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Abstract

In the paper we present and apply a Bayesian jump-diffusion model and
stochastic volatility models with jumps. The problem of how to classify an
observation as a result of a jump is addressed, under the Bayesian approach, by
introducing latent variables. The empirical study is focused on the time series of
gas forward contract prices and EUA futures prices. We analyse the frequency
of jumps and relate the moments in which jumps occur to calendar effects or
political and economic events and decisions. The calendar effects explain many
jumps in gas contract prices. The single jump is identified in the EUA futures
prices under the SV-type models. The jump is detected on the day the European
Parliament voted against the European Commission’s proposal of backloading.
The Bayesian results are compared with the outcomes of selected non-Bayesian
techniques used for detecting jumps.
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1 Introduction
The prices of gas and CO2 emission allowances depend on political events and
decisions as well as the economic situation and other country-specific factors.
Modelling and forecasting the prices pose a considerable challenge, which largely
results from their time-variable volatility and their sharp changes. The latter are
usually referred to as jumps. The very term jump is in common use, although it has
not earned a single, widely accepted definition as yet.
The jump-diffusion models are a generalisation of the (pure) diffusion models created
by adding a jump component to a ‘continuous’ part of a stochastic structure. The
jump component is used to model sharp movements of time series. The jump-diffusion
models are often employed to model prices from financial and commodity markets
(e.g. Merton 1976, Kou 2002, Kou and Wang 2004, Weron 2006, Weron et al. 2004,
Kostrzewski 2014a).
The stochastic volatility processes are frequently applied to model financial time series
(e.g. Jacquier et al. 1994, Pajor 2003, Jacquier et al. 2004, Yu 2005, Omori et al.
2007). Extending basic SV structures to the ones with the jump component may
handle occasional sharp movements which pop up in prices and the differences in
log-prices (returns). The Bayesian SV models with jumps are employed to analyse
time series from stock and commodity markets (Chib et al. 2002, Li et al. 2008,
Szerszen 2009, Johannes and Polson 2010, Brooks and Prokopczuk 2013, Kostrzewski
and Kostrzewska 2019).
The aim of the paper is to present and apply selected techniques of detecting jumps,
to analyse the frequency of jumps, and to relate the times in which jumps occur
to calendar effects or political and economic events and decisions. In the study,
the time series are modelled by means of three Bayesian models: the Bernoulli
jump-diffusion model (the DEJD model) and two discrete-time stochastic volatility
structures (SV) with jumps (the SVDEJ and SVNJ models). We choose the best
Bayesian specification, i.e. the model with the highest explanatory power.
The models considered in the study have their origin in continuous-time processes,
in which ‘small’ movements of a time series are accounted for by the diffusion or
stochastic volatility component, whereas sharp and large values of a time series –
by the jump component. In the series of prices or returns we can easily spot ‘large’
values (in absolute value terms). However, we do not know whether they result from
the jump and/or the diffusion component or the stochastic volatility one, since pure
jumps are not observed. These issues directly transfer to the discrete-time models
which are considered in the paper. In the study we allow for no or a single jump per
time interval. More than one jump per time interval is considered by Kostrzewski
(2014a). Jumps and stochastic volatility are unobservable. The way of dealing
with unobservable quantities consists of introducing them into the model as latent
variables. This approach is also adopted in our study, enabling a precise formulation
of a jump. It facilitates formal statistical inference about jumps and allows for the
detection of jumps and the analysis of the frequency of their occurrences. However, the
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method leads to a large number of unknown quantities in a model i.e. the number of
parameters of the mathematical model as well as latent variables describing jumps and
stochastic volatility. In the study we apply the Bayesian statistical framework, which
is widely recognized as capable of managing model specifications with latent variables
in a formal and internally consistent manner. In the paper, the Bayesian approach
for the discrete-time jump-diffusion model and SV models with jumps are applied to
analyse contract prices of gas and EUA (CO2 emission allowances). Moreover, we
apply three non-Bayesian techniques to detect jumps: the recursive filter on returns
(RFR) technique and two variable return threshold techniques (VRT1 and VRT2)
(see e.g. Janczura et al. 2013, Kostrzewska and Kostrzewski 2018).
In the paper, the first of the analysed time series comprises one-month gas contract
prices (in EUR/MWh). This data set comes from the Dutch Title Transfer Facility
(TTF) virtual trading hub. Energy retailers buy gas on volatile spot markets and
resell it to consumers at constant prices. The former are at risk of a sharp increase.
Predicting prices and periods with a high probability of jumps plays a crucial role in
risk management. It might reduce the costs of enterprises which rely on natural gas for
their production processes. They might avoid purchasing contracts on the days with
higher probability of a jump or hedge their position by buying or signing profitable
contracts. On the other hand, identification of periods with a higher probability of
steep rises and drops of prices offers an opportunity to speculate on the derivatives
market.
The second of the analysed time series comprises the EUA contract prices
(EUR/tCO2). Analyses and forecasts of the prices are relevant to the assessment
of the economic viability of investment in technologies used in reducing energy
consumption and CO2 emissions. The detection of jumps contribute to a better
understanding of the nature of the prices and the mechanisms of jump formation.
It may be useful in obtaining more precise forecasts and effective risk management
methods.
In our study we concentrate on the Bayesian methods of jump detection, which are
based on the jump-diffusion processes and stochastic volatility models with jumps.
We assume the normal or double exponential distribution of jump sizes. The double
exponential distribution is not so often considered in the literature as the normal
one. However, this distribution allows for modelling negative and positive jumps
separately. In the paper we compare the results computed under the formal Bayesian
approach with the heuristic approaches. The heuristic techniques hinge on specific
statistical principles, and they are often applied to detect jumps (e.g. Janczura et al.
2013).
The paper is organised as follows. Section 2 gives a theoretical overview of the
Bayesian models used in the study. The models are next applied in Section 3,
which presents the empirical analysis concerning gas forward prices and EUA futures
contracts. The section discusses the results on jumps detection and their frequency,
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and compares the explanatory power of the considered models. Conclusions end the
paper.

