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By substituting (4) to (3) the direct Grünwald-Letnikov 
derivative of non-integer order (G-L) is produced [3, 4]:
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1. Introduction
The Leibniz notation d

dt f of derivative is defined [1]:

d
dt

f (t) = lim
dt→0

f (t + dt)− f (t)
dt

= f (1)(t) (1)

where: dt = (t + dt)− t is an increment of the independent
variable t; f (t + dt)− f (t) is an increment of function depen-
dent on t; f (1)(t) is a first order derivative.

Derivative of n−order is defined:

d
dt

(
d
dt
...

(
d
dt

f (t)
))

= f (n)(t) =

dn

dtn f (t) = lim
dt→0

f (n−1)(t + dt)− f (n−1)(t)
dt

(2)

where n ∈ N is an order of derivative (multiplicity of the first
order derivative).

Equation (2) causes to [2–4]:

dn

dtn f (t) = lim
dt→0

∑n
m=0(−1)m

(n
m

)
f (t −mdt)

(dt)n (3)

where: dt = tm− tm−1; tm = t −mdt;
(n

m

)
= n!

m!(n−m)! for n > m.
Grünwald-Letnikov differintegrals of any order is obtained

by replacing
(n

m

)
with gamma function and n with η ∈ R:

n!
m!(n−m)!

=
Γ(n+ 1)

m!Γ(n−m+ 1)
=

Γ(η + 1)
m!Γ(η −m+1)

(4)

By substituting (4) to (3) the direct Grünwald-Letnikov
derivative of non-integer order (G-L) is produced [3, 4]:

dη

dtη f (t) = lim
dt→0

∑p
m=0(−1)m Γ(η+1)

m!Γ(η−m+1) f (t −mdt)

(dt)η (5)

where: p = � t0−tn
dt �.

In (5) the notation dtη is treated as the function power
(dt)η . This approach leads to problems with clear mathemati-
cal and physical interpretation of an order of fractional calcu-
lus [2, 5, 6] especially in relation to interpretation of an integer
order derivative for example as a tangent to a function or a
measurement of a path (derivative of velocities change). The
interpretations of G-L differintegral are shown in [7] but they
have borders due to the possibility of substitution of any num-
ber for η and properties of gamma function. This problem is
shown in the work [8].

The problem of determining the derivative should be ap-
proached differently than mathematically by changing the in-
teger order to non-integer order using different function (for
example Gamma function) because this solution can lead to
breaking the laws of physics [9–11]. This radical view is not
true because many studies confirm the correctness of fractional
models in phenomena of the real world [2, 12–21]. The prob-
lem is not breaking the laws of physics by fractional calculus
but not clear physical interpretation of how and why chang-
ing integer order into fractional order influences the physical
meaning of modelled quantities such as mass, length, time,
force, electric current, temperature and others.

2. Differintegrals of measured function
2.1. Interval error Let f (t) : t ∈ R between tn−1 and tn be a
measured function for:

t f = (t0, t1, ..., tn) (6)

where tn is produced on the basis of known interval:

dt = t1 − t0 = t2 − t1 = ...= tn − tn−1 (7)

Let variable v:

v = (v0,v1, ...,vn) = ( f (t0), f (t1), ..., f (tn)) (8)

Let for every interval dt be added an interval Δt named as
the interval error and 0 ≤ |Δt| ≤ dt.

If t is time then v is measured quantity in time t by an interval
dt. In this case Δt can be interpreted as an absolute error of
determining of an interval length.

Let dtη be sum of an interval and its error [7]:

dtη = dt +Δt (9)

where:

dtη = tη1 − tη0 = tη2 − tη1 = ...= tηn − tηn−1 (10)

and
tη = (tη0 , tη1 , ..., tηn) (11)

where:
tηn = tn +nΔt (12)

Let g be a function where its values are equal values of f (t)
in tη :

g(tη) = g(tn +nΔt) = v (13)

Functions f (t) and g(t) are shown in fig. 1.

1

� (5)

where: p =  t0 ¡ tn

dt .
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(dt) η. This approach leads to problems with clear mathe-
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1. Introduction
The Leibniz notation d

dt f of derivative is defined [1]:

d
dt

f (t) = lim
dt→0

f (t + dt)− f (t)
dt

= f (1)(t) (1)

where: dt = (t + dt)− t is an increment of the independent
variable t; f (t +dt)− f (t) is an increment of function depen-
dent on t; f (1)(t) is a first order derivative.

Derivative of n−order is defined:

d
dt

(
d
dt
...

(
d
dt

f (t)
))

= f (n)(t) =

dn

dtn f (t) = lim
dt→0

f (n−1)(t + dt)− f (n−1)(t)
dt

(2)

where n ∈ N is an order of derivative (multiplicity of the first
order derivative).

