistic and decision
attitude aggregation operator for intuitionistic fuzzy environment. More re-
cently, Pythagorean fuzzy set (PFS) [9, 10] has emerged as an effective tool
for depicting uncertainty of the MADM problems. The PFS is also charac-
terized by the membership degree and the non-membership degree, whose
sum of squares is less than or equal to 1, the PFS is more general than the
IFS. In some cases, the PFS can solve the problems that the IFS cannot,
for example, if a DM gives the membership degree and the non-membership
degree as 0.8 and 0.6, respectively, then it is only valid for the PFS. In
other words, all the intuitionistic fuzzy degrees are a part of the Pythagorean
fuzzy degrees, which indicates that the PFS is more powerful to handle the
uncertain problems. Zhang and Xu [11] provided the detailed mathematical
expression for PFS and introduced the concept of Pythagorean fuzzy num-
ber (PFN) and developed a Pythagorean fuzzy TOPSIS (Technique for Order
Preference by Similarity to Ideal Solution) for handling the MCDM prob-
lem within PFNs. Garg [12] proposed a novel correlation coefficient and
weighted correlation coefficient formulation to measure the relationship be-
tween two PFSs. Ma and Xu [13] defined some novel Pythagorean fuzzy
weighted geometric/averaging operators for Pythagorean fuzzy information,
which can neutrally treat the membership degree and the nonmembership de-
gree, and investigate the relationships among these operators and those ex-
isting ones. Peng and Yang [14] defined the Choquet integral operator for
Pythagorean fuzzy aggregation operators, such as Pythagorean fuzzy Cho-
quet integral average (PFCIA) operator and Pythagorean fuzzy Choquet in-
tegral geometric (PFCIG) operator and proposed two approaches to multi-
ple attribute group decision making with attributes involving dependent and
independent by the PFCIA operator and multi-attributive border approxima-



www.czasopisma.pan.pl P N www.journals.pan.pl
N
S~

DUAL HESITANT PYTHAGOREAN FUZZY BONFERRONI MEAN OPERATORS
IN MULTI-ATTRIBUTE DECISION MAKING 341

tion area comparison (MABAC) in Pythagorean fuzzy environment. Ren, Xu
and Gou [15] extended the TODIM (an acronym in Portuguese for Inter-
active Multi-criteria Decision Making) approach [16-20] to solve the multi-
criteria decision making (MCDM) problems with Pythagorean fuzzy informa-
tion. Zhang [21] developed a closeness index-based Pythagorean fuzzy QUAL-
IFLEX method to address hierarchical multicriteria decision making problems
within Pythagorean fuzzy environment based on PFNs and IVPFNs. Liang,
Xu and Darko [22] developed the Pythagorean fuzzy geometric Bonferroni
mean and weighted Pythagorean fuzzy geometric Bonferroni mean (WPFGBM)
operators describing the interrelationship between arguments and some spe-
cial properties of them are also investigated. Wei [23] utilized arithmetic and
geometric operations to develop some Pythagorean fuzzy interaction aggre-
gation operators: Pythagorean fuzzy interaction weighted average (PFIWA)
operator, Pythagorean fuzzy interaction weighted geometric (PFIWG) opera-
tor, Pythagorean fuzzy interaction ordered weighted average (PFIOWA) op-
erator, Pythagorean fuzzy interaction ordered weighted geometric (PFIOWG)
operator, Pythagorean fuzzy interaction hybrid average (PFIHA) operator and
Pythagorean fuzzy interaction hybrid geometric (PFIHG) operator. Bolturk
[24] developed the Pythagorean fuzzy extension of CODAS method. Li, Wei
and Lu [25] extended the Hamy mean (HM) operator and dual Hamy mean
(DHM) operator [25-28] with Pythagorean fuzzy numbers (PFNs) to pro-
pose Pythagorean fuzzy Hamy mean (PFHM) operator, weighted Pythagorean
fuzzy Hamy mean (WPFHM) operator, Pythagorean fuzzy dual Hamy mean
(PFDHM) operator, weighted Pythagorean fuzzy dual Hamy mean (WPFDHM)
operator. Wei and Lu [29] extended Maclaurin symmetric mean (MSM) op-
erator to Pythagorean fuzzy environment to propose the Pythagorean fuzzy
Maclaurin symmetric mean and Pythagorean fuzzy weighted Maclaurin sym-
metric mean operators. Wei and Lu [30] utilized power aggregation opera-
tors [31-33] to develop some Pythagorean fuzzy power aggregation operators:
Pythagorean fuzzy power average operator, Pythagorean fuzzy power geomet-
ric operator, Pythagorean fuzzy power weighted average operator, Pythagorean
fuzzy power weighted geometric operator, Pythagorean fuzzy power ordered
weighted average operator, Pythagorean fuzzy power ordered weighted geomet-
ric operator, Pythagorean fuzzy power hybrid average operator, and Pythagorean
fuzzy power hybrid geometric operator. Wei and Wei [34] presented 10 sim-
ilarity measures between Pythagorean fuzzy sets (PFSs) based on the cosine
function by considering the degree of membership, degree of nonmember-
ship and degree of hesitation in PFSs. Wei [35] utilized Hamacher opera-
tions and power aggregation operators to develop some Pythagorean fuzzy
Hamacher power aggregation operators. Nie, Tian, Wang and Hu [36] in-
vestigated an effective means to aggregate uncertain information and then
employ it into settling multiple criteria decision making (MCDM) problems
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within the Pythagorean fuzzy circumstances. Peng [37] presented an algo-
rithm for solving multi-criteria decision making (MCDM) problem based on
Weighted Distance Based Approximation (WDBA). Based on the traditional
VIKOR (Vise Kiriterijumska Optimizacija I Kompromisno Resenje) method
[38]of MCDM, Liang, Zhang, Xu and Jamaldeen [39] provided a new per-
spective of a compromised solution, which can handle the decision maker’s
psychological behavior by inducing TODIM (a Portuguese acronym meaning In-
teractive Multi-Criteria Decision Making). Khan, Khan, Shahzad and Abdullah
[40] presented the notion of Pythagorean cubic fuzzy sets in which the member-
ship degree and non-membership degree are cubic fuzzy numbers which hold
the conditions that the square sum of its membership degree is less than or
equal to 1.

Wei and Lu [41] proposed the concept and basic operations of the dual hesitant
Pythagorean fuzzy sets (DHPFSs), which are a new extension of PFS [42-47]
and have developed some Hamacher aggregation operators for aggregating dual
hesitant Pythagorean fuzzy information. It’s very evident that the DHPFSs consist
of two parts, that is, the membership hesitancy function and the non-membership
hesitancy function, supporting a more exemplary and flexible access to assign
values for each element in the domain, and we have to handle two kinds of
hesitancy in this situation. For example, in a MADM problem, some decision
makers consider as possible values for the membership degree of x into the set A
a few different values 0.4, 0.5, and 0.6, and for the non-membership degrees
0.1, 0.2 and 0.3 replacing just one number or a tuple. Utilizing DHPFSs can
take much more information into account, the more values we obtain from the
decision makers, the greater epistemic certainty we have, and thus, compared
to the existing sets, DHPFSs can be regarded as a more comprehensive set,
which supports a more flexible approach when the decision makers provide their
judgments.