2 Models
We consider three Bayesian models with a discrete time scale. All of them have
their counterparts with a continuous time scale. The first one is an example of the
Bernoulli jump-diffusion model, and is called the jump-diffusion model. The other
two specifications are stochastic volatility models with a leverage effect and jumps
but with different distributions of jump values: the normal or double exponential
distribution. In the empirical study, the models are fitted to the differences in log-
prices.

2.1 The DEJD model
The Merton model (Merton 1976) is presumably the most famous jump-diffusion
structure. It assumes the normal distribution of jump values. The Bayesian version of
this model (in a discrete time scale) is considered by Kostrzewski (2014a). The double
exponential jump-diffusion (DEJD) model in a continuous-time version is similar
to the Merton’s specification. The only difference resides in different distributions
of jump values. The double exponential distribution is assumed in the DEJD
model. Hence, negative and positive jumps follow exponential distributions with
different values of their parameters. The main motivation behind the structure is
the assumption of the asymmetry of values of negative and positive jumps and their
frequency. The DEJD model defines the dynamics of an asset under the Kou model
(Kou 2002, Kou and Wang 2004), which originates in pricing derivative securities. The
specification is a particular case of the Pareto-Beta jump-diffusion model proposed
by Ramezani and Zeng (1998), where two Poisson processes govern the arrival rate of
‘bad’ and ‘good’ news.
In the following study, the discrete version of the double exponential jump-diffusion
model is considered and it is also called the DEJD model. The model is specified as:

yt+1 = yt +
(
µ− 1

2σ
2
)

∆ + σεt+1
√

∆ + Jt+1, (1)

where yt = ln (St) and St is a price at time t, {εt} ∼ iid N (0, 1), ∆ > 0, and {Jt} is
a sequence of independent and identically distributed variables with the probability
density:

fJt (x) = pD
1
ηD

exp
(

1
ηD

x

)
I(−∞,0) (x) + pU

1
ηU

exp
(
− 1
ηU
x

)
I(0,∞) (x) , (2)

where pD ≥ 0, pU ≥ 0, pD + pU = 1, ηD > 0, ηU > 0. Parameter µ ∈ R
represents the drift of S, while σ is the volatility parameter. Parameters pD and
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pU are interpreted as the probabilities of a negative and a positive jump, respectively,
if a jump occurs. The probability of no jump is assumed to equal 1

1+λ∆ , where λ is
the intensity of jumps. Moreover, −ηD and ηU are means of negative and positive
jump sizes, correspondingly. The specification is an example of the so-called Bernoulli
jump-diffusion model. Additional properties of the DEJD structure are presented by
Kostrzewski (2015).

2.2 The SVDEJ model
The jump-diffusion structures are criticized for the assumption of a constant value of
the volatility parameter σ. In an attempt to address this disadvantage, the next model
is formulated so as to incorporate, additionally, a stochastic volatility component.
Therefore, in what follows, we consider the following (discrete-time) model with the
double exponential distribution of jump values (SVDEJ):

yt+1 = yt + µ+
√

exp (ht)ε(1)
t+1 + Jt+1,

ht+1 = ht + κh (θh − ht) + σh

(
ρε

(1)
t+1 +

√
1− ρ2ε

(2)
t+1

)
,

(3)

where yt = ln (St),
{
ε

(1)
t

}
∼ iid N (0, 1),

{
ε

(2)
t

}
∼ iid N (0, 1), ε(1) and ε(2)

are independent, and {Jt} is a sequence of independent and identically distributed
variables with the probability density:

fJt (x) = pD
1
ηD

exp
(

1
ηD

x

)
I(−∞,0) (x) + p0δ(0) (x)

+ pU
1
ηU

exp
(
− 1
ηU
x

)
I(0,∞) (x) ,

(4)

where δ(0) is the Kronecker delta, pD ≥ 0, p0 ≥ 0, pU ≥ 0, pD + p0 + pU = 1. The
parameters pD, p0, and pU are interpreted as the probabilities of a negative jump, no
jump and a positive jump occurrence, respectively.
An additional restriction of 0 < κh < 2 is assumed in order to ensure the stationarity
of the log-volatility process ht. The value of 1 − κh for κh ∈ (0, 1) is interpreted as
a speed of mean reversion of the log-volatility process ht towards its mean level θh,
and σh is the volatility parameter of ht. Parameter ρ ∈ (−1, 1) is the correlation
coefficient between log-price shocks ε(1)

t and log-volatility shocks ρε(1)
t +

√
1− ρ2ε

(2)
t .

If ρ < 0, the leverage effect exists. If ρ > 0, the inverse leverage effect exists. The
specification incorporates the stochastic volatility structure and jumps.

