
 
 

FORMULAE FOR BUCKLING LOAD BEARING 

CAPACITY OF GLASS STRUCTURE ELEMENTS

M. GWÓŹDŹ1

Development of contemporary building industry and related search for new aesthetical and functional solutions 

of monumental buildings in the centers of large cities resulted in the interest in glass as a structural material. 

Attractiveness of glass as a building material may be derived from the fact, that it combines transparency and 

aesthetical look with other functional features. Application of glass results in modern look of building facades, 

improves the indoor comfort without limiting the availability of natural daylight. Wide implementation of the 

new high performance float flat glass manufacturing technology, in conjunction with increasing expectations of 

the construction industry relating to new glass functions, has led to significant developments in glass structures 

theory, cf. [1, 3, 4, 5, 9, 10]. Many years of scientific research conducted in European Union countries have been 

crowned with a report CEN/TC 250 N 1050 [2], compiled as a part of the work of European Committee for 

Standardization on the second edition of Eurocodes - an extension of the first edition by, among others, the 

recommendations for the above mentioned design of glass structures, in particular modern procedures for the 

design of glass building structures. The procedures proposed in the pre-code [2] are not widely known in Poland, 

and their implementation in the design codes should be verified at the country level. This task is undertaken in 

this paper.
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1. FORMULAE FOR BEARING CAPACITY IN SIMPLE STATES

1.1. MODELING ASSUMPTIONS

It is assumed in specialist bibliography cf. [6, 9, 10], as well as in the European pre-code CEN/TC 

250 N 1060 [2] that building components made of structural glass exhibit the physical behavior of 

linear perfectly elastic material cf. Fig. 1b. Such assumption is substantiated by the results of 

laboratory experiments, conducted during certification of glass products in the quality laboratories 

of glass manufacturers. 

Fig. 1. Physical model for the low carbon steel and glass according to pre-code [2]

A clear difference exists between the strength of a glass bar subjected to axial tension and strength 

of the same bar subjected to pure bending, especially the bending strength is higher than strength in 

tension. Glass strength in tension is not a constant value, characteristic for this material, but depends 

on many factors, such as: surface finish of glass component, its size, history of loads, residual 

stresses and working conditions. 

A comparison of �-� graphs for low carbon steel and glass, cf. Fig. 1, shows important model 

differences between both materials (elastic-plastic and linearly elastic material models). The yield 

limit fy,k and short term breaking strength fu,k of a steel sample subjected to axial tension are unique 

values, which may be specified in statistical analyses. In the case of glass samples, certified in 

Poland at the level of sorting minima, the characteristic strength fk is a contractual value. In the 

contemporary domestic commercial offer glass products for building industry are based mainly on 

the float glass technology (glass cast on liquid tin). With this technology annealed glass plates may 
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be made, exhibiting the characteristic strength according to the pre-code [2], verified in the four 

point bending test: fk =  fg,k = 45 MPa; heat strengthened glass HSG exhibiting the strength fk =  fb,k

= 70 MPa and thermally toughened glass TTG exhibiting the strength fk =  fb,k = 120 MPa.              

In addition it should be noted, that the compressive strength fc,k is much higher that the tensile 

strength fb,k and on average reaches fc,k = 500 MPa. Formulation of dimensioning building structures 

by the load and bearing capacity coefficients according to code PN-EN 1990 defines the 

characteristic value of material strength as a lower quantile at the level of probability � = 5%, thus 

for a large sample the following formula holds:

(1.1) fk =
m

tb,
fbtb, )64.11(

�
f

vf �� ,

where:

tb,f – average strength in a bending test with respect to the fiber under tension, vfb –coefficient of variation 

(a measure of dispersion of the results around the average value).

Table 1. Mean strength and material coefficient for tempered glass according to [11]

Thickness
of sample

[mm]

Glass type:  fb,k

TTG: fb,k = 120 MPa TTG and glazed: fb,k = 75 MPa

Number of 
samples

tb,f
[MPa] kb,

tb,

expm, f
f

��
Number of 

samples
tb,f

[MPa] kb,

tb,

expm, f
f

��

(1) (2) (3) (4) (5) (6) (7)

3 37 180 1.500 72 148 1.973

4 447 189 1.575 190 144 1.920

5 186 176 1.467 10 101 -

6 169 174 1.450 10 111 -

8 77 189 1.575 - - -

10 46 172 1.433 - - -

12 22 164 1.367 - - -

15 40 185 1.542 - - -

It directly follows from the formula (1.1), that the quality of glass products is determined by the 

coefficient of variation vfb , as it directly affects the material coefficient: �m = 1/(1-1.64 vfb). In spite 
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of many modern glass and glass processing works operating in Poland, the published statistical 

strength analyses of domestic glass products are rather infrequent. Results of research conducted by 

the Institute of Glass, Ceramics, Building and Fire Resistant Materials, Glass Division in Cracow, 

summarized in [11] and listed in the Table 1 are available. Taking into account the numerical values 

listed in column (4), based on the condition (1.1) for �m = �m,exp one gets an estimate of the variation 

coefficient for bending strength of thermally toughened glass: vfb = 0.16�0.22. Analogous 

calculations for glazed glass yield the following value vfb = 0.30. The obtained results seem to 

indicate a large if not very large dispersion of analyzed glass samples strength around average 

value, thus their credibility is questionable. Bearing in mind the regional verification of the new 

edition of Eurocodes with respect to the design of glass structures and a significant share of 

domestic makers in the European market of building products made of glass, a complete 

certification of domestic products, confirming their quality is postulated. Therefore statistical 

verification of the strength variation coefficients vfb for various types of glass is necessary.