All the above-mentioned information aggregating operators and measures are
based on the assumption that input arguments are independent and hence, in
sometimes, these input arguments may be unable to justify the decision maker
goals. On the other hand, in our real-life situation, it may be possible that there
are interactions among the different attributes in a MADM process. To address
such type of issues, Bonferroni mean (BM) operator [48] and geometric Bon-
ferroni mean (GBM) operator [49], has prominent characteristics to capture the
interrelationship among the multi-input arguments. In the past few years, the BM
and GBM have received more and more attentions, many important results both
in theory and application are developed [50-58]. Therefore, by considering the
advantages of the DHPFSs and the BM, GBM operator during the information
fusion process, the present study enhanced these works in that direction. DHPFSs
has been used to handle the uncertainties in the data in the form of DHPFSs while
BM and GBM operator is used to considering the interrelationships between the
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different attributes. As far as we are aware, there are no researches conducted un-
der this direction and hence it is meaningful to pay any attention to it. Thus, in this
paper we shall propose some Bonferroni mean aggregation operators for fusing
the dual hesitant Pythagorean fuzzy information. Further, some of their desirable
properties have also been analyzed. Finally, based on these operators, a decision-
making approach has been presented under DHPFS environment and illustrate
with a numerical example to validate the approach through some comparative
study with the existing approaches.

In order to do so, the rest of the paper is organized as follows. Some basic
concepts on PFS and DHPFSs have been introduced in the next section. Section 3,
presented the BM operators under DHPFS environment namely, DHPFBM and
DHPFGBM along with their certain properties. In Section 4, we presented the dual
hesitant Pythagorean fuzzy generalized Bonferroni mean (DHPFGBM) operator
and dual hesitant Pythagorean fuzzy generalized geometric Bonferroni mean
(DHPFGGBM) operator along with their certain properties. In Section 5, we
presented dual hesitant Pythagorean fuzzy dual Bonferroni mean (DHPFDBM)
operator and dual hesitant Pythagorean fuzzy dual geometric Bonferroni mean
(DHPFDGBM) operator along with their certain properties. In Section 6, based
on these operators, we shall present some methods for MADM problems with
DHPFENSs. In Section 7, we present a numerical example for supplier selection
in supply chain management with DHPFNs in order to illustrate the method
proposed in this paper and we gave a comparative analysis with existing models.
Section 8 concludes the paper with some remarks.

2. Preliminaries

2.1. Pythagorean fuzzy set

The basic concepts of PFSs [9, 10] are briefly reviewed in this section.
Definition 1 [9, 10] Let X be a fix set. A PFS is an object having the form

P = {{{x, (up(x), vp(x))) |x € X}, ()

where the function up : X — [0, 1] defines the degree of membership and the
function vp : X — [0, 1] defines the degree of non-membership of the element
x € X to P, respectively, and, for every x € X, it holds that

(1) + (3p (0) < 1. @

Definition 2 [11] Let a; = (u1,v1), az = (u2,v2), and a = (u,v) be three
Pythagorean fuzzy numbers, and some basic operations on them are defined as
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follows:

(1) a1®a = (\/(M1)2 + (u2)? = (1) (12)%, VIVZ) ;

2) ai®a= (umz, \/ v)* + (n)* = (1) (vz>2) ;
(3) na = (ﬂl—(l—uz)”,v”), x> 0;
4) (a)" = (,u”, yI-(0- Vz)”), > 0;

(5) a* = (v, p).
2.2. Dual hesitant Pythagorean fuzzy set

In this section, Wei & Lu [41] proposed the concept of the dual hesitant
Pythagorean fuzzy sets (DHPFSs), which is a new extension of PFS [10, 32, 59]
and dual hesitant fuzzy set [60].

Definition 3 [41] Let X be a fixed set, then a dual hesitant Pythagorean fuzzy set
(DHPFS) on X is described as:

D = ((x, hp(x),gp(x)) |x € X)) . 3)

In which hp(x) and gp(x) are two sets of some values in |0, 1], denoting the
possible membership degrees and non-membership degrees of the element x € X
to the set D respectively, with the conditions:

Y2 +n? <1, 4)

where y € hp(x), n € gp(x), for all x € X. For convenience, the pair J(x) =
(hp(x), gp(x)) is called a dual hesitant Pythagorean fuzzy number (DHPFN)

denoted by d = (h,g), with the conditions: v € h,n € g, 0 < vy, n < 1,
0<y?+n?< 1.

To compare the DHPFNS, in the following, Wei & Lu [41] gave the following
comparison laws:

Definition 4 [41] Let d = (h,g) be a DHPFNs,
_1 » 1 2 .
s(d) = > (1 + h Zyeh v - — Zneg n ) the score function of d, and

1 1
p(d) = ﬁzyeh y2 + #_g Zneg 172 the accuracy function of d, where #h
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and #g are the numbers of the elements in h and g respectively, then, let
di = (hi,g) (i = 1,2) be any two DHPFNs, we have the following compari-
son laws:

e I[fs(dy) > s (dy), then dy is superior to d,, denoted by d| > dy;

o If s (d1) = s (d>), then

1. If p(dy) = p (d>), then d, is equivalent to d,, denoted by d| ~ dj;
2. If p(dy) > p (d>), then d; is superior to d,, denoted by d > d.

Then, Wei & Lu [41] defined some new operations on the DHPFNs d, d| and d;:

L.d"= U {W”L{W}}, x> 0;

YEhneg
2 nd= {{,/1—(1—y2)”},{n”}}, x> 0;
v€hnES
5 diods = o+ 027 - 07 0% el
1€h1 v2€hy,
N1€81,12€82
2 2 2 2
4. di®d, = { 7172},{\/(771) + (m2)" = (1)~ (12) }}
71€h1 v2€hs,
N1€81,12€82

2.3. Bonferroni mean

Definition 5 [48] Let p,g > 0and a; (i = 1,2, - -, n) be a collection of nonneg-
ative crisp numbers. The Bonferroni mean (BM) operator is defined as follows:

i

" 1/(p+q)
BMP (ay,ay, -+, a,) = (Z a‘.”a‘.’) - (5

ij=1

Definition 6 [49] Let p,g > 0and a; (i = 1,2, - - ,n) be a collection of nonneg-
ative crisp numbers, the Bonferroni mean (BM) operator is defined as follows:

1 n
GBMP,q (al’ az, - -+, an) = pai + qa;) . (6)
p+ql1( )
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2.4. GWBM operator and GWGBM operator

Zhu, Xu and Xia [49] defined the generalized BM (GBM) operator and gen-
eralized geometric BM (GGBM) operator.

Definition 7 [49] Let p,q,r > 0 and a; (i = 1,2,---,n) be a collection of

nonnegative crisp numbers. The generalized BM (GBM) operator is defined as
follows:

" 1/(p+q+r)
GBMP?*" (ay, az, -+, ay) = ( Z _“fa;[%) : (7)

Definition 8 [49] Let p,q,r > 0 and a; (i = 1,2,---,n) be a collection of
nonnegative crisp numbers. If

1 s %
GaBMM (e = s | | (s aay 4 ran)”™. - ®
ijk=1

Then GGBMP?" is called the generalized geometric BM (GGBM) operator.

2.5. DGWBM operator and DGWGBM operator

Definition 9 [61] Let a; (i = 1,2,---,n) be a collection of nonnegative crisp
numbers. If
n noq L 1 Ejor ki
K .. — )
DGBMS (arar,-a) =| > ||| O
inizemin=1 \ j=1

where K = (ky, ko, - - - kn)T is parameter vector with k; > 0 (i = 1,2,--- ,n).
Definition 10 [61] Let a; (i = 1,2,3,-- -, n) be a collection of nonnegative crisp
numbers. If

n

1
n n j=tn
DGGBMX (a1, az, - ay) = — [ (Z(k,-pij)) ., (10)

k] inizein=1\ j=1

j=1

where K = (ki, ko, - - - kn)T is parameter vector with k; > 0 (i = 1,2,3,--- ,n).
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3. Dual hesitant Pythagorean fuzzy Bonferroni mean operators

This section we fuse dual hesitant Pythagorean fuzzy set with Bonferroni
mean operator and proposed the dual hesitant Pythagorean fuzzy Bonferroni mean
(DHPFBM) operator and dual hesitant Pythagorean fuzzy geometric Bonferroni
mean (DHPFGBM) operator.

