
947Bull. Pol. Ac.: Tech. 67(5) 2019

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 67, No. 5, 2019
DOI: 10.24425/bpasts.2019.130880

Abstract. This paper presents an innovative method of technology mapping of the circuits in ALM appearing in FPGA devices by Intel. The
essence of the idea is based on using triangle tables that are connected with different configurations of blocks. The innovation of the proposed
method focuses on the possibility of choosing an appropriate configuration of an ALM block, which is connected with choosing an appropriate
decomposition path. The effectiveness of the proposed technique of technology mapping is proved by experiments conducted on combinational
and sequential circuits.

Key words: decomposition, logic synthesis, technology mapping, ALM.

Technology mapping oriented to adaptive logic modules

M. KUBICA* and D. KANIA
Institute of Electronics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland

propose an innovative usage of non-disjoint decomposition that
enables us to implement a function in certain configurable ALM
blocks. Section 4 describes the decomposition of combinational
FSM blocks in ALM. Section 5 presents experimental results
conducted on a wide range of benchmarks. The paper ends with
a brief conclusion.

2.	 Theoretical background

The partition of a combinational circuit into logic blocks,
included in FPGA, is directly connected with the decomposi-
tion of a function. The theoretical basis of decomposition was
defined by Ashenhurst and Curtis [2, 7]. The classical approach
assumes that function decomposition is based on the partition
of variables into a bound set Xb and a free set X f . A bound set
is defined as a set of variables for bound functions g, and the
block implementing the p bound functions is called a bound
block. A free function is implemented within a block (a free
block) and its variables consist of bound functions and a free
set X f . For a disjoint decomposition, a bound and a free set do
not have common variables. It is essential for decomposition to
determine the number (p) of bound functions needed (i.e. the
number of connections between a bound and a free block).

Let f be an n-input i m-output logic function reflecting
set Bn into Bm i.e. f : Bn → Bm, where B = {0, 1}. Function
f : Bn → Bm may be presented as Y =  f (In ¡ 1, ..., I1, I0),
where Y = {ym ¡ 1, ..., y1, y0}.

Function f : Bn → Bm is subjected to decomposition i.e.

	 f (Xf , Xb) = F
£

g1(Xb), g2(Xb), ..., gp(Xb), Xf
¤
� (1)

if and only if there is column multiplicity of the Karnaugh map
ν (X f  j Xb) ∙ 2p [2, 7], where Xb È X f  = {In ¡ 1, ..., I1, I0}
and Xb ∩ Xf  =  φ.

The partition of a circuit, which is the result of a function
decomposition, is illustrated in Fig. 1a. In the case of a func-
tion representation in the form of BDD [1, 18], decomposition

1.	 Introduction

The key element of a logic synthesis dedicated to FPGA is
technology mapping. This process is directly associated with
a function decomposition [14, 22]. There is a range of academic
tools that allow for function decomposition [5, 11, 21, 26, 27];
there are also many well known models of decomposition
[4, 11, 17, 25]. Particularly popular models include AIG par-
titioning [3, 9, 19, 20, 23] and methods using cutting of BDD
diagrams [13, 15]. Thus, the method of representation of a logic
function is extremely important. It appears that the decompo-
sition algorithms in the literature are universal. Despite the
advantages these methods, most of them do not allow us to
use the specific features of certain architectures of FPGAs.
Depending on the way in which they are produced, the config-
urabilities of logic blocks within FPGAs are slightly different.
Using these features in the process of technology mapping may
lead to a limitation on the number of logic blocks necessary to
implement logic functions. Obviously, the obtained solutions
are assigned to certain logic blocks, and thus, their universal
character is strongly limited (it is hard to compare them with
other academic tools). However, it seems that this methodology
may be used for various FPGAs.

The main goal of this paper is to present a method of tech-
nology mapping that is associated with decomposition by cut-
ting a BDD diagram and dedicated to the specific configurabil-
ities of modern logic blocks. The idea of technology mapping
was presented in the form of adaptive logic module (ALM)
blocks by Intel [10].

Section 2 discusses the theoretical basis of decomposition
and the elements of technology mapping. Section 3 presents the
proposed method of technology mapping of logic functions in
ALM blocks, based on multiple cuttings of a BDD diagram. We

*e-mail: marcin.kubica@polsl.pl

Manuscript submitted 2018-08-13, revised 2019-04-22, initially accepted
for publication 2019-05-19, published in October 2019

948

M. Kubica and D. Kania

Bull. Pol. Ac.: Tech. 67(5) 2019

is associated with horizontal cutting of a diagram. Variables
that are connected with nodes and that are above the cutting
line belong to a bound set. Variables placed below the cutting
line create a free set. It turns out that the column multiplicity
of the Karnaugh map corresponds to the number of cut nodes,
i.e. the nodes placed below the cutting line and whose edges are
connected to the nodes from the top part of the diagram. Func-
tion decomposition, described by BDD using a single cutting,
is illustrated in Fig. 1b [16].

A simple serial decomposition is defined as a decomposi-
tion that corresponds to one bound and one free block [2, 7].
In general, the number of inputs of a combinational circuit
is high enough and the model is too small. Althoug complex
decomposition models have been developed [15, 22], multiple
decomposition is considered to be the most interesting approach
[7, 13]. This model enables us to create several bound blocks,
as shown in Fig. 2a. In the case of a function representation in
the form of BDD, there are several methods of searching for
a multiple decomposition. The first is based on a multiple cut-

ting, which means that several cutting lines are introduced and
the variables placed between given cutting lines are associated
with bound sets [12, 13], as illustrated in Fig. 2b. The extracts
placed between the lines can be treated as multiroot diagrams
(SMTBDD) [13, 14], and can be replaced with a given number
of bound functions using the methods presented in [13, 14].

