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DESIGNING OF NON-CIRCULAR GEARS

In this paper, the authors present methods for designing of non-circular gears,
including internal and external gears with spur or helical teeth. Technology related
issues that determine tooth profile calculation algorithm are described. The results
presented in this paper can become groundwork for further investigations of other
particular properties of non-circular gears, similar to investigations of spur, helical
and bevel gears. Examples of such properties include kinematics and application of
special purpose gears or issues related to strength, dynamics, tribology, etc.

1. Introduction

The idea of non-circular gears originates from the precursors of the en-
gineering thought. These gears were sketched by Leonardo da Vinci, and
found their application in many types of mechanical devices, like clocks and
toys. In late XIX, century Franz Reuleaux ordered at Gustav Voigt Mecha-
nische Werkstatt in Berlin a series of non-circular gear models to help study
kinematics. The gears made at those times had simplified tooth shapes and,
for this reason, the meshing conditions were not always correct (Fig. 1).

The applications of non-circular gears include:
– Textile industry machines, for improving machine kinematics resulting in

the process optimization [3], [6]
– Window shade panel drives, for introducing vibration which interfere with

natural oscillations and cancel them out [9]
– Mechanical presses, for optimization of work cycle kinematics [1], [6]
– High torque hydraulic engines for bulkhead drives [12]
– High-power starters, mechanical systems providing progressive torque for

easier starting of the machines, where progressive torque helps to over-
come the start-up inertia
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– Forging machines, for optimizing the work cycle parameters (reducing
pressure dwell time) [2]

Fig. 1. A historical model of a non-circular gear

2. Geometry of meshing

The industry standard [7][7] involute tooth shape has been chosen for the
use in non-circular gears and therefore the existing involute gearing standards
and methods can be adopted and used.

Fig. 2. Non-circular gear’s meshing geometry

Fig. 2 shows non-circular segments meshed. The axle distance is in-
creased, and a backlash is created. The roll lines L1 and L2, correspond to
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pitch circles in regular gears. The temporary line of action l meets teeth
contact points at right angles to the flanks. The line O′1O

′
2, perpendicular

to the lines L1 and L2 where their distance is minimal, passes through the
centers O′1O

′
2 of replacement pitch circles d1 and d2 and roll circles with

radii rw1 and rw2. The roll circles touch at a temporary center of meshing C,
where the lines O′1O

′
2 and l intersect.

In the case of non-circular gear, each flank of each tooth can have different
shape. If the gear (consists of segments of a circular gear or a rack) some
of the flanks may have similar shapes, but this is a rare, special case. A
free-form cutting technology is often used instead of hobbing or shaping.
The exact profile of the teeth must then be specified, as it is not defined
by any specific curve, and such a profile is not easy to find. Therefore, it is
usually required to include the exact profile in the documentation (preferably
as a numerical model), especially when the part will be checked using the
coordinate measuring technology.

3. Roll lines

The roll lines correspond to pitch circles in regular gears. They represent
a non-circular gear as two rollers rolling together without slip, provided there
’is no addendum modification and the nominal axle distance is used. Roll
lines are divided in z parts that are p long, where z is the gear’s number of
teeth, and p is the pitch.

Fig. 3. Non-circular roll lines example
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4. Basic equations

The gear is represented by two roll lines L1 and L2 with centers in O1
and O2, rolling together without slip. (Fig. 3).

The L1 line is described in polar coordinates as r1(ϕ1). The gear’s ratio
is described as:

ν(ϕ1) =
ω1(ϕ1)
ω2(ϕ1)

=
r2(ϕ1)
r1(ϕ1)

(1)

where ω1(ϕ1 and ω2(ϕ1) are angular velocity functions for gear 1 and 2
accordingly.
The distance A between the centers of roll lines is constant:

A = r1(ϕ1) + r2(ϕ1) = const (2)

The roll lines roll without slip, therefore:

dϕ2 =
r1(ϕ1)
r2(ϕ1)

dϕ1 (3)

Taking (1), (2) and (3) into consideration, after integrating we have:

ϕ2 =

ϕ1∫

0

r1(ϕ1)
A − r1(ϕ1)

dϕ1 (4)

The integration constant is found from the condition that if ϕ1 = 0 then
varphiup2 = 0.
In the example shown in Fig. 3, the period T of the ratio function v(ϕ1)
equals π, T1=2π, and T2=3π, so when ϕ1 = π then ϕ2 = 2/3π. Therefore:

2
3
π =

π∫

0

r1(ϕ1)
A − r1(ϕ1)

dϕ1 (5)

The axle distance A can be found from equation (4). Line L2 = r2(ϕ1) is
found from (2) and (3). In order to transmit the torque continuously, the
gear’s ratio function must be periodic, and its period T must correspond to
the periods T1 and T2 of gears 1 and 2 as follows:

T =
T1

n2
=

T2

n1
(6)

where n1 and n2 are natural numbers.
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Fig. 4. Roll lines with different n parameters

Fig. 5. Aperiodic non-circular gear

In the case of an aperiodic non-circular gear, angular positions of the
members are limited. Usually, a specific ratio function is used, for example
a logarithmic function.