Equation (2) causes to [2–4]:

dn

dtn f (t) = lim
dt→0

∑n
m=0(−1)m

(n
m

)
f (t −mdt)

(dt)n (3)

where: dt = tm− tm−1; tm = t −mdt;
(n

m

)
= n!

m!(n−m)! for n > m.
Grünwald-Letnikov differintegrals of any order is obtained

by replacing
(n

m

)
with gamma function and n with η ∈ R:

n!
m!(n−m)!

=
Γ(n+ 1)

m!Γ(n−m+ 1)
=

Γ(η + 1)
m!Γ(η −m+ 1)

(4)

By substituting (4) to (3) the direct Grünwald-Letnikov
derivative of non-integer order (G-L) is produced [3, 4]:

dη

dtη f (t) = lim
dt→0

∑p
m=0(−1)m Γ(η+1)

m!Γ(η−m+1) f (t −mdt)

(dt)η (5)

where: p = � t0−tn
dt �.

In (5) the notation dtη is treated as the function power
(dt)η . This approach leads to problems with clear mathemati-
cal and physical interpretation of an order of fractional calcu-
lus [2, 5, 6] especially in relation to interpretation of an integer
order derivative for example as a tangent to a function or a
measurement of a path (derivative of velocities change). The
interpretations of G-L differintegral are shown in [7] but they
have borders due to the possibility of substitution of any num-
ber for η and properties of gamma function. This problem is
shown in the work [8].

The problem of determining the derivative should be ap-
proached differently than mathematically by changing the in-
teger order to non-integer order using different function (for
example Gamma function) because this solution can lead to
breaking the laws of physics [9–11]. This radical view is not
true because many studies confirm the correctness of fractional
models in phenomena of the real world [2, 12–21]. The prob-
lem is not breaking the laws of physics by fractional calculus
but not clear physical interpretation of how and why chang-
ing integer order into fractional order influences the physical
meaning of modelled quantities such as mass, length, time,
force, electric current, temperature and others.

2. Differintegrals of measured function
2.1. Interval error Let f (t) : t ∈ R between tn−1 and tn be a
measured function for:

t f = (t0, t1, ..., tn) (6)

where tn is produced on the basis of known interval:

dt = t1 − t0 = t2 − t1 = ...= tn − tn−1 (7)

Let variable v:

v = (v0,v1, ...,vn) = ( f (t0), f (t1), ..., f (tn)) (8)

Let for every interval dt be added an interval Δt named as
the interval error and 0 ≤ |Δt| ≤ dt.

If t is time then v is measured quantity in time t by an interval
dt. In this case Δt can be interpreted as an absolute error of
determining of an interval length.

Let dtη be sum of an interval and its error [7]:

dtη = dt +Δt (9)

where:

dtη = tη1 − tη0 = tη2 − tη1 = ...= tηn − tηn−1 (10)

and
tη = (tη0 , tη1 , ..., tηn) (11)

where:
tηn = tn +nΔt (12)

Let g be a function where its values are equal values of f (t)
in tη :

g(tη) = g(tn +nΔt) = v (13)

Functions f (t) and g(t) are shown in fig. 1.

1

,� (2)

where n 2 N is an order of derivative (multiplicity of the first 
order derivative).

Equation (2) causes to [2‒4]:
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variable t; f (t +dt)− f (t) is an increment of function depen-
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dt
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dt
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d
dt

f (t)
))

= f (n)(t) =

dn

dtn f (t) = lim
dt→0

f (n−1)(t +dt)− f (n−1)(t)
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(2)

where n ∈ N is an order of derivative (multiplicity of the first
order derivative).

Equation (2) causes to [2–4]:

dn

dtn f (t) = lim
dt→0
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m
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f (t −mdt)

(dt)n (3)

where: dt = tm− tm−1; tm = t −mdt;
(n

m

)
= n!

m!(n−m)! for n > m.
Grünwald-Letnikov differintegrals of any order is obtained

by replacing
(n

m

)
with gamma function and n with η ∈ R:

n!
m!(n−m)!

=
Γ(n+1)

m!Γ(n−m+1)
=

Γ(η +1)
m!Γ(η −m+1)

(4)

By substituting (4) to (3) the direct Grünwald-Letnikov
derivative of non-integer order (G-L) is produced [3, 4]:

dη

dtη f (t) = lim
dt→0

∑p
m=0(−1)m Γ(η+1)

m!Γ(η−m+1) f (t −mdt)

(dt)η (5)

where: p = � t0−tn
dt �.

In (5) the notation dtη is treated as the function power
(dt)η . This approach leads to problems with clear mathemati-
cal and physical interpretation of an order of fractional calcu-
lus [2, 5, 6] especially in relation to interpretation of an integer
order derivative for example as a tangent to a function or a
measurement of a path (derivative of velocities change). The
interpretations of G-L differintegral are shown in [7] but they
have borders due to the possibility of substitution of any num-
ber for η and properties of gamma function. This problem is
shown in the work [8].