Limitations connected with the number of elements of
bound sets are closely associated with the number of inputs of
logic blocks in which a function will be mapped [22]. Modern
configurable logic blocks include several LUTs that ensures
flexibility of a technology mapping process. Usually, the blocks
may be configured in many ways. However, on the basis of an
analysis of configurabilities of ALM blocks by Intel, configura-
tions may be divided into three groups. The first group involves
configurations in which there are two independent LUTs with
no common inputs. Appropriate LUTs include a stable number
of inputs (appropriate values of ka and kb) and the implemen-
tation of separate (single) functions, as shown in Fig. 3a. The
second group consists of configurations in which it is neces-

Fig. 1. Decomposition by Ashenhurst – Curtis: a) the essence of
a circuit partition; b) a function decomposition resulting from a single

cutting of BDD

a) a)

b) b)

Fig. 2. Multiple decomposition: a) a circuit partition; b) implementa-
tion of multiple decomposition using the method of multiple cutting

of BDD

949

Technology mapping oriented to adaptive logic modules

Bull. Pol. Ac.: Tech. 67(5) 2019

sary to share some parts of the inputs between particular LUTs.
Figure 3b illustrates the number of common inputs, marked as
kab. The third group includes configurations in which the whole
ALM block implements only one function, usually one that has
a higher number of variables (k) than in previous cases. The
third case is presented in Fig. 3c.

The flexibility of logic blocks means that it is extremely
important to match functions to ALM blocks that are directly
connected with the decomposition process of logic functions.
Thus, it is key to choose an appropriate configuration for an
ALM block that is suitable for a possible partition of a circuit.

3.	 Disjoint decomposition in the process of
technology mapping of combinational circuits

In order to map combinational circuits, we now consider con-
figurations in which there is no sharing of inputs (Fig. 3a, c).
We consider configurations in normal mode [10]. It turns out
that in the case of ALM blocks in a group shown in Fig. 3a, two
configurations can be connected [10]. In the first, ka = kb = 4
and in the second, ka = 5 and kb = 3. In the case of the group
of configurations from Fig. 3bc, only one configuration may be
found for the ALM blocks for which k = 6.

As presented in [13, 14], the technology mapping of combi-
national circuits in ALM blocks involves fitting bound blocks
of a decomposed circuit into LUTs in configurable logic blocks.
This mapping is shown in Fig. 4.

The technology mapping shown in Fig. 4a is based on the
choice of a cutting line so that the number of variables located
above the top cutting line card(Xb1), and the number of vari-
ables between the cutting lines card(Xb2) correspond to the
number of inputs of the blocks LUTa (ka) and LUTb (kb). The
mapping shown in Fig. 4b is based on a choice of the level of
cutting so that the number of bound variables card(Xb) is equal
to (or at least lower than) the number of inputs of a single block
LUT (k) included in a given configuration of an ALM block.

As illustrated in Fig. 4a, multiple decomposition carried
out using the multiple cutting method well fits in the group of

configurations from Fig. 3a. Decomposition carried out using
a single cutting fits in the group of configurations from Fig. 3c.
The question arises as to which group and which configuration
will be the most effective in this case. This is closely connected
to the choice of a decomposition model and the cutting lines of
BDD used. A given decomposition model can be described by
the number of elements of a bound set (card(Xb)) on which the

Fig. 3. Groups of configurations of logic blocks in an ALM: a) a group without shared inputs; b) a group with shared inputs; c) a group directed
at implementing single functions

c)

Outk

a)

ka
Out_a

Out_bkb

b)
ka

Out_a

kab

Out_b
kb

Fig. 4. Technology mapping of bound blocks: a) for multiple
decomposition carried out using the multiple cutting method; b) for

decomposition carried out using a single cutting of BDD

a)

b)

950

M. Kubica and D. Kania

Bull. Pol. Ac.: Tech. 67(5) 2019

levels of cutting of BDD depend. It can be also described by
the number of bound functions (numb_of_g) associated with
a given decomposition. The various methods for indicating the
parameter numb_of_g were presented in [15, 24]. Thus, it is
necessary to develop algorithms that can enable us to choose
a decomposition such that the mappings in one of the config-
urations in ALM will be the most efficient, taking the number
of blocks used into account.

We propose to use triangle tables, as reported in prior lit-
erature [14, 22], and to modify these in such a way that the
content of certain cells will describe the number of ALM logic
blocks needed to implement the subcircuits that are the result of
decompositions defined by the pair of parameters: numb_of_g
and card(Xb). This idea is illustrated in Fig. 5.

A triangle table, as shown in Fig. 5a, corresponds to the
configuration A: ka = kb = 4. A block is configured so that for
two independent four-input LUTs, the number of variables in
a bound set cannot be higher than four. The triangle table in
Fig. 4a is partly filled, because empty cells are left in the col-
umns for which card(Xb) > 4. In triangle tables, cases are anal-
ysed in which decomposition leads to a limitation on the number
of variables. Hence, the maximum number of bound functions
introduced is max(numb_of_g) = card(Xb) ¡ 1. In configura-
tion A, a single ALM block may implement two bound func-
tions. The cells associated with the row numb_of_g = 2 contain
the symbol 1A (a single ALM block is needed in configura-
tion A). The cells in rows numb_of_g = 1 and numb_ of_g = 3
contain 0.5A (only one in two LUTs is used) and 1.5A symbols
(three LUTs are necessary, i.e. 1.5 of ALM block).