Standard curves can be used as roll lines as long as they fulfill the re-
quirements described above. The most frequently used one is the ellipse. In
order to represent a free-form roll line, it is first divided into many little
segments. Each segment is represented as a segment of an Archimedean
spiral. In this spiral, the distance from the center is a linear function of the
spiral angle, which makes this curve naturally suitable for describing the
non-circular gears, although other curves can be used as well.

The equation of Archimedean spiral is:

r = kα, (7)
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where k is the spiral’s parameter.
Let’ us assume that the L1 roll line is given, or the ratio function is given

and we can find L1 from (1), and we look for the L2 line. L1 is divided into
i little segments l1i so that each of those segments can be represented by an
Archimedean spiral with adequate precision.

Fig. 6. Roll line divided into segments

r1, r2, α, α1 and α2 are parameters of a current segment l1i and mean,
respectively:
r1 – spiral’s starting radius
r2 – spiral’s ending radius
α – spiral segment’s whole angle
α1 – spiral’s starting angle
α2 – spiral’s ending angle

These parameters will be used only for the currently processed segment,
so there’ is no need to index them.
As shown in Fig. 6:

α = α2 − α1 (8)

Taking (9) into account we have:



DESIGNING OF NON-CIRCULAR GEARS 281

α1 =
r1

k
α2 =

r2

k
k =

r2 − r1

α
dl =

√
(dr)2 + (rdα)2dr = d(kα) = kdα

dl =
√

(kdα)2 + (rdα)2 =
√

(kdα)2 + (kαdα)2 = k
√

1 + α2dα∫
dl =

k
2

[
α
√
α2 + 1 + ln(α +

√
α2 + 1)

]

l1i=

α2∫
α1

dl=
k
2

[
α2

√
α2

2+1+ln
(
α2+

√
α2

2+1
)
−α1

√
α2

1+1−ln
(
α1+

√
α2

1+1
)]

(9)
The lines L1 and L2 roll without slip, and the line L2 is divided, similarly

as L1, into il2i, segments. Therefore, from (3) it follows:

| 11i |=| 12i | (10)

Using equations (2)-(12), we can find the segments l2i, and consequently
the L2 line.

The presented procedure usually requires a lot of calculations and stor-
ing of arrays of co-efficients and other data. For this reasons it is usually
implemented as a computer application.

In some cases, the properties of Archimedean spiral make it possible to
divide the roll line only into a couple of segments with all the constructional
requirements fulfilled.

Fig. 7. A roll line divided into segments
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Fig. 7 shows a roll line, which can be constructed by using three elements-
two segments l1 and l2 of Archimedean spirals A1 and A2 and a circular
segment l3. One can notice that at points 1 and 2 the touching segments
are not tangent, and the resulting roll line has no derivative in these points.
Therefore, a step change of the gear ratio occurs there, and the transfer of
power is not uniform. The inertia of the driven mass leads to creation of
excessive dynamic forces. In order to avoid that effect, smooth transitions
between the lines must be secured by introducing tangent segments of the
curves. In the example above, it is accomplished by introducing tangent
circles O1 and O2. There are no special restrictions on types of the curves
used for this purpose. The most frequently used ones are conic sections
(ellipse, parabola, hyperbola), polynomial curves, exponential, power and
logarithmic curves as well as Bezier curves, B-spline curves and NURBS.

5. Finding tooth shapes

In order to avoid problems with meshing of the gears, the teeth profiles
should properly mesh with a reference rack. This condition is satisfied when
the reference rack’s pitch line is rolling over the gear’s roll line.

Fig. 8. Reference rack’s pitch line of rack rolling over a non-circular roll line

The non-circular roll line L is described as L = r(ϕ). The reference rack
pitch line S with profile T rolls over L. The coordinates of contact point P
are:

P[x, y] = [r(ϕ)cos(ϕ), r(ϕ)sin(ϕ)] (11)
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The angle between r(ϕ) and the reference rack’s pitch line S equals:

θ = arctan

 r(ϕ)
dr
dϕ

 . (12)

Therefore:

µ = ϕ − θ (13)

If ϕ=0 P0=p0, S rolls over L without slip from P0 to P, therefore the
length of segment l of the line L between P0 and P is equal to the length of
the segment s between p0 and P of the line S.