The problem of determining the derivative should be ap-
proached differently than mathematically by changing the in-
teger order to non-integer order using different function (for
example Gamma function) because this solution can lead to
breaking the laws of physics [9–11]. This radical view is not
true because many studies confirm the correctness of fractional
models in phenomena of the real world [2, 12–21]. The prob-
lem is not breaking the laws of physics by fractional calculus
but not clear physical interpretation of how and why chang-
ing integer order into fractional order influences the physical
meaning of modelled quantities such as mass, length, time,
force, electric current, temperature and others.

2. Differintegrals of measured function
2.1. Interval error Let f (t) : t ∈ R between tn−1 and tn be a
measured function for:

t f = (t0, t1, ..., tn) (6)

where tn is produced on the basis of known interval:

dt = t1 − t0 = t2 − t1 = ...= tn − tn−1 (7)

Let variable v:

v = (v0,v1, ...,vn) = ( f (t0), f (t1), ..., f (tn)) (8)

Let for every interval dt be added an interval Δt named as
the interval error and 0 ≤ |Δt| ≤ dt.

If t is time then v is measured quantity in time t by an interval
dt. In this case Δt can be interpreted as an absolute error of
determining of an interval length.

Let dtη be sum of an interval and its error [7]:

dtη = dt +Δt (9)

where:

dtη = tη1 − tη0 = tη2 − tη1 = ...= tηn − tηn−1 (10)

and
tη = (tη0 , tη1 , ..., tηn) (11)

where:
tηn = tn + nΔt (12)

Let g be a function where its values are equal values of f (t)
in tη :

g(tη) = g(tn + nΔt) = v (13)

Functions f (t) and g(t) are shown in fig. 1.

1

� (3)

where: dt = tm ¡ tm ¡ 1; tm = t ¡ mdt; (n
m) =  n!

m!(n + m)!
 for n > m.

Grünwald-Letnikov differintegrals of any order is obtained 
by replacing (n

m) with gamma function and n with η 2 R:
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1. Introduction
The Leibniz notation d

dt f of derivative is defined [1]:

d
dt

f (t) = lim
dt→0

f (t +dt)− f (t)
dt

= f (1)(t) (1)

where: dt = (t + dt)− t is an increment of the independent
variable t; f (t +dt)− f (t) is an increment of function depen-
dent on t; f (1)(t) is a first order derivative.

Derivative of n−order is defined:

d
dt

(
d
dt
...

(
d
dt

f (t)
))

= f (n)(t) =

dn

dtn f (t) = lim
dt→0

f (n−1)(t +dt)− f (n−1)(t)
dt

(2)

where n ∈ N is an order of derivative (multiplicity of the first
order derivative).

Equation (2) causes to [2–4]:

dn

dtn f (t) = lim
dt→0

∑n
m=0(−1)m
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m

)
f (t −mdt)

(dt)n (3)

where: dt = tm− tm−1; tm = t −mdt;
(n

m

)
= n!

m!(n−m)! for n > m.
Grünwald-Letnikov differintegrals of any order is obtained

by replacing
(n
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)
with gamma function and n with η ∈ R:

n!
m!(n−m)!

=
Γ(n+ 1)

m!Γ(n−m+1)
=

Γ(η + 1)
m!Γ(η −m+1)

(4)

By substituting (4) to (3) the direct Grünwald-Letnikov
derivative of non-integer order (G-L) is produced [3, 4]:

dη

dtη f (t) = lim
dt→0

∑p
m=0(−1)m Γ(η+1)

m!Γ(η−m+1) f (t −mdt)

(dt)η (5)

where: p = � t0−tn
dt �.

In (5) the notation dtη is treated as the function power
(dt)η . This approach leads to problems with clear mathemati-
cal and physical interpretation of an order of fractional calcu-
lus [2, 5, 6] especially in relation to interpretation of an integer
order derivative for example as a tangent to a function or a
measurement of a path (derivative of velocities change). The
interpretations of G-L differintegral are shown in [7] but they
have borders due to the possibility of substitution of any num-
ber for η and properties of gamma function. This problem is
shown in the work [8].

The problem of determining the derivative should be ap-
proached differently than mathematically by changing the in-
teger order to non-integer order using different function (for
example Gamma function) because this solution can lead to
breaking the laws of physics [9–11]. This radical view is not
true because many studies confirm the correctness of fractional
models in phenomena of the real world [2, 12–21]. The prob-
lem is not breaking the laws of physics by fractional calculus
but not clear physical interpretation of how and why chang-
ing integer order into fractional order influences the physical
meaning of modelled quantities such as mass, length, time,
force, electric current, temperature and others.

2. Differintegrals of measured function
2.1. Interval error Let f (t) : t ∈ R between tn−1 and tn be a
measured function for:

t f = (t0, t1, ..., tn) (6)

where tn is produced on the basis of known interval:

dt = t1 − t0 = t2 − t1 = ...= tn − tn−1 (7)

Let variable v:

v = (v0,v1, ...,vn) = ( f (t0), f (t1), ..., f (tn)) (8)

Let for every interval dt be added an interval Δt named as
the interval error and 0 ≤ |Δt| ≤ dt.