The triangle table in Fig. 5b corresponds to the con-
figuration ka = 5 and kb = 3. It turns out that for the pair
(card(Xb), numb_of_g) we can use a LUT that has five inputs
(marked in Fig. 5b as B), a LUT that has three inputs (B’) or
both (B + B’). A bound set with six bound variables is not used
in this configuration, so the appropriate cells in the table are left
empty. If a bound set has five or four elements, it is necessary
to use an LUT block that has five inputs (configuration B). In
other cases, for numb_of_g = 1, any LUT from a block may be
used (hence, B and B’ are written in particular cells). However,

when numb_of_g = 3, it is necessary to use both blocks to
implement two bound functions (marked as B + B’).

The triangle table in Fig. 5c corresponds to the configuration
in which the ALM block implements a single function with
six variables. In this case, the value in the cells in the table
shown in Fig. 5c corresponds to the number of bound functions
numb_of_g. This configuration is marked C.

Since each decomposition is accompanied by the pair of
numbers (card(Xb), numb_of_g), the issue arises of which
decomposition should be chosen to match the ALM blocks best.
In other words, which ALM configuration (A, B or C) would
be the most effective.

On the basis of the analysis of the tables from Figs 5a, b
and c, a results table can be created (a table of technology map-
ping in ALM) that will be used to choose the most efficient
configuration. This results table is presented in Fig. 5d. When
analysing these results tables, it can be seen that for the cells
associated with card(Xb) = 6, the only possibility is to choose
configuration C. For card(Xb) = 5 configurations C or B may
be chosen. It is better to choose configuration B since there
is a free LUT associated with B’. In the case of card(Xb) = 4
using configuration C is not effective, and thus configurations
A and B may be used. Configuration A is a better solution, as
it enables us to use unused LUTs with four inputs (in configu-
ration B, only LUTs with three inputs are left). Decomposition
described using a pair of numbers (3, 4) best corresponds with
configuration A. In cases where card(Xb) < 4, the parameter
numb_of_g is essential. When its value is 1, it is best to choose
configuration B’, as an LUT block is available that has five
inputs. When numb_of_g = 3, configurations A or B + B’ may
be chosen. In both cases, a single ALM block is used and there
are no free LUTs left.

On the basis of an analysis of the technology mapping table
in ALM, a configuration can be chosen that would enable us
to reduce as many ALM blocks as possible. For example, if it
is possible for a given function to undergo the decomposition
described using the following pairs of numbers (6,3), (5,3)
or (4,1), we can see that in order to implement this, we need
3,3 and 0.5 ALM blocks, respectively. In this case, the most

Fig. 5. Triangle tables describing the usage of ALM blocks: a) for configuration A; b) for configuration B; c) for configuration C; d) a technology
mapping table in ALM

A: ka = kb = 4 B: ka = 4, B’: kb = 3 C: k = 6a) b) c) d)

951

Technology mapping oriented to adaptive logic modules

Bull. Pol. Ac.: Tech. 67(5) 2019

effective decomposition is that described by the pair of num-
bers (4,1).

On the basis of an analysis of a technology mapping table
in ALM, an algorithm for choosing a configuration can be pro-
posed, as shown in Algorithm 1.

Algorithm 1: Algorithm for choosing a configuration

choose_a_conf iguration (f , set_of_available_ALM_configurations)
{

for(i = 0; i < set_of_available_ALM_configurations; i++)

{
decomposition = indicate_decomposition (cutting_levels (i))
numb_of_g = decomposition.numb_of_g;
card(Xb) = decomposition.card(Xb);

number_of_ALM  =
technology_mapping_table_ALM(numb_of_g, card(Xb))

if (number_of_ALM < numb_of_ALM_best)
{

numb_of_ALM_best = numb_of_ALM;
conf iguration_ALM_best = i;
decomposition_best = decomposition

}
}

return(conf iguration_ALM_best, decomposition_best)
}

4.	 Mapping of combinational circuits in
the process of non-disjoint decomposition

Non-disjoint decomposition is a modification of serial decom-
position that was proposed by Asenhurst and Curtis [8, 24].
In a classic model, a bound set and a free set do not have any
common elements; in the case of non‑disjoint decomposition,
some of the variables are attached to both a bound set and a free
set. It can be assumed that there is a set of shared variables Xs
that includes these variables Xb ∩ X f  =  Xs. It turns out that the
variables forming this set can fulfil the role of bound functions,
leading to a limitation on the logic blocks needed to implement
a bound block. The idea of implementing non-disjoint decom-
position is presented in Fig. 6a. Not all variables can belong to
the set Xs (i.e. fulfil the role of a switching variable). The idea
of searching for switching variables for functions presented in
the form of BDD was described in [14, 24].

When analysing configurations of ALM blocks in which
sharing of inputs occurs, it can be noticed that they correspond
to some basic non-disjoint decompositions, as shown in Fig. 6b.
In ALM blocks, there are two such configurations with sharing
of inputs: D: ka = 4, kb = 3, kab = 1 and E: ka = 3, kb = 3,
kab = 3. Configuration D can be associated with decomposi-
tion in which card(Xb) = 4, card(Xs) = 1 and card(X f) = 3
or card(Xb) = 3, card(Xs) = 1 and card(X f) = 4. Config-
uration E can be associated with decomposition in which
card(Xb) = card(X f) = 3 and card(Xs) = 3. One of the LUTs
in an ALM block is connected with a bound block, and the other
is connected with a free block. The necessary condition in both

configurations is the choice of non‑disjoint decomposition in
which one bound function occurs. The choice of such a decom-
position makes it necessary to introduce feedback in an ALM
block, which in some cases may be problematic (limitations in
next stages of synthesis – placement, routing). Figure 7 presents
the example of mapping of non-disjoint decomposition in an
ALM block.