3.1. DHPFBM operator

Definition 11 Let t,r > 0, d; = (hj,gj) (j =1,2,---,n) be a set of DHPFN
in which hp(x) and gp(x) are two sets of some values in [0, 1], then the dual
hesitant Pythagorean fuzzy Bonferroni mean (DHPFBM) operator is defined as

1/(t+r)
~ 1
DHPFBM'" (dy,dy, - -, d,,) = (@ - (e d;)) . (11)

i.j=1

Theorem 1 Let t,r > O and d; = (hj,gj) (j = 1,2,---,n) be a collection of

DHPFNs in which y; € hj, n; € gj, then their aggregated value by using the
DHPFBM operator is also a DHPFN, and

" { 1(t+r)
(@ e d?))

DHPFBM"" (d\,d, - -, d,)

1/(t+r)
n 1
:U ( 1_1_[(1_7?7’?)"2) g (12)

yeh,
neg

; A\ /@)
t r\ 2
1—(1—H(1—(1—n3) (1-n)) )
Proof. According the definition 4, we can get

a= U {t V- -}, a3)

vi€hi,
1i€8i

a;= | {{75}’{ 1—(1—77,2-)’}}, (14)

Yj€hj,
n;€8j
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toa= U {pm) {\i-0-myo-my}] oo
vj€hj,
nj€8j
Thereafter,

1
7 (diod))

SO (N T

yjehj,
;€8

Furthermore,

n

D e d)

ij=1
= U {Nl‘n (1‘7?7?)"_2}’ (17)
’ijhj, i,j:]
n;€8j
[(J (1-(-m)(1- ﬂ?)r)) }}
i,j=1
Therefore,

1(t+r)
n 1 .
DHPFBM" (d), dy, - -+ ,d,) = (EB = (@ dj))
ij=1

{\ - (1 - ljl (1= (-m) (1~ "?)r)"%)l/(m)”'
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Thereafter, we can get
1/(¢t+r)
n 1
o<( 1—ﬂ(1—y3fy}’)"2) <1, (19)
ij=1
. A\ @)
2\! 2\ \*
0< 1—(1—]—[(1-(1—n,~) (1—nj)) ) <1. (0
ij=1
And we know y? + % < 1, so
1/(t+r)
n 1
2t 21\ n2
( 1_1_[(1‘7’il7’.i ) )
ij=1
21
] ) 2D
2\! 2\"\ 2
< (1—1—[(1—(1—771.) (1—77].)) ) .
ij=1
Therefore,
1/(t+r)\ 2
n 1
2t.2r\ n2
( 1_1—[(1_7i71) ) +
ij=1
" l 1/(¢t+r)
2\! 2\"\ 2
== [0 0y 1))
b=l (22)

" N 1/(t+r)
<(1—1—[(1—(1—n§)t(1—n§)’)”2) +1

Ml’_‘

. 1/(t+7)
_(1—n(l—(l—n?)t(l—n?)r)”) =1.
ij=1

So, we complete the proof.
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Example 1. Let a; = {(0.4,0.2),(0.5,0.1)}, ax = {(0.5,0.6),(0.3,0.7)}, a3 =
{(0.4,0.3)} be three DHPFNSs, and ¢ = r = 2, the aggregation result as follows:

DHPFBM" (ay, as, a3)
= DHPFBM" {(0.4,0.2), (0.5,0.1)}, {(0.5,0.6), (0.3,0.7)}, {(0.4,0.3)}

1= & 1- ™
(1-0.422x0.42) " ¢ (1-0.962x0.962) "V x
1/(3x3 1/(3x3
(1-0.422x0.522) " (1-0.962x0.642) " x
1/(3x3 1/(3x3
(1-0.422x0.422) "7 (1-0962x0.912) "
3%x3 3%3
(1—0.52X2X0.42X2)1/( % )x (1 0. 642X0 962)1/( X )X
- 3x3 1- 33
(1_0_52x2x0-52><2)1/( UV I (1 0.642x 0642)1/( 3) ;
3x3 3%3
(1—0.52X2><0.42X2)1/( ) (1-0.640. 912)1/< X3
(1_0.42><2X0'42><2)1/(3><3) « (1 0.912%0. 962)1/(3><3) «
(1_0'42><2X0'52><2)1/(3><3)X (1 0912 0642)1/(3X3)><
\ (1-0422x0.422) /Y [\ (1-0912x0.912) '

{(0.4412,0.3548), (0.3750,0.3767), (0.4734,0.3129), (0.4232,0.3320)} .

In the next, we introduce three kinds of property of DHPFBM.

Property 1 (Idempotency), let t,r > 0 and d; = (h;, g) (i = 1,2,3,---,n) be
two sets of DHPFNSs, if d; (i = 1,2,---,n) are equal, thatis d; = d = (h, g), then

DHPFBM"" (d\,ds, - -+ ,d,) = d. (23)

Proof.
n2

n | 1(t+r) (24)

Property 2 (Monotonicity), let d; = (hg;, gq;) and b; = (hp;, gp;) (G = 1,2,
-, n) be two sets of DHPFNS, if V(yq,)* < Y(y5,)%, va, € ha;» vb, € hy; and

. 1/(t+r)
DHPFBM"" (dy, d>, - - , dy) =(@ 1 (dt@dr))
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Y(1a,)* > V(15,)*, na; € 8a;» Mv; € &b, then

DHPFBM" (dy,dy, -+ ,d,) < DHPFBM"" (b1, by, -+ , by) . (25)
Proof. We also can obtain
Yava, < Yo Vi, (26)
n n
[1(t=202) = [1(-293). @)
ij=1 ij=1 '
n 1 n 1
V=TT =dd) s < 0= TT(-ii) ™ (8)
ij=1 ij=1
Therefore:
1/(t+r) 1/(t+r)
2t ,2 n 262 n
(¢—n@ﬂﬂg) %¢—ﬂ@wmg) . (9)
i.j=1 i.j=1
Thus
1/(t+r)\ 2 1/(t+r)\ 2
( 1—ﬂ(1—y§§y§;) ) < (Jl—n(l—yglfyz;) ) . (30)
i,j=1 i,j=1

2

which means 731 < yi. Similarly, we can obtain 773 > 1

If Vyflj < Vyl%j and anlj > V"Z,- then

DHPFBM" (d,, d>, - - - . d,) < DHPFBM" (by, by, - . by) :
If Vyi < Vyij and Vnﬁj = Vnij then

DHPFBM"" (dy, d>, - - - ,d,) < DHPFBM"" (b1, by, - -, by) ;
If Vyflj = Vyl%j and Vnﬁj > Vnij then

DHPFBM"" (d. dy.- - - . d,) < DHPFBM"" (b1, by, - -+ .by):
If Vy; =Vy; and Vi3 =Vn; then

DHPFBM (d,, ds, - - - . d,) = DHPEBM" (b}, by, - - . by) .

Therefore, the proof of property 2 is completed.
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Property 3 (Boundedness), let #,r > 0 and d; = (ha;. g4;) (j = 12,3, ,n)
be a collection of DHPENS. If d* = Uyjeha;mi€sa; {{max; (y;)}, {min; (n;)}} and

d - UYJEhdjamEgdj {{mlnl (yl)} {maXl (TI )}} then

d~ < DHPFBM" (dy,dy,- -+ ,d,) < d*. 31
Proof. From property 1 we can obtain
DHPFBM"" (d*,d",---,d*) =d*, DHPFBM" (d",d",---,d”) =d". (32)
So, from property 2 we can obtain:
d~ = DHPFBM"" (d~,d",---,d") <
DHPFBM"" (dy,ds, - -+ ,d,) < (33)

DHPFBM" (d*,d*,---,d") = d*.

3.2. DHPFGBM operator

We extend GBM to DHPFN and introduced the Dual hesitant Pythagorean
fuzzy Geometric Bonferroni mean (DHPFGBM) continue.