If L consists of i segments li, the analyzed point P corresponds to the
segments’ lengths l j, li, and the parameters ki are found to from (11), then:

|s| =
j∑

n=1

ln (14)

The roll line L is divided into z segments, the length of each of them is
p. The module m is found from the equation:

m =
|L|
πz
=

i∑
n=1

ln

πz
, (15)

where z is the number of teeth in the gear.

6. Context analysis method

The context analysis method consists in running the system through a
series of states and recording them as the context, from which the data
fulfilling certain criteria are selected, and these constitute the result of the
analysis. The context is created as the positions of points on the reference
profile rolling with the reference pitch line of the rack’s over the gear’s roll
line. Analytic geometry is used to find positions of these points.

The reference profiler of the rack’s meshing with the gear can never
collide into itthe latter one. Therefore, any geometric locus of the system
where the reference profile is located in any of the intermediate states must
not belong to the gear. The border of the area constituted by these loci is the
gear’s flank (see Fig. 9).
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Fig. 9. Gear’s fFlank of gear found using context analysis method

In the case of an internal gear, the material is found on the opposite side
of the profile. Usually, for proper meshing, some additional requirements
need to be fulfilled.

The method described above allows for very easy modifications of the
profile. Such modifications, similarly as in the case of regular gears, are
in most cases required for meshing optimization. Typical examples include
profile shift for avoiding the interference in an internal gear, profile and
line crowning for improvement of the meshing pattern, or profile shift for
improving the slide/roll ratio. The range of a modification can be wide and
applied individually to each tooth, as in the case of non-circular gears a tooth
will mesh with determined, corresponding tooth space.

7. Replacement gear

A non-circular gear remaining in a defined, momentary state can be rep-
resented as a circular gear, whose meshing parameters represent temporary
meshing parameters of a non-circular gear. A change in the position of non-
circular gear’s will, in most cases, change the temporary meshing parameters,
so that a number of states must be analyzed to create the meshing parameter
characteristic of the gear.

Fig. 10 shows a non-circular gear in a defined angular position described
by α1 and α2, gear rotation angles and the replacement circular gear con-
sisting of two gears with centers O′1 and O′2, and with pitch radii ρ1 and ρ2.
These radii are equal to curvatures of roll lines in the contact point and can
be calculated from the equation:
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Fig. 10. Non-circular gear and the corresponding circular replacement gear

ρ =

[
r2 +
(

dr
dϕ

)2] 3
2

r2 + 2
(

dr
dϕ

)2 − r d2r
dϕ2

,

assuming the roll line radii are described in polar coordinates by functions
r(ϕ).

When a digital computing method is used, it is more convenient to cal-
culate the curvature by finding a circle over 3 points P on the roll line close
to the contact point.:

P1(a, b),

P2(c, d),

P3(e, f ).

We look for the radius r of the circle over points P1, P2 and P3 with the
center in point O(h, k). In the right triangle we have:

(a − h)2 + (b − k)2 = r2,

(c − h)2 + (d − k)2 = r2,

(e − h)2 + (f − k)2 = r2.

After transformations:
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k =
1
2

(a2 + b2)(e − c) + (c2 + d2)(a − e) + (e2 + f2)(c − a)
b(e − c) + d(a − e) + f(c − a)

,

h =
1
2

(a2 + b2)(f − d) + (c2 + d2)(b − f) + (e2 + f2)(d − b)
a(f − d) + c(b − f) + e(d − b)

,

r =
√

(a − h)2 + (b − k)2.

For analyzing the meshing parameters, it is convenient to calculate the
pitch radii r1 and r2 of the replacement gears for many positions, and to create
a function showing how those radii change in the function of the rotation
angle α1 of the non-circular gear 1. An example of such a function is shown
below.:

Fig. 11. Example of function of replacement gear pitch radii

8. Non-circular helical gears

Teeth lines of helical gears cross the generating lines of the pitch cylinder
at helix angle β. Two meshed helical gears, that have parallel axes, have the
same β angles, but their directions are different – one of them is left, and
the other one is right.
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In the case of helical gears, the generating rack is skew to the gener-
ating lines of a cylindrical surface. The teeth flanks are enveloped by an
additionally rotated and shifted generating rack.