Using configurations D and E seems to be reasonable when
implementing multi-output functions [15, 22].

(a) (b)

Fig. 6. Non-disjoint decomposition: a) implementation; b) technology
mapping in ALM blocks

a)

b)

Fig. 7. Example of non-disjoint decomposition: a) BDD; b) technology
mapping in ALM blocks

x0

x1
x2
x3
x4

x0

x5
x6

g

f

x1
x2

x3
x4

x5

x6

i

k

j1 0

952

M. Kubica and D. Kania

Bull. Pol. Ac.: Tech. 67(5) 2019

5.	 Technology mapping of sequential circuits

A sequential circuit is a specific connection of combinational
blocks separated with a register, which in the case of FPGA is
built from an appropriate number of flip-flops. The specificity
of FSM makes the optimisation of technology mapping pos-
sible. It is based on the implementation of elements that are
at the same time resources of a transition block and an output
block. The choice of an appropriate decomposition gives the
possibility of an efficient mapping of FSM in ALM blocks.

We consider an exemplary benchmark called beecount [6].
This automaton has three inputs (n = 3), four outputs (m = 4)
and seven states (card(S) = 7). The number of bits needed to
code seven states is k = dlg2(card(S)e = 3. Beecount is Mealy’s
automaton, for which a general structure is presented in Fig. 8.
Apart from a three-bit register (k = 3), two combinational blocks
can be distinguished that are described by a transition function
δ: Bn + k → Bk and an output function λ: Bn + k → Bm. In order to
implement a transition block and an output block based on ALM
blocks, it is possible to use seven blocks in which the whole ALM
block implements only one six-input function. Three ALM blocks
can be used to implement a transition function (δ: B6 → B3), and
the rest to implement an output function (λ: B6 → B4).

The question arises as to whether there is another way to
configure ALM blocks and at the same time to use the resources
of FPGA structure efficiently.

The search for an effective mapping starts with the decom-
position of a transition function and an output function. It turns
out that they belong to many different decompositions. Three
decompositions can be distinguished, as presented below.

1.	δ: X£S → S+ ⇒ δ: {i2, i1, i0, Q2, Q1, Q0} → {q2, q1, q0}
δ1: {i2, i1, i0, Q2, Q1, Q0} → {q2}

Xb = {i2, i1, Q2, Q1, Q0};        X f = {i0};
ν(i0 j i2, i1, Q2, Q1, Q0) = 2        ⇒ numb_of_g = 1

δ2: {i2, i1, i0, Q2, Q1, Q0} → {q1, q0}
Xb = {i1, Q2, Q1, Q0};        X f = {i2, i0};

ν(i2, i0 j i1, Q2, Q1, Q0) = 4        ⇒ numb_of_g = 2

2.	λ: X£S → Y ⇒ λ: {i2, i1, i0, Q2, Q1, Q0} → {o3, o2, o1, o0}
Xb = {i2, i1, i0, Q2, Q};        X f = {Q0};

ν(Q0 j i2, i1, i0, Q2, Q1) = 8   ⇒ numb_of_g = 3

Finding and choosing the decompositions above allows for
an effective mapping of FSM in ALM blocks, as illustrated
in Fig. 9.

Fig. 8. Block scheme for Mealy FSM

n
m

n
X

Y

δ DF-F

λSS +

k

kk

clk

Fig. 9. Technology mapping of the beecount automaton in ALM blocks

X = {i2, i1, i0}

Q = {Q2, Q1, Q0}

q2

q1

q0

Q2

Q1

Q0

o3
o2
o1
o0

clk

QD

QD

QD

{i2, i1, Q2, Q1, Q0}

{i2, i1, i0, Q2, Q1}

{Q0}

LUT
5/1

LUT
5/3

LUT
4/1

LUT
4/1

LUT
5/1

LUT
2/1

LUT
4/2

LUT
4/4

LUT
4/1

LUT
4/1

5 4

4

3£ALM

1£ALM

2£ALM

3

LUT
4/1

{i2, i0}

{i1, Q2, Q1, Q0}

{i0}

953

Technology mapping oriented to adaptive logic modules

Bull. Pol. Ac.: Tech. 67(5) 2019

The technology mapping presented in Fig. 9 uses four
ALM blocks that work in a configuration with one shared
input (LUT 5/1 + LUT 4/1 – one common input) and two
ALM blocks in a configuration without sharing of inputs
(LUT 4/1 + LUT 4/1). It is necessary to use an LUT 2/1
block that can be implemented in each configuration, leaving
resources which can be used in other ways.

6.	 Experimental results

A prototypical software module called MultiDec (MD) was
created for the purpose of experiment, and was used to decom-
pose logic functions. A series of experiments were conducted to
prove effectiveness of the ideas presented in this paper. The syn-
thesis was carried out using a commercial tool called Quartus II,
produced by Intel. A set of benchmarks was synthesised [6], and
these were described in the form of equations in Verilog HDL.
Descriptions were generated from .pla (withoutMD) or from
the descriptions .pla, which were initially decomposed based
on the methods of technology mapping in the tool in [13, 14]
(withMD). The main goal of this research was to compare the
results of synthesis obtained for two series of experiments.

In the first series of experiments, combinational circuits
were analysed, and the results are shown in Table 1. Table 1
includes the number of ALM blocks and the number of partic-
ular LUT (ALUT) blocks that have a given number of inputs
included in the ALM blocks. In addition, the number of logic
levels (depth) is given. The last row shows the sum of the num-
ber of levels and the number of separate blocks. Moreover, the
total number of blocks is presented in the form of a graph in
Fig. 10.