2.3 The SVNJ model
The stochastic volatility model with normal jumps (SVNJ) is similar to the previous
one. The only difference is the choice of the normal distribution of jumps N

(
µJ , σ

2
J

)
,
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instead of the double exponential one. The model is defined as:

yt+1 = yt + µ+
√

exp (ht)ε(1)
t+1 + Jt+1,

ht+1 = ht + κh (θh − ht) + σh

(
ρε

(1)
t+1 +

√
1− ρ2ε

(2)
t+1

)
,

(5)

where yt = ln (St), 0 < κh < 2,
{
ε

(1)
t

}
∼ iid N (0, 1),

{
ε

(2)
t

}
∼ iid N (0, 1), ε(1) and

ε(2) are independent, and {Jt} is a sequence of independent and identically distributed
variables with the probability density:

fJt (x) = pJ
1√

2πσ2
J

exp
(
−1

2
(x− µJ)2

σ2
J

)
+ (1− pJ) δ(0) (x) , (6)

where pJ ≥ 0 is interpreted as a probability of a jump and δ(0) is the Kronecker delta.
Parameter µJ ∈ R represents the mean of a jump value and σ2

J ∈ (0,∞) denotes the
variance of a jump. The normal distribution is most often assumed for the value of a
jump.
The above structure is further referred to as the stochastic volatility model with
normal jumps and denoted here by the acronym SVNJ. Note that the log-volatility
ht (and not ht+1 as in (Jacquier et al. 2004) appears in the formula for yt+1, which
is in line with the idea presented by Yu (2005), Omori et al. (2007), Li et al. (2008),
and Johannes and Polson (2010).
Similarly to the SVDEJ model, the SVNJ structure incorporates the stochastic
volatility structure, jumps and the conditional correlation ρ between log-prices and
log-volatility. The SVNJ specification, in Bayesian framework, is proposed by Szerszen
(2009).

2.4 What is a jump? The Bayesian perspective on a jump
The Bayesian statistical model is defined by the joint density:

p (y, θ) = p (y |θ ) p (θ) , (7)

where y = (y1, ..., yn) is the observed data, θ is a vector of unknown parameters,
p (y |θ ) is a sampling density and p (θ) is a prior density. Given y, p (y |θ ) – as a
function of θ – is the likelihood function. The Bayesian inference rests upon the
posterior density p (θ |y ) = p (y |θ ) p (θ) /p (y) of θ given data y (Bernardo and Smith
2009).
Let us assume that a time series of prices or returns is a trajectory of a stochastic
process. In practice, we do not actually know if a given observation has been generated
by pure diffusion, the SV process, or (co-)generated by the jump component. In order
to address the problem, latent variables q = (qt), ξ = (ξt) are introduced. Moreover,
the sequence of latent variables h = (ht) represents the unobserved log-volatilities
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under the SV-type models. In the SVNJ model the variable qt takes two values: 0
or 1. The first one corresponds to no jump, whereas the second one with a jump
occurrence. If a jump occurs, a variable ξt represents a size of a jump. In the models
with the double exponential distribution (the DEJD and SVDEJ models) qt takes
three values: −1, 0 or 1, corresponding to a negative jump, no jump and a positive
jump, respectively. If a negative jump occurs at time t (i.e. qt = −1), variable −ξDt
represents a size of a jump. If a positive jump occurs at time t (i.e. qt = 1), variable
ξUt stands for a value of the jump. Formally, an occurrence of a jump at time t
is equivalent to an event qt 6= 0. Unfortunately, the values of qt are not observed;
however, the posterior probability of a jump P (qt 6= 0| y) can be assessed.
Finally, we define that a jump occurs at time t if the posterior probability of a jump
exceeds an arbitrarily chosen value (here 0.5, i.e. P (qt 6= 0| y) > 0.5). Additionally,
under the double exponential distribution, the magnitude of a negative jump at time
t equals −ξDt , and a positive one ξUt . Similarly, we define a size of a jump under the
normal distribution of jumps as a value of ξt.
The Bayesian models with extended parameter space including also the latent
variables are defined as

p (y, θ, h, q, ξ) = p (y |θ, h, q, ξ ) p (θ, h, q, ξ) . (8)

It leads to the following Bayesian specifications with a discrete time scale denoted
using the same symbols as in the above mentioned DEJD, SVDEJ and SVNJ
models. For the unknown quantities of the models, standard proper prior distributions
reflecting our prior uncertainty are assumed. In what follows, the Bayesian models are
presented. The details of Bayesian specification of DEJD, SVDEJ and SVNJ can be
found in, respectively, Kostrzewski (2015), Kostrzewski (2016) and Szerszen (2009).

• The DEJD model (Kostrzewski 2015):

yt+1 = yt +
(
µ− 1

2σ
2)∆ + σεt+1

√
∆ + Jt+1,

Jt+1 = −ξDt+1 · I (qt+1 = −1) + 0 · I (qt+1 = 0) + ξUt+1 · I (qt+1 = 1) ,
(9)

where yt = ln (St), {εt} ∼ iid N (0, 1),
{
ξDt
}
∼ iid Exp (ηD),{

ξUt
}
∼ iid Exp (ηU ).

In order to define the Bayesian model we employ the following
reparametrisations: µ′ = µ− 1

2σ
2, h = 1

σ2 , L = λ∆, where ∆ = 1
252 . The prior

structure is given as follows: h ∼ G (νh, Ah) (a gamma distribution with mean
νh
Ah

and variance νh
A2
h

), µ′ |h ∼ N
(
µ0, (hAµ)−1

)
(a normal distribution with

mean µ0 and variance (hAµ)−1), L ∼ χ2 (ν) (a χ2 distribution with ν degrees
of freedom and mean ν), ηU ∼ IG

(
νU,η, AU,η

)
(an inverse gamma distribution

with mean AU,η/(νU,η−1) for νU,η > 1), ηD ∼ IG
(
νD,η, AD,η

)
, pU ∼ B (aU , bU )
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(a beta distribution with mean aU/(aU + bU )). The values of the
hyperparameters of the prior structure are given in Table 1. The values are
the same as in (Kostrzewski 2015).