Meshing of helical gears is analyzed in transverse plane [7]. If the refer-
ence rack sn is defined in normal plane (standard in Europe), a conversion
of the reference rack st into a transverse plane must be carried out:

pn = pt cos β,

mn = mt cos β,

tgαt =
tgαn

cos β
,

where p is pitch, m is module, α is profile angle, and β is helical angle.
Helical gear’s geometry is created by means of the methods described

above. An example isometric drawing of a non-circular helical gear is shown
below.

Fig. 12. Non-circular helical gear

9. Verification of non-circular gear designing method

In order to verify the presented procedure, sample gears were manufac-
tured and examined.
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Fig. 13. Non-circular gear on checking fixture

The first manufactured gear was a simple elliptical design. The gear was
checked for smooth rotation, and its ratio function was compared to the
theoretical one. No design-related problems were found.

The second gear was a one with changing profile shift, having different
shift on every tooth (it was possible because in this design a tooth will mesh
with only one corresponding tooth space).

Table 1.
Gear parameters- profile shift changes

Parameter Symbol Value

Module m 4,71

Nr of teeth z 32

Pressure angle α 20◦

Profile shift coefficient x -0,2 – 0,2

Tooth height coefficient y 1

Tip clearance coefficient c 0,25

Tooth thickness on reference diameter g 6,710 – 8,081
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Table 2.
Profile shifts on respective teeth

Tooth
nr

x
Tooth

nr
x

Tooth
nr

x
Tooth

nr
x

1 0 9 0 17 0 25 0

2 -0,1 10 0,1 18 -0,1 26 0,1

3 -0,2 11 0,2 19 -0,2 27 0,2

4 -0,1 12 0,1 20 -0,1 28 0,1

5 0 13 0 21 0 29 0

6 0,1 14 -0,1 22 0,1 30 -0,1

7 0,2 15 -0,2 23 0,2 31 -0,2

8 0,1 16 -0,1 24 0,1 32 -0,1

Fig. 14. Gear profile- profile shift changes

The third gear had different pressure angles on left and right flanks. The
left and the right flanks were meshing as the gear rotat counter clockwise, -
and clockwise, respectively.
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Table 3.
Gear parameters- changing pressure angle

Parameter Symbol Value

Module m 4,71

Nr of teeth z 32

Pressure angle α 17,5◦/22,5◦

Profile shift x 0

Tooth height coefficient y 1

Tip clearance coefficient c 0,25

Tooth thickness on reference diameter g 7,396

Fig. 15. Gear profile- changing pressure angle

The fourth gear was with concave segments. One of the gears had the
shape of a rounded square. If a correct axle distance and rounding radius
ratio is used, the meshing gear has concave segments. The axle distance was
150 mm, and the rounding radius was 25 mm.
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Table 4.
Gear parameters- concave segments

Parameter Symbol Value

Module m 4,91

Nr of teeth z 32

Pressure angle α 20◦

Profile shift x 0

Tooth height coefficient y 1

Tip clearance coefficient c 0,25

Tooth thickness on reference diameter g 7,714

Fig. 16. Gear profile- concave segments

10. Conclusions

– The described method of design of non-circular gear allows for free shap-
ing of the gear and for optimizing its meshing parameters

– The presented practical verification shows that the use of the method can
yield good results. The manufactured gears had the expected ratio function
and no problems with gear’s meshing were observed. In order to increase
the precision in checking the ratio function, one should use more accurate
gears (eg. WEDM or precision CNC cut gears). Professional encoders and
an adequate equipment for experiment data processing should be used.

– The results presented in this paper can constitute fundamentals for further
investigations of other particular properties of non-circular gears, such as
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the investigations of spur, helical and bevel gears. These investigations
may include, for example, gear kinematics and application of special
purpose gears, or may concern issues related with strength, dynamics,
tribology etc..

Manuscript received by Editorial Board, May 26, 2008;
final version, October 27, 2008.
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Projektowanie walcowych przekładni zębatych o zmieniającym się przełożeniu

S t r e s z c z e n i e

W artykule przedstawiono metodykę projektowania przekładni walcowych o zmieniającym się
przełożeniu z uwzględnieniem uzębień zewnętrznych i wewnętrznych o prostej lub skośnej linii
zęba. Uwzględniono aspekty technologiczne, które determinują algorytm obliczeń zarysów zębów.
Wyniki niniejszego opracowania mogą stanowić podstawę do dalszego badania różnych konkret-
nych własności przekładni zębatych o zmieniającym się przełożeniu, analogicznie do prowad-
zonych badań przekładni zębatych walcowych i stożkowych. Przykładami mogą tu być zagadnienia
związane z kinematyką i zastosowaniem przekładni specjalnego przeznaczenia, jak również zagad-
nienia wytrzymałościowe, dynamiczne, trybologiczne i inne.