Table 1
The results of synthesis for combinational circuits

without MD with MD

In O
ut

A
LM

A
LU

T7

A
LU

T6

A
LU

T5

A
LU

T4

A
LU

T 
<=

 3

de
pt

h

A
LM

A
LU

T7

A
LU

T6

A
LU

T5

A
LU

T4

A
LU

T
< 

= 
3

de
pt

h

5xp1 7 10 11 0 5 3 2 6 2 9 0 4 1 1 7 2

alu2 10 8 15 0 5 11 5 4 2 13 1 4 6 3 6 3

b12 15 9 10 1 4 3 3 4 2 12 0 5 8 1 5 3

cm163a 16 5 5 1 2 2 1 0 2 7 1 3 3 1 2 3

f51m 8 8 12 0 5 4 5 5 3 6 0 2 3 2 3 2

Inc 7 9 11 0 8 2 1 2 2 11 0 8 2 1 3 3

Ldd 9 19 17 0 4 4 10 11 4 19 0 8 2 7 13 2

misex1 8 7 6 2 3 0 2 0 1 7 0 4 2 4 0 2

misex2 25 18 18 1 6 9 8 4 3 20 0 12 8 3 5 3

Pcle 19 9 9 1 5 2 1 2 2 9 2 4 2 1 2 3

rd73 7 3 8 0 6 0 0 3 2 3 0 0 3 2 1 2

rd84 8 4 52 2 32 11 12 12 4 7 0 4 1 1 3 3

Sct 19 15 12 0 3 5 7 5 2 14 1 3 9 5 6 3

Sqn 7 3 8 0 6 0 0 3 2 8 0 6 0 0 3 2

sqr6 6 11 7 0 4 3 1 2 1 8 0 4 3 1 3 2

sqrt8 8 4 2 0 2 0 1 4 3 2 0 4 1 1 2 2

t481 16 1 3 0 0 0 5 1 3 6 0 2 5 2 0 4

x2 10 7 8 0 2 3 2 6 2 10 0 3 6 4 4 3

Sum: 214 8 102 62 66 74 42 171 5 80 65 40 68 47

From an analysis of the graph in Fig. 10, it can be seen that
the proposed methods of technology mapping led to a substan-
tial reduction in the number of ALM blocks. The number of the
various integral LUT blocks was reduced (apart from LUT5),
and the greatest reduction was obtained for LUTs with six and
four inputs. It should be emphasised that as a result of using
the proposed methods, the number of logic levels was increase
by about 10%, which is unfavourable from the point of view
of the dynamic behavior of a circuit.

In the second series of experiments, combinational blocks of
sequential circuits were synthesised, and the blocks d and l were
synthesised separately. It was assumed coding of inner states and
using a natural binary code. The results obtained for the d blocks
are shown in Table 2, and the those for the l blocks in Table 3.

Table 2
Results of the synthesis of transition blocks (δ function)

 delta

 without MD with MD

In O
ut

A
LM

A
LU

T7

A
LU

T6

A
LU

T5

A
LU

T4

A
LU

T 
<=

 3

de
pt

h

A
LM

A
LU

T7

A
LU

T6

A
LU

T5

A
LU

T4

A
LU

T 
<=

 3

de
pt

h

Beecount 6 3 3 0 3 0 0 0 1 3 0 3 0 0 0 1

dk14 6 3 3 0 3 0 0 0 1 2 0 0 0 2 1 1

dk15 5 2 1 0 0 2 0 0 1 1 0 0 0 2 0 1

dk16 7 5 13 0 10 0 0 5 2 12 0 9 1 0 5 2

dk17 10 8 11 0 5 3 6 3 2 7 0 3 2 5 1 2

dk27 4 3 2 0 0 0 3 0 1 2 0 0 0 2 1 1

dk512 5 4 2 0 0 4 0 0 1 2 0 0 4 0 0 1

Donfile 7 5 2 0 4 0 2 2 2 6 0 4 0 2 1 2

ex2 7 5 12 0 9 0 0 5 2 11 0 6 4 1 4 3

ex3 6 4 4 0 4 0 0 0 1 4 0 4 0 0 0 1

ex4 10 4 7 3 2 0 2 1 2 9 0 5 5 1 2 3

ex5 6 4 4 0 4 0 0 0 1 4 0 4 0 0 0 1

ex7 6 4 4 0 4 0 0 0 1 4 0 3 1 0 0 1

Lion 4 2 1 0 0 0 2 0 1 1 0 0 0 1 1 1

lion9 6 4 4 0 4 0 0 0 1 4 0 4 0 0 0 1

Mc 5 2 1 0 0 1 0 1 1 1 0 0 1 0 1 1

s8 7 3 7 0 4 2 1 2 2 5 0 2 5 0 1 2

s27 7 3 3 0 2 1 0 0 1 3 0 2 1 0 1 2

Shiftreg 4 3 2 0 0 0 2 1 1 2 0 0 0 2 1 1

Tav 6 2 1 0 0 0 0 2 1 1 0 0 0 0 2 1

train4 4 2 1 0 0 0 1 1 1 1 0 0 0 1 1 1

train11 6 4 4 0 4 0 0 0 1 4 0 4 0 0 0 1

Sum: 92 3 62 13 19 23 28 89 0 53 24 19 23 31

Fig. 10. Number of logic blocks obtained after the synthesis of com-
binational circuits

N
um

be
r o

f b
lo

ck
s

■ without MD
■ with MD

250

250

150

100

50

0
ALM

214
171

ALUT7

8
5

ALUT6

102
80

ALUT5

62
65

ALUT4

66
40

ALUT
<= 3

74
68

954

M. Kubica and D. Kania

Bull. Pol. Ac.: Tech. 67(5) 2019

■ without MD
■ with MD

ALM

56
47

ALUT7

0
1

ALUT6

30
23

ALUT5

20
20

ALUT4

10
9

ALUT
<= 3

12
9

60

50

40

30

30

10

0

The results of the synthesis of sequential circuits are pre-
sented in a synthetic form in the graphs in Figs 11 and 12.