Table 1: The values of the hyperparameters of the prior distribution for the DEJD
model

νh Ah µ0 Aµ ν νD,η AD,η νU,η AU,η aU bU

5 1 0 1 10
252 1.86 0.43 1.86 0.43 1 1

• The SVDEJ model (Kostrzewski 2016):

yt+1 = yt + µ+
√

exp (ht)ε(1)
t+1 + Jt+1,

ht+1 = ht + κh (θh − ht) + σh

(
ρε

(1)
t+1 +

√
1− ρ2ε

(2)
t+1

)
,

Jt+1 = −ξDt+1 · I (qt+1 = −1) + 0 · I (qt+1 = 0) + ξUt+1 · I (qt+1 = 1) ,

(10)

where
{
ε

(i)
t

}
∼ iid N (0, 1),

{
ξDt
}
∼ iid Exp (ηD) and

{
ξUt
}
∼ iid Exp (ηU ).

The Bayesian version of the model is considered in (Kostrzewski 2016) where it
is denoted by a longer acronym SVLEDEJ.
In order to define the Bayesian model we apply the reparametrisation
(σh, ρ)→ (φh, ωh), where φh = σhρ and ωh = σ2

h

(
1− ρ2). The prior structure is

given as follows: µ ∼ N (mµ, wµ), κh ∼ N (mκh , wκh) I(0,2) (a truncated normal
distribution), θh ∼ N (mθh , wθh), ωh ∼ IG (aωh , bωh), φh |ωh ∼ N

(
0, 1

2ωh
)
,

ηD ∼ IG (aηD , bηD ), ηU ∼ IG (aηU , bηU ), (pD, p0, pU ) ∼ Dirichlet (dD, d0, dU ).
The values of the hyperparameters are given in Table 2. The values are the
same as in (Kostrzewski 2016).

• The SVNJ model (Szerszen 2009):

yt+1 = yt + µ+
√

exp (ht)ε(1)
t+1 + Jt+1,

ht+1 = ht + κh (θh − ht) + σh

(
ρε

(1)
t+1 +

√
1− ρ2ε

(2)
t+1

)
,

Jt+1 = 0 · I (qt+1 = 0) + ξt+1 · I (qt+1 = 1),

(11)

where
{
ε

(i)
t

}
∼ iid N (0, 1) and {ξt} ∼ iid N

(
µJ , σ

2
J

)
.

In order to define the Bayesian model we apply the reparametrisation
(σh, ρ)→ (φh, ωh), where φh = σhρ and ωh = σ2

h

(
1− ρ2). Then, the prior

structure is given as follows: µ ∼ N (mµ, wµ), κh ∼ N (mκh , wκh) I(0,2),
θh ∼ N (mθh , wθh), ωh ∼ IG (aωh , bωh), φh |ωh ∼ N

(
0, 1

2ωh
)
, pJ ∼ B (aJ , bJ),
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µJ ∼ N (mµJ , wµJ ), σ2
J ∼ IG

(
aσ2

J
, bσ2

J

)
. The values of the hyperparameters

are given in Table 3. The values are the same as in (Szerszen 2009) except aJ and
bJ . Szerszen assumes the Jeffreys’ prior distribution of pJ (i.e. aJ = bJ = 0.5).
In our study, we assume aJ = 2 and bJ = 15 therefore P (pJ < 0.5) ≈ 1.
Moreover, the mode, mean and standard deviation of the prior distribution of
pJ equal 0.067, 0.118 and 0.076, respectively. The distribution refers to prior
expectation of ‘sporadic’ jumps.

Table 2: The values of the hyperparameters of the prior distribution for the SVDEJ
model

mµ wµ mθh wθh mκh wκh aωh bωh

0 10 0 10 1 6 3 1
20

aηD aηU bηD bηU dD d0 dU

1.86 1.86 0.43 0.43 1 1 1

Table 3: The values of hyperparameters of the prior distribution for the SVNJ model

mµ wµ mθh wθh mκh wκh aωh

0 10 0 10 1 6 3
bωh mµJ wµJ aσ2

J
bσ2
J

aJ bJ

1
20 0 10 3 1

20 2 15

The Bayesian inference about unknown parameters and latent variables is based
on posterior distributions. In the study posterior characteristics of the unknown
quantities are calculated by means of the Markov Chain Monte Carlo (MCMC)
methods (Gamerman and Lopes 2006), combining the Gibbs sampler and the
Metropolis-Hastings algorithm, as well as the acceptance-rejection sampling method
(Chib and Greenberg 1995). A convergence of the MCMC algorithms is verified by
the visual inspection of CUMSUM, ergodic means and standard deviations plots (Yu
and Mykland 1998).