Definition 12 Let t,r > 0, d; = (hj.g;) (j = L.2,-++,n) be a set of DHPFN
in which hp(x) and gp(x) are two sets of some values in [0, 1], then the dual

hesitant Pythagorean Fuzzy geometric Bonferroni mean (DHPFGBM) operator
is defined as

1 n 1
t’r .« .. e 2
DHPFGBM"" (dy, d, ,dy) = o @ (td @®rd; ) (34)
i,j=

Theorem 2 Let t,r > O and d; = ( j,gj) (j = 1,2,---,n) be a collection of

DHPFNs in which y; € hj, n; € gj, then their aggregated value by using the
DHPFGBM operator is also a DHPFN, and

DHPFGBM"" (dy, d>, - - ,d,)

- U ( 1 ><>))

yehneg i,j=1

1-|1- 1-(
1/(t+7)
n 1
ij=1

(35)
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Proof.

= | {{ 1—(1—y§)‘}, {nf}} (36)

Yi€hi,ni€gi
= U AN-0-0  mf @

Yj€hyn;€8;

Thereafter,
td,-EBrdj = U {{\/1—(]_,),?)[ (1_ng)r}’ {nl{n;}}, (38)
Yehneg

(l‘d,' @ r‘dj)"LZ

- {{W 1= (1) ())} {Jl - <>‘}} >

U[{(JMM)))} @

Thus
DHPFGBM"" (dy, da, - -, d,)
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Thereafter:

1/(t+r)

0<Jl—(l—ﬁ(1—(1—71.2)t(1—y]2)r)"%) <1, (42

1/(t+r)
n 1
0< (\ -1](- nffnjz.r)n_z) <1 (43)

- 1 1/(t+r)
NS

(44)
. L\ Ve
<J(l—n(1—<l—yz>f<1—v;>’)”2) |
i,j=1
Therefore,
. L\ M) 2
Jl_(hﬂ(1—(1—7?)t(1-7?)r)"2) ) .
ij=1
p I 1/(t+r)\ 2
1- 1 —np¥n? "_2) <
[T ) -
. L\ M)
(=TT 0 )
:Fl L\ M)
+(1—]_[(1—(1—73)’(1—y})')"2) - 1.
ij=1

Thereby completing the proof.
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Example 2. Let a; = {(0.4,0.2),(0.5,0.1)}, ax = {(0.5,0.6),(0.3,0.7)}, a3 =
{(0.4,0.3)} be three DHPFNSs, and ¢ = r = 2, the aggregation result as follows:

DHPFGBM"" (ay, aa, az)
= DHPFGBM"" {(0.4,0.2), (0.5,0.1)}, {(0.5,0.6), (0.3,0.7)}, {(0.4,0.3)}

1
242

1
242

E1—0.842x0.842)]/ B z1—0,22><2x0'22x2) JESN
(1—0.842x0.752)1/(3x3) X (1—0.22X2><O_62X2) IEEN
(1-0.842x0.842) " x (120252x0.42) 'O
(1-0.75%x0.842) " x (1-0672x022) 'O
| | (1-0752%0.752) "V 5 | 1- (1-0.672x0.672) "V | |
(1-0.75%x0.842) " x (1-0.652x0.422) 109
(1-0.842x0.842) " x (1-0.422x0.222) 1O
(1-0.842x0.75%) " x (1-0.4720.622) 15V
\ (1—0.842x0.842)1/(3X3) \ (1—0.42X2x0,42X2)1/(3X3)

= {(0.4328,0.4646), (0.3665, 0.5388), (0.4662, 0.4633), (0.3986,0.5380)} .

Similar to DHPFBM, the DHPFGBM has the same properties. The proofs of
these properties are similar to that of the properties of DHPFGBM. Accordingly,
the proofs are omitted to save space.

Property 4 (Idempotency), lett,r > Oand d; = (h;, g;) (i = 1,2,3,-- -, n) be two
sets of DHPENs, If d; (i = 1,2, - - -, n) are equal, that is d; = d = (h, g), then

DHPFGBM"" (dy,d>, -+ ,d,) = d. (46)

Property 5 (Monotonicity), let d; = (hdj, gdj) and b; = (hbj, gbj) (G =

1,2,3,- -~ ,m) be two sets of DHPENs, IV (v4,)” < ¥ (v1,) ", va, € hay vs, € h,
and VY (ﬂdj)z >V (nbj)z, Nd; € &d;> Mb; € 8b; then

DHPFGBM"" (dy,d>, - - ,d,) < DHPFGBM"" (dy,d>, - ,d,) . 47)

Property 6 (Boundedness), letz,r > 0 and d; = (hdj, gd].) (Gj=1273,---,n)be
a collection of DHPFNSs. If
dt= U {{max; (5)}, {min; (;)}} and

Yi€ha; €84,
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d” = U {{min; (y;)}, {max; (1;)}}, then
Yi€ha; €84,
d~ < DHPFGBM"" (d,da,---d,) < d*. (48)

4. Dual hesitant Pythagorean fuzzy generalized Bonferroni mean operators

In this section, we combine dual hesitant Pythagorean fuzzy set with Bonfer-
roni mean operators to propose the dual hesitant Pythagorean fuzzy generalized
Bonferroni mean (DHPFGBM) operator and dual hesitant Pythagorean fuzzy
generalized geometric Bonferroni mean (DHPFGGBM) operator.

4.1. DHPFGBM operator

Definition 13 Lett,r > 0, d; = ( J,g]) (j=1,2,---,n) be a set of DHPFN in
which hp(x) and gp(x) are two sets of some values in [0, 1], if

1/(a+B+y)
~N |1
DHPFGBM®" (dy,da, - -+ ,dy) = ( $ —df @ d @ d . (49)
ijk=1

Then DHPFGBM®"" is called the dual hesitant Pythagorean fuzzy generalized
Bonferroni mean (DHPFGBM) operator.

Theorem 3 Let s,t,r > 0 and d; = ( s gj) (j =1,2,---,n) be a collection of
DHPFNs. The aggregated value by DHPFGBM is also a DHPFN and

DHPFGBM®"" (dy,da, - - ,dy)

. (a+B+y)
S t r
(@ —d; ®dj®dk)

i,j,k=1

1/(s+t+r)
U - Tmn®) s

yehneg i,j,k=1

- (1 1 (1= (=m) (1=m) (1 - ng)’)ﬁ)‘/mwo

i,j,k=1

Proof. According to Definition 4, we can obtain

&= | {{7}{ 1—(1—n§)s}}, (51)

Yi€hini€gi
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b= U b=}, o

Yj€hjn;€g;

- U {a {i--ay} )

Vi €Ehi:Nk €Lk

Thus,

d; ®d; ® d,

- U {{7?7}72},{\/1—(1_,71,2)S(1_,7/z.)f(1_n%)r}}. (54)

yehneg

Thereafter,

(55)

Furthermore,

n
1
@ = (& ©d ®d)

n 1
= 1- 1 — y25y2ty2r)ni L
yeh, {{J i,j,l:ll ( OMAL ) } (56)
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Therefore,

DHPFGBM*"" (dy,ds, - - ,dy,)

. H(a+f+y)
_ s t r
_( & —d; ®dj®dk)

ijk=1

1/(s+t+r)
e R

yeh, ijk=1
neg

I~ (1 - 1—[ (1= (1=m2) (1) (1- ni)r)n%)wsﬂm

) k=1

Hence, (50) is maintained. Thereafter:

1/(s+t+r)
n 1
0< (J -] (- y?W}’V,?)“) <1, (58)

ijk=1

" N 1/(s+t+r)
0< |1 —(1 - H (1 - (1 _77,~2)s (1 _n]g)f (1 _ni)")rﬁ) <1. (59)

ijk=1

Because y> + % < 1,

1/(s+t+r)
n 1
(Jl— [ (1—y,.257}’7,%r)"3) <

ijk=1
(60)

TR T
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Therefore,

p 1/(s+1+r)\ 2
e
(Jl_ [] (1—7,-237}’73)"3) +
L

,j,k=1

W)

" N 1/(s+t+r)
1‘(1‘ [ (1—(1—ﬂ?)s(l—’??)l(l—"i)r)"3)
; (61)
n 1/(s+t+r)
<(1— [ (1—(1—n§)s(1—n§)t(1—n§)’)") +1
i k=1

O R AU

i,jk=1
Thereby completing the proof.
Moreover, DHPFGBM has the following properties.