If t is time then v is measured quantity in time t by an interval
dt. In this case Δt can be interpreted as an absolute error of
determining of an interval length.

Let dtη be sum of an interval and its error [7]:

dtη = dt +Δt (9)

where:

dtη = tη1 − tη0 = tη2 − tη1 = ...= tηn − tηn−1 (10)

and
tη = (tη0 , tη1 , ..., tηn) (11)

where:
tηn = tn + nΔt (12)

Let g be a function where its values are equal values of f (t)
in tη :

g(tη) = g(tn + nΔt) = v (13)

Functions f (t) and g(t) are shown in fig. 1.

1

.� (4)
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where tn is produced on the basis of known interval:

	 dt = t1 ¡ t0 = t2 ¡ t1 = … = tn ¡ tn ¡ 1.� (7)

Let variable v:

	 v = (v0, v1, …, vn) = ( f (t0),  f (t1), …,  f (tn)).� (8)

Let for every interval dt be added an interval ∆t named as 
the interval error and 0 ∙ j∆tj ∙ dt.

If t is time then v is measured quantity in time t by an inter-
val dt. In this case ∆t can be interpreted as an absolute error of 
determining of an interval length.

Let dtη be sum of an interval and its error [7]:

	 dtη = dt + ∆t� (9)

where:

	 dtη = tη1
 ¡ tη0

 = tη2
 ¡ tη1

 = … = tηn
 ¡ tηn ¡ 1

� (10)

and

	 tη = (tη0
, tη1

, …, tηn)� (11)

where:

	 tηn
 = tn + n∆t.� (12)

Let g be a function where its values are equal values of 
f (t) in tη:

	 g(tη) = g(tη + n∆t) = v.� (13)

Functions f (t) and g(t) are shown in Fig. 1.
Assuming f (tf) is a function obtained by measured quanti-

ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger 
if an interval error ∆t is bigger.

In dynamic models of real systems with fast changes of 
an input signal an interval error is taken into consideration as 
the most important factor in precise modelling based on the 
empirical datum. It is used to: models of vibration and velocity 
transducers, models of gas and liquid flows, models taking into 
consideration the deviation from true periodicity of a presum-
ably periodic signal ( jitter).

2.2. Derivative of function with an interval error. Let sη be 
a function of variables tη (11) and v (8) from Section 2.1.

The gradient of sη(tη, v) function can be formulated as fol-
lows [1]:

	

Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 − 2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (14)

where ∇sη is the gradient defined on points tη situated on the 
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error ∆t 
(12). Gradient ∇sη(tη, v) for dt ! 0 is a linear approximation 
of g between next values of tη (Fig. 2).

Fig. 1. Functions f  and g

Fig. 2. Gradient vectors of g function
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lim
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Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
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ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
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∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0
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Fig. 2. Gradient vectors of g function.
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d
dt

g(tηn) = lim
dtη→0
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=
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dt
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Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:
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and: γ is a factor of changing derivative by Δt (20); n is a
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ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:
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and: γ is a factor of changing derivative by Δt (20); n is a
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sη (tη ,v)i+
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sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
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Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
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2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
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∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:
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g(tηn) = lim
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vn+1 − vn

tηn+1 − tηn

=
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g(tn+1) = lim
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By substituting (12) to (16):
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dt

g(tηn) = lim
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Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:
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and: γ is a factor of changing derivative by Δt (20); n is a
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consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 − 2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

.
� (18)

Generally, the n–order derivative of g in t0 is formulated as:

	

.

Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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2.3. Derivative of non-integer positive order and its inter-
pretation. Let dtγ stands for change of dt:

	 dt + ∆t = dtη = dt γ.� (20)

By substituting (20) to (19):

	

.

Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Fig. 1. Functions f and g.

Assuming f (t f ) is a function obtained by measured quanti-
ties v every dt, g(tη) function takes into consideration an inter-
val error. The difference between both functions will be bigger
if an interval error Δt is bigger.

In dynamic models of real systems with fast changes of an
input signal an interval error is taken into consideration as the
most important factor in precise modelling based on the em-
pirical datum. It is used to: models of vibration and velocity
transducers, models of gas and liquid flows, models taking into
consideration the deviation from true periodicity of a presum-
ably periodic signal (jitter).

2.2. Derivative of function with an interval error Let sη be
a function of variables tη (11) and v (8) from chapter 2.1.

The gradient of sη (tη ,v) function can be formulated as fol-
lows [1]:

∇sη (tη ,v) =
∂
∂ t

sη (tη ,v)i+
∂
∂v

sη (tη ,v) j (14)

where ∇sη is the gradient defined on points tη situated on the
curve g, i and j are the standard unit vectors.

Function g is taking into consideration an interval error Δt
(12). Gradient ∇sη (tη ,v) for dt → 0 is a linear approximation
of g between next values of tη (fig. 2).