From the point of view of the experiments, the key problem
in the synthesis of combinational blocks of FSMs is that the
circuits are so small that they do not need decomposition. In the
case of blocks with a higher number of inputs, using decompo-
sition together with the proposed methods of technology map-
ping gives (for blocks δ and λ) a reduction in the number of
ALM blocks needed. In both cases, the biggest reduction is
obtained for LUTs with six inputs. An analysis of the obtained

Table 3
Results of the synthesis of output blocks (l function)

lambda

without MD with MD

 In O
ut

A
LM

A
LU

T7

A
LU

T6

A
LU

T5

A
LU

T4

A
LU

T 
<=

 3

de
pt

h

A
LM

A
LU

T7

A
LU

T6

A
LU

T5

A
LU

T4

A
LU

T 
<=

 3

de
pt

h

beecount 6 4 4 0 4 0 0 0 1 4 0 4 0 0 0 1

dk14 6 5 5 0 5 0 0 0 1 4 0 3 0 1 1 1

dk15 5 5 3 0 0 5 0 0 1 3 0 0 5 0 0 1

dk16 7 3 5 0 2 2 1 2 2 3 1 0 3 1 0 2

dk17 10 3 7 0 1 6 4 1 2 4 0 3 1 0 0 2

dk27 4 2 1 0 0 0 1 1 1 1 0 0 0 1 1 1

dk512 5 3 2 0 0 2 0 1 1 2 0 0 2 0 1 1

Donfile 7 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1

ex2 7 2 3 0 2 0 0 1 2 2 0 1 0 2 0 2

ex3 6 2 2 0 2 0 0 0 1 2 0 2 0 0 0 1

ex4 10 9 7 0 5 4 0 0 1 7 0 5 4 0 0 1

ex5 6 2 1 0 1 0 0 0 1 1 0 1 0 0 0 1

ex7 6 2 1 0 1 0 0 0 1 1 0 1 0 0 0 1

Lion 4 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1

lion9 6 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1

Mc 5 5 2 0 0 1 0 3 1 2 0 0 1 0 3 1

s8 7 1 1 0 0 0 2 0 2 1 0 0 0 2 0 2

s27 7 1 2 0 1 0 0 1 2 2 0 1 0 0 1 2

Shiftreg 4 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1

Tav 6 4 4 0 4 0 0 0 1 2 0 0 4 0 0 1

train4 4 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1

train11 6 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1

Sum: 56 0 30 20 10 12 27 47 1 23 20 9 9 27

Fig. 11. Number of logic blocks obtained after the synthesis of the
δ blocks

Fig. 12. Number of logic blocks obtained after the synthesis of the
λ blocks

Table 4
Comparison of MultiDec with ABC for combinational circuits

MultiDec ABC

In O
ut

B
lo

ck
s

Q
ua

rtu
s

de
pt

h

Ti
m

e

B
lo

ck
s

Q
ua

rtu
s

de
pt

h

Ti
m

e
5xp1 7 10 8 9 2 296 13 9 2 220
alu2 10 8 15 13 4 764 17 10 3 190
b12 15 9 12 12 2 655 15 10 2 120

cm163a 16 5 6 7 2 561 7 6 2 160
f51m 8 8 6 6 2 124 17 10 3 160
inc 7 9 9 11 2 93 13 12 2 140
ldd 9 19 19 19 2 1560 25 14 2 140

misex1 8 7 7 7 2 140 9 6 2 140
misex2 25 18 23 20 3 3166 32 18 2 140

pcle 19 9 9 9 3 3915 12 9 2 120
rd73 7 3 3 3 2 140 12 6 3 190
rd84 8 4 6 7 2 312 37 24 3 190
sct 19 15 14 14 3 1747 17 11 2 120
sqn 7 3 5 8 2 124 11 8 2 140
sqr6 6 11 7 8 1 31 10 7 1 160
sqrt8 8 4 5 2 2 78 9 6 3 140
t481 16 1 5 6 4 608 20 3 3 140
x2 10 7 6 10 2 249 13 8 2 130

Sum: 165 171 42 14563 289 177 41 2740

number of logic levels shows that in the case of the δ blocks,
there is a rapid growth in the number of levels when the pro-
posed methods are used. For the λ block, the number of levels
remains the same.

The most important indicator confirming the advantages of
the proposed method is the fact that the total number of ALM
blocks is lower when using the proposed method of technol-
ogy mapping. The situation is the same for both combinational
and sequential circuits. Thus, a key element in the technology
mapping of the circuits implemented in FPGA is the ability to
use available configurations of ALMs.

In addition, MultiDec was compared with a leading aca-
demic system called ABC [3] (&get; &st; &synch2; &if-K6;
&ps;). The results are presented in Tables 4–6 for the set of

■ without MD
■ with MD

ALM

92
89

ALUT7

3
0

ALUT6

62
53

ALUT5

13
24

ALUT4

19
19

ALUT
<= 3

23
23

100
90
80

40

70

30

60

20

50

10
0

955

Technology mapping oriented to adaptive logic modules

Bull. Pol. Ac.: Tech. 67(5) 2019

benchmarks presented above. In the appropriate columns of
these tables, the following parameters were determined: the
number of logic blocks predicted by decomposition tools
(‘Blocks’); the number of ALM blocks obtained after a syn-
thesis in Quartus from .pla descriptions generated by appropri-
ate decomposition tools (‘Quartus’); the number of logic levels
(‘depth’); and the synthesis times using the academic tools,
expressed in [ms].