Property 7 (Idempotency), if d; (i = 1,2,--- ,n)areequal, thatisd; = d = (h, g),
then
DHPFGBM*"" (dy,d>, -+ ,d,) = d. (62)

Proof.
DHPFGBM*"" (dy,d>, - -+ ,d,)

" 1/(s+t+r)
—( S5 n—i(d;‘@d?@dz))

ijk=1

1/(s+t+r)
~ 1
- &3]

ijk=1

(63)

=d.

Property 8 (Monotonicity), let d; = (hdj, gdj) and b; = (hbj,gbj) (J =12,
2 2
3,-++,n) be two sets of DHPFNs, If ¥ (y4,)” < ¥ (¥5,)". va, € ha» v, € ho,
2 2
and VY (ﬂdj) >V (le,-) sMd; € 8d;» Mb; € &b; then

DHPFGBM*"" (d\, d», - - ,d,) < DHPFGBM*"" (b, by, -, b,) . (64)
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Proof. We can obtain

YaYaYa, < Vo Voo (65)
n n
25 2t 2 2% 2
n (1_751,»37(1;751:) > n (1_71, 7b 717,:) (66)
ij k=1 ijk=1
n 1 n 1
25 2t 2r\3 25 2t 2r\3
- 1—[ (1_7di§7d;yd1:) <l- n (l—yb;)/b;)/b;:) ) (67)
ij k=1 ij k=1
Therefore:
1/(s+t+r)
: 5
1 - l_[ (1—7d yfl’yle) <
\ ijk=1
. l 1/(s+t+r) (68)
3
< 1- l_[ (1 Y, yi’yi}t)
\ ij k=1
Thus,
1/(s+1+r)\ 2
: 5
1 - 1_[ (1 Vi yfl’y;:) <
\ ijk=1
- —\ 1/ (s++r) 2 (69)
3
<1 TT (=) :
\ ij.k=1

which means Vyczl < Vylz). Similarly, we can obtain anl > Vni.

If Vyflj < Vyij and anlj > Vnij then

DHPFGBM®'" (dy,dy, - - ,d,) < DHPEGBM*"" (b, by, -+, by);
vayjj < Vygj and vnflj = vngj then

DHPFGBM®'" (dy,dy, - - ,d,) < DHPEGBM*"" (b, by, -+, by);
If Vy; =Vyy and Vg > Vi then

DHPFGBM*"" (dy,dy, - - - ,d,) < DHPFGBM*"" (by, by, -+ ,by) ;
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If VYZJ. = V)/ij and anlj = an%j then

DHPFGBM*"" (d\, d>, - - - ,d,) = DHPFGBM*"" (by, by, -+, b,) .

Therefore, the proof of Property 8 is completed.

Property 9 (Boundedness), let £, > 0 and d; = (hdj,gdj) (G =123"---,n)
be a collection of DHPFNS. If d* = Uy,eha njega, {{max; (y;)}, {min; (n;)}} and

d = U'}’thdstjegdj {{min; (y;)}, {max; (n;)}}, then
d- < DHPFGBM*"" (d\,d,,- -+ ,d,) < d*. (70)
Proof. From Property 7 we can obtain

DHPFGBM*"" (d*,d", - ,d")

71
= d"DHPFGBM*"" (d~,d",---,d") =d". 7
From Property 8, we can obtain
d~ = DHPFGBM*"" (d~,d™,---,d”) <

DHPFGBM*"" (dy,d>, - -+ ,d,) < (72)

DHPFGBM**" (d*,d",---,d") = p*.

Therefore,

d~ < DHPFGBM*"" (d\,d», - - ,d,) < d". (73)

4.2. DHPFGGBM operator

Thereafter, we extend GGBM operator [24] to DHPFN and propose the dual
hesitant Pythagorean fuzzy generalized geometric Bonferroni mean (DHPFG-
GBM) operator.

Definition 14 Let s.t,r > 0, d; = (hj.g;) (j = 1.2.-- . n) be a set of DHPFN
in which hp(x) and gp(x) are two sets of some values in [0, 1]. If
1 o €
DHPFGGBM™' (dy, dy, -+ ,dy) = ——— (X) (sd; @ td; @ rdy)” . (74)

S+t+r e

then DHPFGGBM*"" is called DHPFGGBM operator.
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Theorem 4 Let s,t,r

DHPFNs. The aggregated value by DHPFGGBM is also a DHPFN and

>0andd; = ( J,g]) (j=12,---,n) be a collection of

DHPFGGBM*"" (dy,d», - ,d,)

1 - 5
= s+t+rl®l(Sd ®©td; GBrdk) n

-y

yeh,
neg

Proof. Through Definition 4, we can obtain

Sdi

l‘dj

Thereafter,

sd; & Z‘dj @ rdy

Ui

neg

- U {0y

Yi€hini€gi

- U Ao}
a= | ==

Yk E€hi,nk €8k

(=) (=) (=) | b

n 1/(s+t+r)

0-0—#YU—ﬁY@—ﬁYV) ,

’ 1 1/(s+t+r)
NS

)

(75)

(76)

(77)

(78)

(79)
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Thereafter,

(sd ®1d; @ rdk)Lz

- {{(\/1—(1—7?)s(1—7§)t(1—Vi)r)n%}’ (80)

yehneg

{\/1 - (1- 772?;72’;7%’)%}}.

® (sd; @ td; ® rdy) "

ijk=1

- U L -0 0 0] |

yehneg i,j,k=1

{ |- ﬁ (1- 172‘772’77?)%}}.
\ ijk=1

Therefore,

»l"‘

Thus
DHPFGGBMS’” (d], dz, ey, dn)
o .
= sd; & td; & rdy)"
Ss+t+r hys

. L1/(s+t+r)
Ui\ L oy oy o)

yeh, i,j,k=1
neg
- 1/(s+t+r)
28 2
- l_l (1 n; "ﬁ"ky)
i,j,k=1

Hence, (75) is maintained. Thereafter:

n N 1/(s+t+r)
0< 1—(1— [ (1—(1—72) (1-92) (1-22) )3) <1, 83)

Lj,k=1
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1/(s+t+r)
n L
0< (Jl— ﬂ (1=nZn2n?) 3) <. (84)

Because > + > < 1,

- 1/(s+t+r)
(- fi-ever
i,j,k=1

wl_‘

<
(35)
n n 1/(s+t+r)
O R R
ijk=1
Therefore,
n n 1/(s+t+r)
1—(1— ]_[ (1—(1—71.2)5(1—)/2) (1-%2) ) “) +
ijk=1
1/(s+t+r)\ 2
n 1
( 1= l—[ (1 UZSUZtUir) ) <
\ i,j,k=1 (86)

" N 1/(s+t+r)
(1= T -0 0y (-
" N 1/(s+t+r)
+(1— (1—(1—yiz)s(l—y?)t(l—y,%)r)"E) _ 1.

i,j k=1

Thereby completing the proof.

Similar to DHPFBM operator, the DHPFGGBM operator has the same prop-
erties. The proofs of these properties are similar to that of the properties of
DHPFGGBM, Accordingly, the proofs are omitted to save space.