Let vηn be values situated on the gradient vector ∇sη in tηn

(fig. 2):

vη = (vη1 ,vη2 , ...,vηn) = (v0(t0),vη1(t1), ...,vηn(tn)) (15)

Derivative of g in tη is produced, where g between tηn and
tηn+1 is approximated by the gradient vector:

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

tηn+1 − tηn

=

d
dt

g(tn+1) = lim
(tηn+1−tn+1)→0

vn+1 − vηn+1

tηn+1 − tn+1
(16)

Fig. 2. Gradient vectors of g function.

By substituting (12) to (16):

d
dt

g(tηn) = lim
dtη→0

vn+1 − vn

dt +Δt
=

d
dt

g(tn+1) (17)

Second derivative of g function in tn+1 is produced:

d2

dt2 g(tn) = lim
dtη→0

d
dt g(tn+1)− d

dt g(tn)
tηn+1 − tηn

=

lim
dtη→0

vn+2 −2vn+1+ vn

(dt +Δt)2 (18)

Generally, the n−order derivative of g in t0 is formulated as:

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dt +Δt
=

lim
dtη→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dt +Δt)n (19)

2.3. Derivative of non-integer positive order and its inter-
pretation Let dtγ stands for change of dt:

dt +Δt = dtη = dtγ (20)

By substituting (20) to (19):

dn

dtn g(t0) = lim
dtη→0

dn−1

dtn−1 g(t1)− dn−1

dtn−1 g(t0)

dtη
=

lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (21)

Because dtn on the left of (21) is the notation of multiplic-
ity of dt other than dtη = dtγ on the right, instead of dtn the
notation dtη is inserted where:

η = γn (22)

and: γ is a factor of changing derivative by Δt (20); n is a
multiplicity of dtγ ; η : R+ is a fractional order of derivative.
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Since dt n on the left of (21) is the notation of  multiplicity of 
dt other than dtη = dtγ on the right, instead of  dt n the notation 
dtη is inserted where:

	 η = γ n� (22)

and: γ  is a factor of changing derivative by ∆t (20); n is a mul-
tiplicity of dtγ; η : R+ is a fractional order of derivative.

The fractional order derivative is defined by substituting 
equation (22) to (21):
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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where: dn

dtη is a notation of fractional derivative; n is a natural 

order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for ∆t  6= 0) connected with a natural 
order by a factor γ  (22).

In the case where ∆t = 0 then η = n and:
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Factor γ  depends on an interval dt and an interval error ∆t 
(20). Because dt 2 

£
0, dt
¤
 then on the branch borders:
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Characteristics of γ (∆t, dt) are shown in Fig. 3.

Fig. 3. Characteristics of factor γ (∆t, dt)

Because for every n 2 N:
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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then the derivative (23) can have the formula:
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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For dt γ ! 0 and n = 1 the geometric interpretation of the 
fractional orders derivative (23) is an angle of inclination of tan-
gent to g in tn, the same as the f irst order derivative. In the case 
where the approximation of a tangent is a secant (Fig. 4) then 
the geometric interpretations of the derivative are: an angle of 
inclination of a secant joining points (t0, v0) and (tη1

, v1) for the 
fractional order derivative and an angle of inclination of a secant 
joining points (t0, v0) and (t1, v1) for the first order derivative. 
Difference between the angle β of inclination a secant on f  and 
the angle α of inclination a secant on g will be the bigger as the 
bigger is a value of interval error ∆t. For ∆t = 0 the angle of 
inclination secants on f  and g will be the same (characteristics 
will overlap). Other interpretation can found in [5‒7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation. Let n = 1. On the basis of (22, 23) and η = γ  the 
derivative is:
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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The minus order derivative (29) is equivalent to the integral
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tη0 − t0. Geometrical interpretation of (29) as a surface area is
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same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:
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lim
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shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:
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dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d
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= lim
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ttη1
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t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
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dn

dt−nγ g(t0) = lim
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The fractional order derivative is defined by substituting
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same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim
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v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

� (29)
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Fig. 5. Geometric interpretation of a non-integer minus order derivative

Let n = 2. On the basis of (18) and (23) the minus order 
derivative of function g in t0 with multiplicity n = 2 is pro-
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where: dn
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tional order of derivative (for Δt �= 0) connected with a natural
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For dtγ → 0 and n = 1 the geometric interpretation of the
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tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
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of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the
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same (characteristics will overlap). Other interpretation can
found in [5–7, 22].
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d
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dt−γ g(t0)
dt−γ
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dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ
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Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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same (characteristics will overlap). Other interpretation can
found in [5–7, 22].
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pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim
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Equation (28) for minus order γ has the formula:
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dt−γ =

lim
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The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
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Let n = 2. On the basis of (18) and (23) the minus order
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duced:

d2

dt−2γ g(t0) = lim
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d
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dt−2γ (30)
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∫ tη1

t0
v(t)dtγ

)
dtnγ (31)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Fractional order model of measured quantity errors

Fig. 3. Characteristics of factor γ(Δt,dt).
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where: dn
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Because for every n ∈N:
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For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Fractional order model of measured quantity errors
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The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the

Fig. 4. Geometric interpretation of a non-integer positive order deriva-
tive.

same (characteristics will overlap). Other interpretation can
found in [5–7, 22].