3 Empirical results

In order to evaluate the Bayesian methods of jumps detection, we employ them for
gas and CO2 allowances contract prices.
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3.1 Gas forward contracts
Data presentation

Energy is an important factor exerting an impact on economy, politics, stability and
people’s everyday lives. Natural gas is one of the most important sources of energy
and often the basic ingredient of the energy mix. Moreover, natural gas is crucial for
both electricity production and heating. The development of gas markets, observed
in last decades, is a result of increasing worldwide deregulations and liberalisations of
the gas markets.
Gas injected into the transmission network is traded at a virtual trading hub. It is
not important, at the hub, which entry or exit is chosen for the natural gas injection
or withdrawal. The first of the analysed time series comprises one-month gas contract
prices (in EUR/MWh). This data set comes from the Dutch Title Transfer Facility
(TTF) virtual trading hub. The data span the period from January 21, 2008 to April
22, 2015. The number of observations equals 1840. Kostrzewski (2016) considers the
same time series and presents the results of parameters estimation and the estimation
of probabilities of jumps calculated only under the SVDEJ model. However, the
analysis of the frequency of jumps and the moments in which they occur is not
conducted in (Kostrzewski 2016).
According to Hagfors et al. (2016), most stock and commodity prices are not
stationary. However, in our study, the results of the Augmented Dickey–Fuller test,
Phillips-Perron Unit Root Test (the p-values are less than 0.01) and the Kwiatkowski-
Phillips-Schmidt-Shin test (the p-value higher than 0.1) suggest stationarity of the
differences in gas forward contract log-prices. Moreover, the Łomnicki-Jarque-Bera
test and Shapiro-Wilk test reject normality of the time series of differenced log-prices.

Frequency of jumps

We analyse the number of jumps detected under the Bayesian models. Additionally,
we apply three non-Bayesian techniques to detect jumps (Janczura et al. 2013):

1. The RFR technique, where returns (the differences in log-prices) exceeding the
mean of returns by three sample standard deviations are treated as jumps, with
the jump values removed one by one (‘recursive filter’).

2. The VRT1 technique, where 2.5% of the highest and 2.5% of the lowest returns
are treated as jumps.

3. The VRT2 technique, where 10% of the highest and 10% of the lowest returns
are treated as jumps.

Table 4 shows the number of negative and positive jumps detected for each day
of a week in the differences in log-prices of gas forward contracts. The number of
discovered jumps depends on a detection method. In the Bayesian models, the highest
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number of jumps is detected under the jump-diffusion structure. The results for the
SVDEJ and SVNJ models are similar to each other (30 jumps), and the number of
jumps detected under the models is much lower than the number of jumps detected
under the DEJD model (265 jumps). We note that the stochastic volatility strongly
reduces the number of observations classified as a result of the jump component under
the SV-type models (see also Figs. 1–3).
The VRT2 technique detects the greatest number of jumps (368 jumps), whereas
the fewest number of jumps is detected under the SV-type models (30 jumps). The
methods applied in the study detect more positive jumps than negative ones, except
for the VRT1 and VRT2 techniques where the numbers are equal. It is in line with
our expectations, because higher gas prices are generally less desirable. It justifies
our approach to treat negative and positive jumps separately. Moreover, jumps most
frequently appear on Mondays. In the DEJD model and the VRT2 technique the
numbers of jumps are high and 73% of these jumps occur on the same days. About
94% of the observations classified as a result of a jump component under the SVDEJ
model coincide with the jumps identified also under the DEJD structure. Moreover,
all jumps detected under the SVDEJ model are also classified as such by the VRT2
technique.

Table 4: The number of jumps identified under the Bayesian models and non-Bayesian
techniques in gas contract prices in the period January 21, 2008 – April 22, 2015

Mon. Tues. Wed. Thurs. Fri. Total

DEJD:
negative 36 26 23 18 28 131
positive 42 28 24 21 19 134

all 78 54 47 39 47 265

SVDEJ:
negative 1 1 0 0 0 2
positive 15 7 2 2 2 28

all 16 8 2 2 2 30

SVNJ:
negative 2 1 0 1 1 5
positive 12 7 2 2 2 25

all 14 8 2 3 3 30

RFR:
negative 12 10 6 4 6 38
positive 22 15 11 6 6 60

all 34 25 17 10 12 98

VRT1:
negative 16 11 7 4 8 46
positive 16 13 10 5 2 46

all 32 24 17 9 10 92

VRT2:
negative 51 34 34 29 36 184
positive 53 37 31 34 29 184

all 104 71 65 63 65 368

Table 5 indicates the number of jumps detected on a set of special dates. We also
report the percentage of jumps out of the number of all jumps, months, weekends
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Table 5: The number of jumps detected on special dates. The percentage of jumps
out of the number of all jumps, months, weekends or breaks in trade in gas contract
prices in the period January 21, 2008 – April 22, 2015

The first
trading day
of a month

The last
trading day
of a month

After a break

DEJD

39 jumps 17 jumps 90 jumps
14.7% of jumps 6.4% of jumps 34% of jumps
45.3% of months 19.8% of months 23.8% of weekends

23.4% of breaks

SVDEJ

23 jumps 0 jumps 18 jumps
76.7% of jumps 0% of jumps 60% of jumps
26.7% of months 0% of months 4.8% of weekends

4.7% of breaks

SVNJ

23 jumps 1 jump 16 jumps
76.7% of jumps 3.3% of jumps 53.3% of jumps
26.7% of months 1.2% of months 4.2% of weekends

4.2% of breaks

RFR

26 jumps 2 jumps 39 jumps
26.5% of jumps 2% of jumps 39.8% of jumps
30.2% of months 2.3% of months 10.3% of weekends

10.2% of breaks

VRT1

26 jumps 4 jumps 37 jumps
28.3% of jumps 4.3% of jumps 40.2% of jumps
30.2% of months 4.7% of months 9.8% of weekends