Property 10 (Idempotency), if d; (i = 1,2,---,n) are equal, thatis d; = d =
(h, g), then
DHPFGGBM*"" (dy,da, -, d,) = d. (87)
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Property 11 (Monotonicity), let d; = (hdj,gdj) and b; = (hbj, g;,j) (G =12,
2 2
3,---,n) be two sets of DHPFNs, If ¥ (ydj) <V (ybj) s Yd; € ha;s Yb; € hop,
2 2
and VY (ndj) >V (nbj) . 1d; € &d;» Mb; € &b, then

DHPFGGBM*"" (dy,d,, - -+ ,d,) < DHPFGGBM*"" (d,d>, -+ ,d,). (88)

Property 12 (Boundedness), let z,7 > 0 and d; = (ha;» 84;) (G = 1,2,3,--+,n)
be a collection of DHPFNSs. If

o= U (o). frinan))  ona

Yj€ha;
n;€8d;

= {{ml_in(%)}’ {miax(m)}}’

Vj€ha,
nj€8d;

then
d~ < DHPFGGBM*"" (d\,d»,--- ,d,) < d”. (89)

5. Dual hesitant Pythagorean fuzzy dual Bonferroni mean operators

In the section, we go on with deriving the dual hesitant Pythagorean fuzzy
dual Bonferroni mean (DHPFDBM) operator and dual hesitant Pythagorean fuzzy
dual geometric Bonferroni mean (DHPFDGBM) operator.

5.1. DHPFDBM operator

Definition 15 Let [; > 0 and d; = (h;, &) (i = 1,2,---,n) be a set of DHPFNs
in which hp(x) and gp(x) are two sets of some values in [0, 1]. If

3
n n 1 ) i=1
DHPFDBMl(dl,dz,---,dn):( & (@dej)) . 90)

iLiz,in=1\ j=1

Then the DHPFDBM! is called the DHPFDBM operator.
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Theorem S Let l; > 0 and d; = (h;, ;) (i = 1,2,---,n), i € hj, n; € gi be a
collection of DHPFNs. The aggregated result of DHPFDBM is a DHPFN.

> j
n n 1 . i=1
1 e = —-d’
DHPFDBM' (d, d, - -+ ,d,) = ( & (@ ndij))

il ip=1\ j=1
131
n n 5 1 J=1
— _ _ _ A AT
_ U I- .]—[._ (1 ]j(l (1 Y, ) )) o
yehneg i1,00,in=1 j=1

Proof.
L l; 2 lj
/= | {{(y,-,) }{ 1= (1-2) }} (92)
Yi; €hij,
Ugegg
, 1
1 20\ 5\
24 = U {{\/1‘(1‘%’) }{( - (1-7) ) }} ©93)
Yij€hij,
Ugegy
Thus,

Mij Egij (9 4)
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Thereafter,
n n
S (@5
l
iL,i0,in=1\ j=1 n ]
ﬁ . 21\ 7
1- (1—(1—7,-;")") :
Yi; eh i1,02,5in=1 Jj=1 ’ ©3)
771 egl
n n l’ n
2
]—[ 1 - 1—(1—(1—’7”))
01,02, ,in=1 j=1
Therefore,

IV,
n n i=
1 I3 i=1
l PR = - J
DHPFDBM!' (d,d,, -+ ,d,) ( @ ( ' ndl.j))
11,12, J

ein=1\ j=1
"t
y 1 (=027
Yi;€higs i, i =1 Jj=1 ’ (96)
nijegi
== ] (1t-1] 1—(1—(1—;71))
inigsin=1 j=1
Hence, (91) is maintained. Thereafter:
/5 1
. . 20\ a
0<|.1- l_[ (1—n(1_(1_yijf) )) <1, (97
inigsin=1 j=1

n n N1 l/jgllj
0 < 1—(1— ]—[ (1—1—[(1—(1_(1_775)1,)"))) S o)

1 ,"',inzl
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Because y> + > < 1,

i1,i2,in=1 Jj=1

b))

p—
|
—_
p—
|
.:3..
K ::
=
1l
—
——
p—
|
~.
Il N
—
—
p—
|
—_—
—

I
—_
p—
|

=
TN
N —
<
\/
~—————
\—/
=
~.
1™
o~
VAN

(99)

Property 13 (Idempotency), if d; (i = 1,2,---,n) are equal, that is d; = d =
(h, g), then

DHPFDBM! (dy, ds, - - - ,d,) = d. (100)

Proof.

DHPFDBM! (dy,da, - - - , d,,)

n n n l/g Li (101)
- @ ( l ~dizllj)) 1
> n
J

i1,02,,ip=1

n n 1 1/5111
_ EB ®Z) -d=d.

inig,ip=1\ j=1
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Property 14 (Monotonicity), let d; = (hq;. ga;) and bj = (hy,. g5;) (j = 1,2,
2 2
3,---,n) be two sets of DHPFNS, if ¥ (yd].) <V (Yb_,) s Vd; € hd_,, Yo, € hbj
2 2
and VY (ndj) >V (nbj) . 1d; € &d;» Mb; € &b, then

DHPFDBM! (d\, dy, - - ,d,) < DHPEDBM! (b1, by, - ,q,) . (102)
Proof.
ydij < )/bij’ (103)
1 1
(1-22)" = (1-%r)" (104)
Ly y
L 2\ L 2\
ﬂ(l—(l—ypij{) )<l_[(l—(1—ybtf) ) (105)
j=1 j=1 !
Therefore:
L L 2\
1- 1- (1 - f)" >
i zl_[z =1 j=1 ( 4 )
b (106)
n n 1
[T (- (1—(1—%3”)”) .
ininyin=1 j=1 !
Thus:
/5
n n 5 1 J=1
1- 1- 1-(1- f)” <
\ . l_[ ( 1_[( ( 7d"j )
01,00, ,in=1 j=1
. (107)

|
SN

i1, 5ip=1 Jj=1

which means Vy(zl < Vyl%, similarly, we can obtain anl > \7'77127.

If Yy < Vy,, and Vg >V then

DHPFDBM! (dy,ds, - - - ,d,) < DHPFDBM! (by, by, -, by);
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If Vyflj < Vyl%j and Vnﬁj = Vnzi then

DHPFDBM! (d,, ds, - - - ,d,) < DHPEDBM' (b1, by, - -+ , by) ;
If Vy; =Vyy and Vi3 > Vi then

DHPFDBM' (dy, ds, - - - ,d,) < DHPFDBM! (by, by, -+, by) ;
IfVy; =Vy; and Vig =Vn; then

DHPFDBM! (d,,d,, - - - ,d,) = DHPFDBM!' (by, by, - - , b,,) .

Therefore, the proof of property 14 is completed.

Property 15 (Boundedness), let £,7 > 0 and d; = (ha; g4,) (j = 1,23,

be a collection of DHPFNSs. If

o= U (o). frinan))  ona

Yj€ha;s
n;€8d;

a = |J {{minon}, {max am}}.
Yj€ha;,
1j€8d;
according to the property, there is
d~ < DHPFDBM' (dy, d, -+ ,d,) < d*.
Proof. From property 13 we can obtain
DHPFDBM' (d*,d*,---,d") = d",
DHPFDBM' (d~,d",---,d”) =d".
From property 14, we can obtain
d~ = DHPFDBM' (d~,d",---,d") <
DHPFDBM' (dy, dy, -+ ,dy) <
DHPFDBM' (d*,d*,---,d") = d".

Therefore,
d~ < DHPFDBM! (dy,ds, - ,d,) < d*.

,n)

(108)

(109)

(110)

(111)



www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

DUAL HESITANT PYTHAGOREAN FUZZY BONFERRONI MEAN OPERATORS
IN MULTI-ATTRIBUTE DECISION MAKING 371

5.2. DHPFDGBM operator
Thereafter, we extend DGBM to DHPFN and introduced the dual hesitant
Pythagorean fuzzy DGBM (DHPFDGBM) operator.
Definition 16 Let[; > O and d; = (hi, &) (i = 1,2,---,n) be a set of DHPFN in
which hp(x) and gp(x) are two sets of some values in [0, 1]. Then

DHPFDGBM' (d1,da, - .dy) = — X (@(ljdii))” . (112)

j=1

=]
[\ b2 sln
J

i=1
Then DHPFDGBM., is called DHPFDGBM operator.