2.4. Derivative of non-integer minus order and its inter-
pretation Let n = 1. On the basis of (22)-(23) and η = γ the
derivative is:

d
dtγ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dtγ (28)

Equation (28) for minus order γ has the formula:

d
dt−γ g(t0) = lim

dtγ→0

v(tη1)− v(t0)
dt−γ =

lim
dtγ→0

(v1 − v0)dtγ ≡
∫ tη1

t0
v(t)dtγ (29)

The minus order derivative (29) is equivalent to the integral
definition where step and branch of integration equal dtγ =
tη0 − t0. Geometrical interpretation of (29) as a surface area is
shown in fig. 5.

Let n = 2. On the basis of (18) and (23) the minus order
derivative of function g in t0 with multiplicity n = 2 is pro-
duced:

d2

dt−2γ g(t0) = lim
dtη→0

d
dt−γ g(tη1)− d

dt−γ g(t0)
dt−γ

= lim
dtη→0

∫ tη2
ttη1

v(t)dtγ − ∫ tη1
t0 v(t)dtγ

dt−2γ (30)

Generally, the minus order derivative with multiplicity n is
written as:

dn

dt−nγ g(t0) = lim
dtη→0

dn−1

dt−(n−1)γ g(tη1)− dn−1

dt−(n−1)γ g(t0)

dt−γ

= lim
dtη→0

(∫ tη2

ttη1

v(t)dtγ −
∫ tη1

t0
v(t)dtγ

)
dtnγ (31)
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Fig. 3. Characteristics of factor γ(Δt,dt).

The fractional order derivative is defined by substituting
equation (22) to (21):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n (23)

where: dn

dtη is a notation of fractional derivative; n is a natural
order of derivative (multiplicity of an interval dt); η is a frac-
tional order of derivative (for Δt �= 0) connected with a natural
order by a factor γ (22).

In the case where Δt = 0 then η = n and:

dn

dtη g(t0)
∣∣∣∣
Δt=0

=
dn

dtn f (t0) (24)

Factor γ depends on an interval dt and an interval error Δt
(20). Because Δt ∈ [0,dt] then on the branch borders:

γ =

{
1 for Δt = 0
logdt 2dt for Δt = dt

(25)

Characteristics of γ(Δt,dt) are shown in fig. 3.
Because for every n ∈N:

(dt +Δt)n =
n

∑
m=0

(
n
m

)
dtn−mΔtm (26)

then the derivative (23) can have the formula:

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)mvn−m

∑n
m=0

(n
m

)
dtn−mΔtm

(27)

For dtγ → 0 and n = 1 the geometric interpretation of the
fractional orders derivative (23) is an angle of inclination of
tangent to g in tn, the same as the first order derivative. In the
case where the approximation of a tangent is a secant (fig. 4)
then the geometric interpretations of the derivative are: an an-
gle of inclination of a secant joining points (t0,v0) and (tη1 ,v1)
for the fractional order derivative and an angle of inclination
of a secant joining points (t0,v0) and (t1,v1) for the first or-
der derivative. Difference between the angle β of inclination
a secant on f and the angle α of inclination a secant on g will
be the bigger as the bigger is a value of interval error Δt. For
Δt = 0 the angle of inclination secants on f and g will be the
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Because integral is operation opposite to derivative (New-
ton-Leibniz formula) [1]:
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Fig. 5. Geometric interpretation of a non-integer minus order deriva-
tive.

Because integral is operation opposite to derivative
(Newton-Leibniz formula) [1]:

∫ b

a
f (t)dt = F(b)−F(a) (32)

and

F �(a) = lim
(b−a)→0

F(b)−F(a)
b−a

= lim
(b−a)→0

∫ b
a f (t)dt
b−a

(33)

where F is a primitive function of f .
Exchanging generally signs F �(a) and f (t) with fractional

derivative (23) and v(t):

dn

dtη g(t0) = lim
dtγ→0

∑n
m=0(−1)m

(n
m

)
vn−m

(dtγ)n = lim
dtγ→0

∫ tηn
t0 v(t)dtγ

(dtγ)n

(34)
where v is a primitive function of g.

Converting (34):

lim
dtγ→0

∫ tηn

t0
v(t)dtγ = (dtγ )n dn

dtη g(t0) =

lim
dtγ→0

n

∑
m=0

(−1)m
(

n
m

)
vn−m (35)

Equation (35) is a relationship between minus order deriva-
tive and an integral with an integration step dtγ and an integra-
tion branch [t0, tηn ]. Simultaneously (35) is the numerator of
positive order derivative (23).

Because minus order derivative has an influence on denomi-
nator of (23) only, then minus order derivative is tantamount to
subsequent integrations of primitive function v of g function:

dn

dt−η g(t0) = lim
dtγ→0

(dtγ)n
n

∑
m=0

(−1)m
(

n
m

)
vn−m

=
∫ tηn

tηn−1

...