When comparing both systems, taking into consideration
the number of logic blocks needed to implement separate
benchmarks, it is noticeable that the number of blocks after
decomposition (‘Blocks’) is lower than that obtained after last
synthesis stages in Quartus (‘Quartus’). In this case, the results
obtained for MultiDec are slightly better, but are substantially
worse than the predictions obtained in MultiDec. The results
of synthesis indicate the substantial advantages of using the
configurabilities of blocks that effectively use MultiDec. The
obtained results are almost the same when the number of logic
levels is taken into account. When decomposition times are
compared, it can be seen that ABC is much better (as shown
in Table 4).

7.	 Conclusion

Contemporary programmable circuits include very flexible
blocks, whose logic resources are not always used properly.
The cause of this problem includes the implementation of inef-
ficient methods of technology mapping in synthesis tools. Syn-
thesis algorithms should take into consideration the possibility
of configuring logic blocks, as this is the only effective way of
implementing circuits.

This paper presents the idea of technology mapping of digi-
tal circuits including configurable abilities of logic blocks. The
essence of this idea is shown using the example of ALM blocks,
but this is a general idea that can be used for other families of
programmable circuits. Our experimental results demonstrate
its effectiveness for two kinds of circuits: combinational and
sequential.

The major disadvantage of the solution presented here is
its limited scalability, although the method works well in the
case of small circuits that have a low number of inputs. Thus,
the proposed methods can be used locally for separate parts of
a larger circuit (decomposed using other methods e.g. a parti-

Table 6
Comparison of MultiDec with ABC (λ function)

lambda

MultiDec ABC

In O
ut

B
lo

ck
s

Q
ua

rtu
s

de
pt

h

Ti
m

e

B
lo

ck
s

Q
ua

rtu
s

de
pt

h

Ti
m

e

Beecount 6 4 4 4 1 46 4 3 1 220

dk14 6 5 5 4 1 46 5 5 1 170

dk15 5 5 3 3 1 31 5 3 1 110

dk16 7 3 5 3 2 78 6 5 2 140

dk17 10 3 5 4 2 280 10 7 3 130

dk27 4 2 1 1 1 15 2 1 1 160

dk512 5 3 2 2 1 15 3 2 1 190

Donfile 7 1 1 1 1 15 1 1 1 80

ex2 7 2 2 2 2 78 3 3 2 140

ex3 6 2 2 2 1 15 2 2 1 130

ex4 10 9 7 7 1 21 9 8 1 140

ex5 6 2 2 1 1 31 1 1 1 140

ex7 6 2 2 1 1 15 1 1 1 130

lion 4 1 1 1 1 15 1 1 1 110

lion9 6 1 1 1 1 15 1 1 1 140

Mc 5 5 1 2 1 15 3 2 1 120

s8 7 1 1 1 2 46 2 1 2 140

s27 7 1 1 2 1 15 1 1 1 140

Shiftreg 4 1 1 1 1 15 1 1 1 120

Tav 6 4 4 2 1 15 4 2 1 120

train4 4 1 1 1 1 15 1 1 1 120

train11 6 1 1 1 1 15 1 1 1 120

Sum: 53 47 26 852 67 53 27 3010

Table 5
Comparison of MultiDec with ABC (δ function)

delta

MultiDec ABC

In O
ut

B
lo

ck
s

Q
ua

rtu
s

de
pt

h

Ti
m

e

B
lo

ck
s

Q
ua

rtu
s

de
pt

h

Ti
m

e

Beecount 6 3 3 3 1 15 3 3 1 260

dk14 6 3 3 2 1 15 3 3 1 230

dk15 5 2 1 1 1 15 2 1 1 160

dk16 7 5 12 12 2 265 18 13 2 200

dk17 10 8 12 7 2 1466 19 11 2 160

dk27 4 3 2 2 1 15 3 2 1 170

dk512 5 4 2 2 1 15 4 2 1 140

Donfile 7 5 6 6 2 62 7 6 2 160

ex2 7 5 8 11 2 202 14 12 2 190

ex3 6 4 4 4 1 15 4 4 1 140

ex4 10 4 6 9 2 312 9 7 2 140

ex5 6 4 4 4 1 31 4 4 1 140

ex7 6 4 4 4 1 31 4 4 1 140

Lion 4 2 1 1 1 15 2 1 1 120

lion9 6 4 4 4 1 15 4 4 1 140

Mc 5 2 1 1 1 0 2 1 1 130

s8 7 3 4 5 2 140 8 7 2 130

s27 7 3 3 3 1 15 3 3 1 140

Shiftreg 4 3 2 2 1 15 3 2 1 110

Tav 6 2 1 1 1 15 1 1 1 140

train4 4 2 1 1 1 15 2 1 1 120

train11 6 4 4 4 1 31 4 4 1 130

Sum: 88 89 28 2720 123 96 28 3390

956

M. Kubica and D. Kania

Bull. Pol. Ac.: Tech. 67(5) 2019

tion of an AIG graph). This may result in the reduction of the
number of logic blocks.