Theorem 6 Let lj > 0andd; = (h,‘,gi) (i =12--- ,n), Yi € h;, ni € gi be a
collection of DHPFNs. The aggregated result of DHPFDGBM is also a DHPFN

n

I3
DHPFDGBM' (dy,da, -+ ,dy) = nl ® (é (lfd’)))j |

lj inio,in=1\ j=1

i=1

n 1 I/Zl/
ni i=1
n n ) l; =1 "
= i-{1- || [1- (1—%-_,) ©(113)
‘yiiEhil., i15i2,in=1 J=1
i; €8i;
13

n n lﬂ[% !
1- l_[ (l—nn?jlf)]l

i1,i2,,in=1 Jj=1

Proof. Through Definition 4, we can obtain

= | {{ 1-(1—yg)lj}, {n’}} (114)
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Thereafter,
N g = T T (1=2)" ﬁlf (115)
Dua, = U - ) il b
j=l yleh[js j=l ]:1
nijegij
Thereafter,
nt

( é ljdij)j =
j=1

i
U ; 2\ '
- - (1 - yl,) ,
yi,hi i=i J (116)
Ti; €8
7L
T fg‘ !
\ I={1- l_[ nijj
j=1
Therefore,
e
n n =i "
X bdi | =
inisemin=1\ j=1
i
U ﬁ - AN
- - (1 - y}_)
Yij€hipy | | inizein=1 j=1 ! (117)

’Iingij
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Thus
7L
1 n n jl;Il n
DHPFDGBM' (dy,ds, - - ,dy) = — X | D (1d;)
Zl i, ,in=1\ j=1
j
i=1
NN
= i=1
n n 5 l] j:ln
= U= I -110-2) ©(118)
yijehij, i1502, 5 in=1 Jj=1
ni;€8i;
: 1/§llj
1\ =
n n 2[/ ngn
) 1- 1—[ - l—[ i,
[1,02,,in=1 =1
Hence, (113) is maintained. Thereafter:
f oA
n n Ve
2 J
1< |1-|1- 1_[ 1 - (1—%) <0, (119)
il,iz,-“,in:l ]=1
: 1/211,
1<|4|1- ]—[ 1—]—[77,-/ < 0. (120)
iz in=1 j=1
Because of > + 1> < 1,
—Ey —1/ 5
A= Lo
n n 2l j:In n n ) lj jl;lln
— — J — fa— —
- I1 [T <= 1 1=T10-2)
iinin=1 j=1 ininein=1 j=1

(121)
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Therefore,
~ 2
n 1/ X1
n n l jl:II% =l '
271
i-[t- [T [1- (1-le) ;
i1,02,,in=1 j=1
n 2
n 1/ Z lj
1 i=1
. oo
1 - ]—[ 1—1—[:71.1_] <
L1502, 5ln= ]_] (122)

i)’ &
n n 5 l; j=1"
- | (1—1_[(1—y,.j)) = 1.

i1,02,in=1 J=1

Thereby completing the proof.

Similar to DHPFDBM, the DHPFDGBM has the same properties. The proofs
of these properties are similar to that of the properties of DHPFDGBM, Accord-
ingly, the proofs are omitted to save space.

Property 16 (Idempotency), if d; (i = 1,2,---,n) are equal, thatis d; = d =
(h, g), then

DHPFDGBM! (dy, ds, -+ - ,d,) = d. (123)

Property 17 (Monotonicity), let d; = (hdj, gdj) and b; = (h;,j,g;,j) (G =
2 2
1,2,3,-++,n) be two sets of DHPFNs, IfV (y4,)” < ¥ (vs,) . Y, € ha. s, € h,

and VY (I]dj)2 >V (I]bj)z, Nd; € 8d;>Mb; € 8b; then

DHPFDGBM' (d|, d>, - - - ,d,) < DHPFDGBM' (b1, by, - - - , by) . (124)
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Property 18 (Boundedness), if

r= | ffmxoo). fmncl) an

Yi€ha;.
1j€84d;

- o )

according to the property, there is

d~ < DHPFDGBM' (dy, d, - ,d,) < d. (125)

6. Models for MADM with DHPFNs

Based the DHPFBM and DHPFGBM operators, in this section, we shall
propose the model for MADM with DHPFNs. Let A = {Ay, Ay, -+, A} be a
discrete set of alternatives, and G = {G1,G», - -+, G,} be the set of attributes.
Suppose that d = (dcj)mxn = (hc j» 8¢ j)an is the Pythagorean fuzzy decision
matrix, where h.; set indicates the degree that the alternative A. satisfies the
attribute G; given by the decision maker, g.; set indicates the degree that the
alternative A. doesn’t satisfy the attribute G; given by the decision maker, y.; €

2 2 .
hej € 1011, nej € gj € (011, () + (nej)” < Lo = L2 ,m, j =
1,2,---,n.

In the following, we apply the DHPFBM (DHPFGBM) operator to the MADM
problems with DHPFNS.

Step 1. We utilize the DHPFNSs given in matrix R, and the DHPFBM operator

n

1/(t+r)
1
d. = DHPFBM"" (der,depy -+ sden) = (EB ; (dil ® dg])) =
ij=1

. N 1/(t+r)
U (Jl—ﬂ(l—yffﬁ,*)"z) »e=12om (196

Yv€EhnEg

n RNGR
- (1 - ﬂl (1 - (1-m2) (1- nﬁj)r)"z)
i,j=
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or

d. = DHPFGBM! (d;1,dca, - -+, den) =

W R O R —yz,)’)"%)wm |

yehneg i,j=1

(127)

- 1 1/(t+1)
( -] (1—'7?5'7?5)"_2) ,

to derive the d. (c = 1,2, ---, m) of the alternative A..

Step 2. Calculate the scores S (d.) (¢ = 1,2,---,m) of the overall DHPFNs d,.
(c = 1,2,---,m) to rank all the alternatives A. (¢ = 1,2,---,m) and then to
select the best one(s). If there is no difference between two scores S (d.) and
S (d.1), then we need to calculate the accuracy degrees H (d.) and H (d.1) of
the overall DHPFNSs d. and d,, respectively, and then rank the alternatives A,
and A.; in accordance with the accuracy degrees H (d.) and H (d.1).

Step 3. Rank all the alternatives A. (¢ = 1,2,---,m) and select the best one(s)
in accordance with S (d.) (c =1,2,---,m).

Step 4. End.

7. Numerical example and comparative analysis

7.1. Numerical example

In this section, we shall give an application to select green suppliers in green
supply chain management with DHPFNs. There are five possible green suppliers
in green supply chain management O; (i = 1,2, 3,4, 5) to select. The experts select
four attribute to assess the five possible green suppliers:

1) Gy is the product quality factor;

2) G; is environmental factors;

3) G3 is delivery factor;

4) Gy is price factor.

Five green suppliers O; (i = 1,2,3,4,5) are to be assessed with DHPFNs
according to four attributes (whose t =r =3, s =t=r =3,; =3,i=1,---,4
as shown in Table 1.



www.czasopisma.pan.pl P@N www.journals.pan.pl
TN

DUAL HESITANT PYTHAGOREAN FUZZY BONFERRONI MEAN OPERATORS
IN MULTI-ATTRIBUTE DECISION MAKING 377

Table 1: DHPFN decision matrix.