(∫ tη2

tη1

(∫ tη1

tη0

v(t)dtγ
)

dtγ ...

)
dtγ (36)

2.5. Interpretation of a multiple non-integer minus order
derivative In mathematics there are known multiple integra-

Fig. 6. Geometric interpretation of multiple non-integer minus order
derivative for Δt = 0.

Fig. 7. Geometric interpretation of multiple non-integer minus order
derivative for Δt �= 0.

tions of more than one variable x1, ...,xm:
∫∫∫

D

...

∫
f (x1, ...,xm)dx1...dxm (37)

So that the multiple integration of one variable is produced:
∫∫∫

D

...
∫

f (x)dx1...dxn (38)

where n is a number of iteration of x.
By using double integral of (37) we can calculate a volume.

A triple integral can calculate a mass of a solid with known
density. Currently no physical interpretations are known re-
garding the infinity multiple integral of one variable (38).
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So that the multiple integration of one variable is produced:
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where n is a number of iteration of x.
By using double integral of (37) we can calculate a volume.

A triple integral can calculate a mass of a solid with known
density. Currently no physical interpretations are known re-
garding the infinity multiple integral of one variable (38).
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where n is a number of iteration of x.
By using double integral of (37) we can calculate a volume.

A triple integral can calculate a mass of a solid with known
density. Currently no physical interpretations are known re-
garding the infinity multiple integral of one variable (38).
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tions of more than one variable x1, ...,xm:
∫∫∫

D

...

∫
f (x1, ...,xm)dx1...dxm (37)

So that the multiple integration of one variable is produced:
∫∫∫

D

...
∫

f (x)dx1...dxn (38)

where n is a number of iteration of x.
By using double integral of (37) we can calculate a volume.

A triple integral can calculate a mass of a solid with known
density. Currently no physical interpretations are known re-
garding the infinity multiple integral of one variable (38).
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Fig. 8. Block diagram of system integration with jitter: dt = 0.0001
(sample time), η =−1.001 (fractional order).

Fig. 9. Jitter modelling (Signal Sampling block).

From this an interpretation of presented minus order derivative
is limited to the one iteration of minus order derivative (36).
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The graphical interpretation of (39) as a surface area is
shown in fig. 6 and 7. The marked area in the fig. 6 repre-
sents Δt = 0 and natural number of η order. The marked area
in the fig. 7 represents Δt �= 0 where η is not a natural number.
In both cases the negative order derivative is the one step upper
Darboux integral, where an integral step and an integral branch
are equal.

2.6. Jitter effect Jitter definition and its effect can be found in
works [23–25]. Generally, jitter effect changes real measured
input signal by inaccuracy of work of sampled systems and the
read signal (behind the sampled system) is different than the
measured signal (before the sampled system). In this case next
operation has result with jitter error, for example an integration
operation of signal. Block diagram of this example is shown in
the fig. 8 where input signal is sampled with and without jitter
effect and obtained signals are integrated by classical integra-
tor and fractional integrator built on base of the equation (39).
Jitter modelling (fig. 9) was created on the base of work [26].

Signals (output signals from Signal Sampling block) with

Fig. 10. Signals with and without jitter effect.

Fig. 11. Integration of signals with and without jitter effect.

and without jitter effect are shown in the fig. 10. Signals after
integration (classical and fractional) are shown in the fig. 11
and 12. Absolute error of signals (classical and fractional) are
shown in the fig. 13 (in relation to integration signal without
jitter - the ideal signal). From fig. 13 it arises that fractional
integration where jitter error is coded into its order has lower
absolute error values (0.01-0.14%) than classical integration
(0.03-0.3%).

3. Conclusions
A definition of fractional order derivative and integral dedi-
cated to describe a measured quantity error and its notation
dn

dtη have been proposed.
In the definition an order of derivative is a product of natural

order and γ factor which determines a relation between an in-
terval (an increment of independent variable t) and an interval
error (20). In the special case where an interval error is equal
0 (Δt = 0), γ = 1 and the real positive order derivative (23)
becomes natural order derivative. From this the natural order
derivative is special case of the real order derivative.

The minus order derivative (29)-(31) has been defined on
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of definite integrals, thus on the basis of (29):

dn

dt−η g(t0) = lim
dtγ→0

∫ tηn

t0
v(t)dtγ = lim

dtγ→0

(∫ tη1

t0
v(t)dtγ+

∫ tη2

tη1

v(t)dtγ + ...+

∫ tηn

tηn−1

v(t)dtγ

)
=

d
dt−γ g(t0)+

d
dt−γ g(tη1)+ ...+

d
dt−γ g(tηn−1) = lim

dtγ→0
(v1 − v0)dtγ +

lim
dtγ→0

(v2 − v1)dtγ + ...+ lim
dtγ→0

(vn − vn−1)dtγ (39)

The graphical interpretation of (39) as a surface area is
shown in fig. 6 and 7. The marked area in the fig. 6 repre-
sents Δt = 0 and natural number of η order. The marked area
in the fig. 7 represents Δt �= 0 where η is not a natural number.
In both cases the negative order derivative is the one step upper
Darboux integral, where an integral step and an integral branch
are equal.