An original way of choosing a decomposition path is to use
triangle tables that are connected with particular configurations
of ALM blocks. This enables us to use the logic resources of
a LUT-based FPGA efficiently. Unfortunately, the main draw-
back of minimising the number of ALM blocks used, i.e. the
area of a circuit, is the expansion in the number of logic lev-
els. Thus, it is necessary to search for decomposition strategies
that could enable us to reduce the number of logic levels. This
problem is the topic of the present research whose aim is to
develop methods of technology mapping leading to reduction
of the area and at the same time caring for dynamic features of
obtained solutions.

Acknowledgements. The study was supported partially by the
Polish Ministry of Science and Higher Education.

References
	 [1]	 S.B. Akers, “Binary decision diagrams”, IEEE Transactions on

Computers, C-27(6), 509‒516 (1978).
	 [2]	 R.L. Ashenhurst, “The decomposition of switching functions”,

Proceedings of the International Symposium on the Theory of
Switching, 1957.

	 [3]	 Berkeley Logic Synthesis Group: ABC: A System for Sequential
Synthesis And Verif icAtion, Dec. 2005 [Online]. Available: http://
www.eecs.berkeley.edu/~alanmi/abc

	 [4]	 J.A. Brzozowski and T. Łuba: Decomposition of Boolean Func-
tions Specif ied by Cubes, Journal of Multi-Valued Logic & Soft
Computing, vol. 9, pp. 377‒417, Old City Publishing Inc., Phil-
adelphia 2003.

	 [5]	 D. Chen and J. Cong, “DAOmap: A depth-optimal area opti-
mization mapping algorithm”, in Proc. ICCAD, pp. 752‒759,
(2004).

	 [6]	 Collaborative Benchmarking Laboratory, Department of Com-
puter Science at North Carolina State University,

		 http://www.cbl.ncsu/edu/.
	 [7]	 H.A. Curtis, The Design of Switching Circuits, D. van Nostrand

Company, Inc., Princeton, New Jersey, Toronto, New York, 1962.
	 [8]	 E. Dubrova, “A polynominal time algorithm for non-disjoint

decomposition of multi-valued functions”, 34th International
Symposium on Multiple-Valued Logic, 309‒314 (2004).

	 [9]	 I. Háleček, P. Fišer, and J. Schmidt, “Towards AND/XOR bal-
anced synthesis: Logic circuits rewriting with XOR”, Microelec-
tronics ReliAbility, 81, 274‒286 (2018).

	[10]	 Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules
User Guide, UG-S10LAB, 2017.

	[11]	 S. Jang, B. Chan, K. Chung, and A. Mishchenko, “WireMap:
FPGA technology mapping for improved routability and
enhanced LUT merging”, ACM Trans. Reconf igurable Tech-
nology and Systems (TRETS), 2(2), Article 14 (2009).

	[12]	 M. Kubica and D. Kania, “SMTBDD : new form of BDD for
logic synthesis”, International Journal of Electronics and Tele-
communications, 62(1), 33‒41 (2016).

	[13]	 M. Kubica and D. Kania, “Area-oriented technology mapping
for LUT-based logic blocks”, International Journal of Applied
Mathematics and Computer Science, 27 (1), 207‒222 (2017).

	[14]	 M. Kubica and D. Kania, “Decomposition of multi-output func-
tions oriented to configurability of logic blocks”, Bull. of the
Pol. Ac.: Tech. 65(3) 317‒331 (2017).

	[15]	 M. Kubica, A. Opara, and D. Kania, “Logic synthesis for FPGAs
based on cutting of BDD, Microprocessor and Microsystems”,
52, 173‒187 (2017).

	[16]	 Y-T. Lai, M. Pedram, and S. Vrudhula, “BDD based decomposi-
tion of logic for functions with applications to FPGA synthesis”,
in Proc. of Design Automation Conf ., pp. 642‒647, 1993.

	[17]	 T. Łuba, G. Borowik, and A. Kraśniewski, “Synthesis of finite
state machines for implementation with programmable struc-
tures”, Electronics and Telecommunications Quarterly, 55/2009
(2), 183‒200 (2009).

	[18]	 S. Minato, Binary Decision Diagrams and Applications for VLSI
CAD, Kluwer Academic Publishers, 1996.

	[19]	 A. Mishchenko, R. Brayton, W. Feng, and J. Greene, “Technol-
ogy mapping into general programmable cells”, Proc. FPGA’15.

	[21]	 A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Com-
binational and sequential mapping with priority cuts”, in Pro-
ceedings of the 3007 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ‘07), 354‒361, 2007.

	[22]	 A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements
to technology mapping for LUT-based FPGAs”, IEEE TCAD,
26(2), 240‒253, 2007.

	[23]	 A. Opara, M. Kubica, and D. Kania, “Strategy of logic synthe-
sis using MTBDD dedicated to FPGA”, Integration: The VLSI
Journal 62, 142‒158 (2018).

	[24]	 S. Ray et al., “Mapping into LUT structures” in Design, Automa-
tion and Test in Europe, Dresden, Germany, pp. 1579‒1584, 2012.

	[25]	 C. Scholl, Functional Decomposition with Application to FPGA
Synthesis, Kluwer Academic Publisher, Boston, 2001.

	[26]	 P. Szotkowski, M. Rawski, and H. Selvaraj, “A graph-based
approach to symbolic functional decomposition of finite state
machines”, Systems Science, 35 (2), 41‒47, 2009.

	[27]	 N. Vemuri, P. Kalla, and R. Tessier, BDD-based logic synthesis
for LUT-based FPGAs, ACM Trans. Design Autom. Electron.
Syst., 7 (4), 501‒525 (2002).

	[28]	 C. Yang and M. Ciesielski, “BDS: A BDD-based logic optimiza-
tion system”, IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 21 (7), 866‒876 (2002).