G G2
O {(0.5,0.4), (0.5,0.3)} {(0.6,0.5), (0.3,0.2), (0.4,0.2)}
0O, {(0.3,0.2), (0.4,0.2)} {(0.6,0.1), (0.4,0.3)}
O3 {(0.5,0.3), (0.8,0.3)} {(0.7,0.3), (0.5,0.4)}
Oy {(0.4,0.6), (0.5,0.4)} {(0.6,0.5), (0.6,0.7)}
Os {(0.5,0.3), (0.6,0.5)} {(0.5,0.4), (0.6,0.4)}
G3 Gy
Oy {(0.3,0.5), (0.4,0.3)} {(0.4,0.3), (0.5,0.3)}
O, {(0.4,0.3), (0.6,0.4)} {(0.4,0.6), (0.3,0.4), (0.5,0.6)}
O3 {(0.6,0.2), (0.5,0.4), (0.6,0.1)} {(0.6,0.3), (0.5,0.3)}
Oy {(0.6,0.3), (0.7,0.4)} {(0.5,0.3), (0.5,0.4)}
Os {(0.6,0.4), (0.6,0.5)} {(0.2,0.3), (0.3,0.4)}

Step 1. We utilize the DHPFNSs given in matrix R, and the DHPFBM operator to
get aggregation results, we illustrate one of alternative for save space.

01 = DHPFBMI’r(Gl, Gz, G3, G4)
={{(0.5,0.4), (0.5,0.3)}, {(0.6,0.5), (0.3,0.2), (0.4,0.2)},
{(0.3,0.5), (0.4,0.3)}, {(0.4,0.3), (0.5,0.3)}}
(0.506,0.4215), (0.5195,0.4215), (0.5101,0.3713), (0.5232,0.3713),
(0.4175,0.3442), (0.4489,0.3442), (0.4279, 0.2983), (0.4562,0.2983),
_1(0.4279,0.3442), (0.4562,0.3442), (0.4371,0.2983), (0.4631, 0.2983),
~1(0.506,0.3945), (0.5195,0.3945, ), (0.5101, 0.3456), (0.5232, 0.3456), (-
(0.4175,0.3187), (0.4489,0.3187), (0.4279, 0.2747), (0.4562, 0.2747),
(0.4279,0.3187), (0.4562,0.3187), (0.4371, 0.2747), (0.4631, 0.2747)

Step 2. According to the aggregating results and the score functions of the green
suppliers are shown in Table 2.

Table 2: The rank and score of green suppliers by using DHPF operators.

O 0)) 03 04 Os Order

DHPFBM 0.552710.5709 | 0.6540 | 0.5717 | 0.5703 | O3 > O4 > Oy > O5 > Oy
DHPFGBM | 0.5174 | 0.4966 | 0.6160 | 0.5095 | 0.5228 | O3 > O5 > O1 > O4 > O,
DHPFGBM | 0.5514 | 0.5672 | 0.6527 | 0.5694 | 0.5696 | O3 > O5 > O4 > O, > Oy
DHPFGGBM | 0.5185 | 0.4981 | 0.6166 | 0.5104 | 0.5270 | O3 > O5 > O > O4 > O,
DHPFDBM | 0.5934|0.6117 | 0.6949 | 0.6100 | 0.6095 | O3 > Oy > O4 > O35 > Oy
DHPFDGBM | 0.5190 | 0.4987 | 0.6168 | 0.5107 | 0.5285 | O3 > O5 > O > O4 > O,
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According the result of green suppliers order, we can know that the best
choice is supplier 3, we get same result by different aggregation, that proved the
effectiveness of result.

7.2. Influence of the Parameter on the Final Result

The aggregation method of extend DHPFS with BM has two advantages,
one is that it can reduce the bad effects of the unduly high and low assessments
on the final result, the other is that it can capture the interrelationship between
dual hesitate Pythagorean fuzzy numbers. These aggregation operators have a
parameter vector, which make extended operator more flexible, so the different
vector lead to different aggregation results, different scores and ranking results.
In order to illustrate the influence of the parameter vector /; on the ranking result,
we discuss the influence with several parameter vectors, the result you can find
in Table 3 and Table 4.

Table 3: Ranking results by utilizing different parameter vector [; in the DHPFDBM
operator.

li=1,---,6 Scores Order
(O] O, O3 Oy Os
(L1,1,1) | 0.6074]0.6131]0.7188 | 0.6731 | 0.6468 | O3 > O4 > O5 > 0, > O,
(22.22)  10.5991]0.6105 | 0.6971 | 0.6276 | 0.6244 | O3 > 04 > O5 > 0, > O,
(3.3.33) | 0.5934|0.6117 | 0.6949 | 0.6100 | 0.6095 | O3 > O, > Oy > Os > O,
44.44) | 0.5890]0.6122]0.6947 | 0.6044 | 0.6014 | O3 > O, > Oy > Os > O,
(55,55 |0.5857| 0.600 |0.6951 |0.6037|0.5973 |03 > 04 > 0, > O5 > O,

(6,6,6,6) 0.5135]0.5921 | 0.6908 | 0.6050 | 0.5955 | O3 > O4 > O5 > Oy > O

Table 4: Ranking results by utilizing different parameter vector /; in the DHPFDGBM
operator.

li,i=1---,6 Scores Order
0, O O3 Oy Os
(1,1,1,1) 0.5348 1 0.5361 | 0.6325 | 0.5439 | 0.5443 | O3 > O5 > O4 > Oy > O
(2,2,2,2) 0.5264 1 0.5146 | 0.6240 | 0.5261 | 0.5365 | O3 > O5 > O; > O4 > Oy
(3.3,3,3) 0.5190 | 0.4987 | 0.6168 | 0.5107 | 0.5285 |03 > O5 > O; > O4 > Oy
4,4,4,4) 0.5199 | 0.4872 | 0.6248 | 0.4985 | 0.5207 | O3 > O5 > O1 > O4 > Oy
(5,5,5,9) 0.5256 | 0.5005 | 0.6629 | 0.4890 | 0.5322 | O3 > O5 > O; > Oy > Oy

(6,6,6,6) 0.5902 | 0.4944 | 0.6602 | 0.5061 | 0.6035 | O3 > O5 > O1 > O4 > Oy
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We can see that the different parameters lead to different result and different
ranking order. More attributes we consider more bigger the scores, more bigger
the attribute value more lower the scores. Therefore, the parameter vector can be
considered as decision maker’s risk preference.

8. Conclusion

In this paper, we investigate the multiple attribute decision making (MADM)
problem based on the Bonferroni mean operators with dual Pythagorean hesitant
fuzzy information. Firstly, we introduce the concept and basic operations of the
dual hesitant Pythagorean fuzzy sets, which is a new extension of Pythagorean
fuzzy sets. Then, motivated by the idea of Bonferroni mean operators, we have
developed some Bonferroni mean aggregation operators for aggregating dual
hesitant Pythagorean fuzzy information: dual hesitant Pythagorean fuzzy Bon-
ferroni mean (DHPFBM) operator, dual hesitant Pythagorean fuzzy geometric
Bonferroni mean (DHPFGBM) operator, dual hesitant Pythagorean fuzzy gener-
alized Bonferroni mean (DHPFGBM) operator, dual hesitant Pythagorean fuzzy
generalized geometric Bonferroni mean (DHPFGGBM) operator, dual hesitant
Pythagorean fuzzy dual Bonferroni mean (DHPFDBM) operator and dual hes-
itant Pythagorean fuzzy dual geometric Bonferroni mean (DHPFDGBM) op-
erator. The prominent characteristic of these proposed operators are studied.
Then, we have utilized these operators to develop some approaches to solve the
dual hesitant Pythagorean fuzzy multiple attribute decision making problems.
Finally, a practical example for supplier selection in supply chain management
is given to verify the developed approach and to demonstrate its practicality
and effectiveness and we gave a comparative analysis with existing models.
In the future, we shall continue working in the extension and application of
the developed operators to other domains [62—66] and other uncertain environ-
ments [67-73].
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