9.6% of breaks

VRT2

42 jumps 20 jumps 117 jumps
11.4% of jumps 5.4% of jumps 31.8% of jumps
48.8% of months 23.3% of months 31% of weekends

30.5% of breaks

or breaks in trade. For example, in the DEJD model: 90 jumps are identified after
a break (that is after a day without trade, e.g. just after a weekend or a holiday),
and they account for 34% of all jumps identified by this model. Under the SVDEJ
model, we observe a jump in every 3 to 4 beginnings of a month (26.7%), moreover, we
observe jumps less often than every 21st weekend (4.8%). Under SVDEJ and SVNJ
(76.7%) most jumps are identified on the first day of a month. On the other hand,
the highest number of jumps under the DEJD model and non-Bayesian techniques
is identified after breaks in trade. About 50% of jumps detected under the DEJD
model and the non-Bayesian techniques and about 90% of jumps detected under the
SV-type models are explained by the calendar effect (cf. Table 6). There are still
jumps which occur after no break and neither on the first nor the last day of a month.
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Table 6: The number of jumps explained by the calendar effect and the percentage
out of all jumps identified in gas contract prices in the period January 21, 2008 –
April 22, 2015

Method No. of jumps (%)

DEJD 121 (45.7%)
SVDEJ 27 (90.0%)
SVNJ 26 (86.7%)
RFR 53 (54.1%)
VRT1 51 (55.4%)
VRT2 153 (41.6%)

The results obtained by both SV-type models are similar. In both cases only few
jumps cannot be explained by the calendar effects. Under the SVDEJ model there
are three such jumps, identified on 26 March 2013, 20 June 2014 and 10 February
2015, with the posterior probabilities equal to 0.7747, 0.6842 and 0.7287, respectively.
We try to link the dates of jump occurrences with some news or events which might
have been the reason of sharp price movements. The positive jump observed on 26
March 2013 might be explained by a supply shortage of gas in the UK caused by
the coldest March over the last 50 years, which led to the need of an unplanned
purchase of an extra amount of gas. Next, the steep rise on 20 June 2014 might have
resulted from the Russia-Ukraine gas war. On 19 June 2014 Russia terminated the
talks with Ukraine about gas supplies. The Dutch government announced a reduction
of Groningen gas output, which might have spurred the positive jump on 10 February
2015.
Under the SVNJ model, there are four jumps which are not explained by the calendar
effect: on 26 March 2013, 19 June 2014, 20 June 2014 and 10 February 2015, with the
corresponding probabilities: 0.5448, 0.7523, 0.7849 and 0.6897. Hence, about 86.7%
of all jumps are explained by the calendar effects in that case.
Taking the results into account, we recommend traders not to buy contracts on the
first and last trading day of a month and a day just after a break in trade because of
a higher probability of a jump occurrence on these days.

Model comparison

The comparison of the models is conducted by means of the decimal logarithm

of Bayes factors: log10

(
p(DEJD|y)
p (SV NJ |y)

)
and log10

(
p(SV NJ |y)
p (SV DEJ |y)

)
, where

p (Mi|y) = p (Mi) p (y|Mi)∑
j p (Mj) p (y|Mj)

, withMi standing for the i-th model. We do not prefer

any model, thereby, we assume p (Mi) = p (Mj). Hence p (Mi|y) ∝ p (y|Mi). In order to
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estimate the marginal data density p (y|Mi), we apply the Newton-Raftery (N-R)
estimator (Newton and Raftery 1994), also called the harmonic mean estimator.
It is consistent, however, without finite asymptotic variance. Moreover, it can be
unstable (Raftery et al. 2007, Pajor and Osiewalski 2013, 2014, Pajor 2017) and
‘simulation pseudo-biased’ (Lenk 2009). In order to avoid such ‘pseudo-bias’, Pajor
and Osiewalski (2013, 2014) and Osiewalski and Osiewalski (2013) recommended
working with appropriately chosen subsets of the parameter space (extended to cover
latent variables as well). Estimating p (y|Mi) on the basis of the MCMC sample from
the subset of the parameter space requires correcting the original N-R estimator by the
prior probability of the chosen subset; Osiewalski and Osiewalski (2013, 2016) propose
using multivariate cubes. This, however, can be criticised as an arbitrary solution.
Ultimately, our examples are based on N-R estimator and very long realizations of
the Markov chains.

Figure 1: Upper panels: Gas forward contract prices in the period January 21, 2008
– April 22, 2015 (solid line) and the observations identified as jumps (dots) marked
also by vertical line segments. Lower panels: The series of the differences in log-prices
of gas forward contracts and the observations identified as jumps (dots). The results
based on DEJD (left panels) and RFR (right panels)
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The calculations of the harmonic mean estimators are based on 6, 000, 000
iterations after rejecting burn-in iterations. The values of the logarithmic
Bayes factors are as follows: log10 (p(DEJD|y)/p (SV DEJ |y)) = 63,
log10 (p(SV DEJ |y)/p (SV NJ |y)) = 9.53.
In both cases the numbers are higher than 2. According to the interpretation of Kass
and Raftery (1995), it means that the models from the numerators very strongly
outperform the models from the denominators. The simplest one, DEJD, gains
the highest posterior probability. Moreover, the SV-type model with the double
exponential distribution of jumps (SVDEJ) is more probable a posteriori than its
counterpart with normal sizes of jumps. To sum up, the results of the Bayesian
comparison unambiguously point to the simplest model DEJD as the best one, and
the model with a normal distribution of jumps as the worst one. It again justifies
the choice of the double exponential distribution of jump sizes.