2.6. Jitter effect Jitter definition and its effect can be found in
works [23–25]. Generally, jitter effect changes real measured
input signal by inaccuracy of work of sampled systems and the
read signal (behind the sampled system) is different than the
measured signal (before the sampled system). In this case next
operation has result with jitter error, for example an integration
operation of signal. Block diagram of this example is shown in
the fig. 8 where input signal is sampled with and without jitter
effect and obtained signals are integrated by classical integra-
tor and fractional integrator built on base of the equation (39).
Jitter modelling (fig. 9) was created on the base of work [26].

Signals (output signals from Signal Sampling block) with

Fig. 10. Signals with and without jitter effect.

Fig. 11. Integration of signals with and without jitter effect.

and without jitter effect are shown in the fig. 10. Signals after
integration (classical and fractional) are shown in the fig. 11
and 12. Absolute error of signals (classical and fractional) are
shown in the fig. 13 (in relation to integration signal without
jitter - the ideal signal). From fig. 13 it arises that fractional
integration where jitter error is coded into its order has lower
absolute error values (0.01-0.14%) than classical integration
(0.03-0.3%).

3. Conclusions
A definition of fractional order derivative and integral dedi-
cated to describe a measured quantity error and its notation
dn

dtη have been proposed.
In the definition an order of derivative is a product of natural

order and γ factor which determines a relation between an in-
terval (an increment of independent variable t) and an interval
error (20). In the special case where an interval error is equal
0 (Δt = 0), γ = 1 and the real positive order derivative (23)
becomes natural order derivative. From this the natural order
derivative is special case of the real order derivative.

The minus order derivative (29)-(31) has been defined on

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

.

� (39)

The graphical interpretation of (39) as a surface area is 
shown in Fig. 6 and 7. The marked area in the Fig. 6 represents 
∆t = 0 and natural number of η order. The marked area in the 

Fig. 6. Geometric interpretation of multiple non-integer minus order 
derivative for ∆t = 0
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Fig. 7 represents ∆t  6= 0 where η is not a natural number. In 
both cases the negative order derivative is the one step upper 
Darboux integral, where an integral step and an integral branch 
are equal.

2.6. Jitter effect. Jitter definition and its effect can be found in 
works [23‒25]. Generally, jitter effect changes real measured 
input signal by inaccuracy of work of sampled systems and the 
read signal (behind the sampled system) is different than the 
measured signal (before the sampled system). In this case next 
operation has result with jitter error, for example an integration 
operation of signal. Block diagram of this example is shown in 
the Fig. 8 where input signal is sampled with and without jitter 
effect and obtained signals are integrated by classical integrator 
and fractional integrator built on base of the equation (39). Jitter 
modelling (Fig. 9) was created on the base of work [26].

Signals (output signals from Signal Sampling block) with 
and without jitter effect are shown in the Fig. 10. Signals after 
integration (classical and fractional) are shown in the Fig. 11 
and 12. Absolute error of signals (classical and fractional) are 
shown in the Fig. 13 (in relation to integration signal without 
jitter – the ideal signal). From Fig. 13 it arises that fractional 
integration where jitter error is coded into its order has lower 
absolute error values (0.01‒0.14%) than classical integration 
(0.03‒0.3%).

Fig. 7. Geometric interpretation of multiple non-integer minus order 
derivative for ∆t  6= 0

Fig. 8. Block diagram of system integration with jitter: dt = 0.0001 (sample time), η = –1.001 (fractional order)

Fig. 9. Jitter modelling (signal sampling block)
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3.	 Conclusions

A definition of fractional order derivative and integral dedicated 
to describe a measured quantity error and its notation dn

dtη have 
been proposed.

In the definition an order of derivative is a product of nat-
ural order and γ  factor which determines a relation between an 
interval (an increment of independent variable t ) and an interval 
error (20). In the special case where an interval error is equal 
0 (∆t = 0), γ  = 1 and the real positive order derivative (23) 
becomes natural order derivative. From this the natural order 
derivative is special case of the real order derivative.

The minus order derivative (29‒31) has been defined on 
the basis of the definition of positive order derivative of func-
tion (23). If an integral step and an integral branch are equal 
the negative order derivative of function is the upper Darboux 
integral.

In the case of positive and negative order of derivative of 
measured function, an interval error can interpreted as an error 
of determining of an increment dt of independent measured 
variable t.

The definition presented can be used in various ways. Gen-
erally the definition takes into consideration an interval error of 
independent measured value. In real measurements an interval 
error can be interpreted as an error of determining of sample 
time branch of measuring signal arising for example from an 
action of electronic parts of sampling systems (from not ideal 
sampling of measuring cards and jitter effect). In mathematics 
it can be an error arising from rounded values of a differential 
to defined place after comma. In physics an interval error can 
be influenced by factors connected with drag air and friction 
of moving objects.
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