Figure 2: Upper panels: Gas forward contract prices in the period January 21, 2008 –
April 22, 2015 (solid line) and the observations identified as jumps (dots) marked also
by vertical line segments. Lower panels: The series of the differences in log-prices of
gas forward contracts, the observations identified as a result of the jump component
(dots) and stochastic volatility with mirror reflection along the horizontal axis (solid
line). The results based on SVDEJ (left panels) and SVNJ (right panels)
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Figure 3: Upper panels: Gas forward contract prices in the period January 21, 2008
– April 22, 2015 (solid line) and the observations identified as jumps (dots) marked
also by vertical line segments. Lower panels: The series of the differences in log-prices
of gas forward contracts and the observations identified as jumps (dots). The results
based on VRT1 (left panels) and VRT2 (right panels)
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Figs. 1–3 present gas forward contract prices and the differences in log-prices in the
period January 21, 2008 – April 22, 2015. The dots represent the values which are
found to result from the jump component under the Bayesian models and the values
which are identified as jumps under the non-Bayesian techniques.
We observe the jump clustering phenomenon – periods of no jumps alternate with
the ones of frequent jumps – for all models, apart from the SVDEJ and SVNJ
models. The SV component explains many sharp movements of the series and may
be a reason why the jump clustering phenomenon does not manifest itself in SV-type
models (see Fig. 2). Moreover, the lower panels of Figure 2 present the posterior
means of stochastic volatility estimated under the SVDEJ and SVNJ models. We
observe the periods of higher volatility alternating with those of lower volatility. The
results are indicative of the stochastic volatility clustering.
The jumps found under the Bayesian models do not correspond to the values below
or above some fixed thresholds – there exist values classified as a result of the jump
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component whose sizes are lower (or higher) than observations not classified as such.
Moreover, the results for the SVNJ model are similar to the ones obtained for the
SVDEJ specification.

3.2 EUA futures contracts
Data presentation

Emissions trading is used as an instrument of international ecological politics in the
fight with global warming. It was established to prompt, in a financial way, with the
use of the cap and trade principle, factories, power stations, civil aviation industry
etc. to reduce the amounts of industrial greenhouse CO2 emissions. Trading carbon
dioxide allowances is one of the ways in which CO2 emission can be reduced. The
European Union Emissions Trading Scheme was launched on January 1, 2005, and
was preceded by the international agreement in Kyoto in 2002.

Table 7: The number of jumps identified under the Bayesian models (DEJD, SVDEJ,
SVNJ) and non-Bayesian techniques (RFR, VRT1, VRT2) in the series of EUA
contract prices in the period January 3, 2011 – December 6, 2013

Mon. Tues. Wed. Thurs. Fri. Total

DEJD:
negative 14 12 17 7 11 61
positive 5 6 8 12 11 42

all 19 18 25 19 22 103

SVDEJ:
negative 0 1 0 0 0 1
positive 0 0 0 0 0 0

all 0 1 0 0 0 1

SVNJ:
negative 0 1 0 0 0 1
positive 0 0 0 0 0 0

all 0 1 0 0 0 1

RFR:
negative 3 2 3 3 3 14
positive 0 2 3 4 3 12

all 3 4 6 7 6 26

VRT1:
negative 4 5 3 3 3 18
positive 2 2 3 6 5 18

all 6 7 6 9 8 36

VRT2:
negative 17 13 21 8 14 73
positive 11 20 13 16 15 75

all 28 33 34 24 29 148

European Union CO2 emission allowances (EUA) are traded on the ICE Futures
Europe electronic platform which is a part of the Intercontinental Exchange (ICE).
Each of EU allowances entitles one to emit one tonne of carbon dioxide equivalent.
EUA futures contracts are standardised products. Future prices are quoted in euro
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per metric tonne. The contract unit amounts to 1, 000 CO2 EU allowances. The
trading model is based on continuous trading.
The second dataset considered in this study is the series of daily differences in
the logarithm of closing prices of EUA futures. The empirical study covers the
period of surpluses of allowances in a market, which resulted in low contract prices.
Unfortunately, EUA low prices did not result in the industry’s investments in limiting
emissions, as it was cheaper to buy allowances.
The following analysis is focused on the closing prices of EUA futures contracts
expiring on December 16, 2013. The data span the period from January 3, 2011
to December 6, 2013. The number of observations equals 757. The period under
study concerns Phase II (2008–2012) and Phase III (2013–2020) of the European
Union Emissions Trading Scheme (EU ETS).

Figure 4: Upper panels: Prices of EUA futures contracts in the period January 3,
2011 – December 6, 2013 (solid line) and the observations identified as jumps (dots)
marked also by vertical line segments. Lower panels: The series of the differences in
log-prices of EUA futures contracts and the observations identified as jumps (dots).
The results based on DEJD (left panels) and RFR (right panels)
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Similarly to gas contracts, the results of the Augmented Dickey–Fuller test, Phillips-
Perron Unit Root Test (the p-values are less than 0.01) and the Kwiatkowski-
Phillips-Schmidt-Shin test (the p-value are higher than 0.1) suggest stationarity of
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the differences in EUA futures log-prices. Moreover, the Łomnicki-Jarque-Bera test
and Shapiro-Wilk test reject the normality of the time series.

Figure 5: Upper panels: Prices of EUA futures contracts in the period January 3,
2011 – December 6, 2013 (solid line) and the observations identified as jumps (dots)
marked also by vertical line segments. Lower panels: The series of the differences in
log-prices of EUA futures contracts, the observations identified as a result of the jump
component (dots) and stochastic volatility with mirror reflection along the horizontal
axis (solid line). The results based on SVDEJ (left panels) and SVNJ (right panels)
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Frequency of jumps

We analyse the number of jumps detected under three Bayesian models: DEJD,
SVDEJ, SVNJ, and by means of the non-Bayesian techniques: VRT1, VRT2, RFR.
Table 7 presents the number of negative and positive jumps. The number of negative
jumps in the series of differences in log-prices of EUA futures contracts is equal or
higher than the number of positive jumps for each method of jump detection apart
from VRT2 (see also Figs. 4–6). Similarly to the prices of gas contracts, the greatest
number of jumps is detected under VRT2 (148 jumps) and DEJD (103 jumps). Under
the SV-type models the stochastic volatility component explains nearly all variability
and there is only a single data point with a high probability of a jump occurrence
under the SVDEJ and SVNJ models. Moreover, jumps detected after a break in trade
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amount to about 20% of all jumps under the DEJD, RFR, VRT1 and VRT2 methods.

Figure 6: Upper panels: Prices of EUA futures contracts in the period January 3,
2011 – December 6, 2013 (solid line) and the observations identified as jumps (dots)
marked also by vertical line segments. Lower panels: The series of the differences in
log-prices of EUA forward contracts and the observations identified as jumps (dots).
The results based on VRT1 (left panels) and VRT2 (right panels)
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Model comparison

In the paper (Kostrzewski 2014b), a shorter time series of the EUA futures
contract prices is analysed by means of the DEJD model. In order to compare
the Bayesian models, the calculations of the harmonic mean estimator are based
on 3, 000, 000 iterations after rejecting the burn-in iterations. The values of the
logarithmic Bayes factors are as follows: log10 (p (SV NJ |y) /p(DEJD|y)) = 33.24,
log10 (p (SV NJ |y) /p(SV DEJ |y)) = 0.269.
The SV-type models gain the highest posterior probabilities. However, the difference
between the posterior probabilities of SVNJ and SVDEJ is very small and negligible.
According to Kass and Raftery (1995), if the logarithmic Bayes factor is lower than
0.43, the difference between the models is ‘not worth more than a bare mention’.
The results indicate that the jump value distribution does not play a key role in the
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EUA future contract prices. The result is not surprising because only one jump
is detected under the SV-type models, and almost all variability is explained by
stochastic volatility.
Figs. 4–6 show the prices of EUA futures contracts and the differences in log-prices
in the period January 3, 2011 – December 6, 2013. The dots represent the values
which are found to result from the jump component under the Bayesian models and
the values which are identified as jumps under the non-Bayesian techniques. The only
jump identified under the SV-type models occurs on April 16, 2013. On this day the
European Parliament voted against the European Commission’s proposal of delaying
the auction of 900 million allowances from the first three years (2013–2015) of the
3rd ETS trading period (2013–2020) (so-called backloading), which caused a sharp
decline in prices.

4 Conclusions and remarks
The study employs Bayesian models (DEJD, SVDEJ, SVNJ) and three non-Bayesian
techniques (RFR, VRT1, VRT2) to detect jumps.
In gas forward contract prices the number of positive jumps is higher or equal than the
number of negative jumps. We might expect that ‘bad’ news has greater impact on
prices than ‘good’ news, which may be justified by the phenomenon of ‘crashophobia’.
Generally, in gas contracts ‘bad’ news or a ‘bad’ event implies a rise of the price.
The results justify our approach to treat negative and positive jumps separately by
employing the double exponential distribution of jumps.
Many jumps in gas contract prices are explained by the calendar effects. The results
reveal the relation between jumps and the scheme of trading. Many jumps appear
just after a break in trade, so traders should be very cautious buying contracts on
such days.
The results of the application of the jump-diffusion model and non-Bayesian
techniques indicate not only a high frequency of jumps, but also that the jump
activity varies over time. Introducing the stochastic volatility component into the
model structure strongly reduces the number of identified jumps. Under the SV-type
models periods of higher volatility alternating with periods of lower volatility can be
observed. The SV part explains many sharp movements of the series and models time
series in periods with high variations. In the case of gas contract prices, the simplest
model, DEJD, gains the highest posterior probability.
In the case of the EUA futures contracts, the number of negative jumps in prices is
higher than or equal to the number of positive jumps in all methods but VRT2. The
models with stochastic volatility have significantly higher posterior probabilities than
the DEJD specification. The SV structure explains nearly all variation of the time
series, the only jump detected is linked with the backloading.
Generally, the jumps which are found under the Bayesian models do not correspond
to the values below or above fixed thresholds. In our opinion, jumps might be treated
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as residuals of the ‘continuous’ part of the model rather than (global) outliers. In
other words, a jump is a value which is ‘considerably’ higher or lower than the values
in its neighbourhood, rather than in comparison with the values across the whole data
set. These results are different than the ones obtained using non-Bayesian techniques
(VRT1, VRT2, RFR).
Our empirical results might be useful on at least three counts. First, they show the
impact of calendar effects and political and economic decisions on jump appearances,
which might be valuable for traders. Second, the results indicate the models which
best fit the data in question. Last but not least, the results of the study provide
valuable tools for risk management connected with the identification of periods with
a higher probability of steep rises and drops of prices.
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