It has been proved, that under certain conditions fragile materials, including glass, are destroyed at 

stress levels much lower than those indicated by the strength hypotheses. In order to define the 

failure criterion in the case of glass one should turn to fracture mechanics. The classical design 

methods, consisting in determining the stresses in the structure and comparing these stresses with 

glass strength reduced by the material coefficients are sufficient at the level of engineering 

calculations. The strength criterion is recommended in CEN/TC 250 N 1060 [2] both for 

verification of material effort as well as general stability of glass structures. In the second case, 

however, one should take into account an initial geometrical imperfection having the shape of a 

circular arc with the height e(x) according to Fig. 2. This model applied in the bearing capacity 

analysis of glass bars – compressed, but bent as well, raises objections in the context of linearly 

elastic material model, according to Fig. 1, which precludes elastic-plastic deformation of the 

structures.

Fig. 2. Bar model with initial arched deflection assumed for bearing capacity analysis
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1.2. BEARING CAPACITY FORMULAE FOR MONOLITHIC GLASS BARS

All the instability issues of glass structures in view of the CEN/TC 250 N 1060 [2] have been 

derived based on the model of a compressed bar with initial arched imperfection e(x) according to 

Fig. 2, which, after application of the external load N is increased to reach the amount of w(x). The 

arched imperfection induces bending moments M(x) reaching the extreme value in the mid span of 

the bar, where the initial deflection is equal to eo = e(L/2). The equation of bending, taking into 

account the bending function: M(x) = N[e(x) + w(x)], results in a differential formula combining the 

function of bending moment with the function of small deflections for the bar:

(1.2) )()(
)(

2

2

xeNxwN
dx

xwdEI y 	��	
 . 

Assuming the initial bending function to agree with buckling form of a perfect bar:

(1.3) 
L
xexe o

�
sin)( � , 

 

one obtains a complete solution for the formula (1.2) in the following form:

(1.4)
2
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��

�

�
�
�


	
	�
�

�

,

where in the formula (1.4) the following denotations hold: k2 = N/EIy, while A and B – integration 

constants, which for the boundary conditions depicted in Fig. 2 assume the value of A = B = 0. For 

the critical force Ncr = �2EIy/L2 the condition (1.4) yields the following formula for the deflected 

axis of the bar:

(1.5)
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For a bar with initial imperfection Perry proposed the following strength criterion:

(1.6) ky

cr

o

y

f

N
N

e
I
zN

A
N

,
max

1
�

�

	

�� .

In the contemporary works cf. [3, 4, 6], dedicated to the bearing capacity analysis of glass bars, the 

strength criterion for monolithic glass is assumed directly from the formula (1.6), while for the 

laminated glass it is assumed with modification of geometrical properties (effective characteristics). 

Since the resistance against tension of glass bars is much lower than the resistance against 

compression fu,t � �fu,c�, the condition (1.6) should be verified in the tensioned and compressed 

fibers separately:

(1.7) TTG),(for  MPa 120or  HSG)(for  MPa 70
1

tu,

cr

max
t ��

�

	

�� f

N
N

e
I
zN

A
N o

y
�

(1.8)  MPa. 500
1

cu,
max ���

�

	
��� f

N
N

e
I
zN

A
N

cr

o

y
c�

In the bearing capacity limit state, for �t = fu,t and N = Nu after reformulation one may write:

(1.9) , 1
1

2
tu,

u

tu,

u �

	
	

�		
	



	

��

tu,

utu,

fA
N

e
fAW

AN
fA

N
f t

o

y

t

�
�

where:

 
max

y
yW

z

I
� – strength index,

crN

fA tu,
t

	
�� – relative slenderness of the bar related to the tensile strength.

Denoting the dimensionless bearing capacity of the bar (buckling coefficient) as �t = Nu/A	fu,t and 

substituting � = eo	A/Wy one obtains, after rewriting, the following relationship:

(1.10)                                              .1
-1 t

2
t

t
t t  �

��
��� ��

	

�
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The above equation is solved by the function:

(1.11) �  2
ttt2

t
2
tt

t 15.0for    
1 ��!"

�""
� 
	
��




� .

The equation (1.8) may be used to derive analogous buckling coefficient with respect to the 

compressed edge of the bar cross section:

(1.12) �  
tu,

cu,
f

2
ttc2

tf
2
cc

c  and  15.0for    
1

f
f

nn
n

f �	
	
�
�


� ��!"
�""

� .

The parameters of functions (1.11) and (1.12) have been analyzed in several works, but the pre-code 

[2] turns to the proposal of K. Langosch [6], according to which the imperfection parameter !

having the following form:

(1.13)
tu,

2

3
f

E
L
eo �! � ,

correctly depicts the results of known laboratory experiments for heat strengthened glass HSG with 

assumed initial displacement eo = L/400 (yields ! = 0.430) and eo = L/300 for thermally toughened 

glass TTG (yields ! = 0.329), cf. Fig. 3, curves under the Euler’s hyperboloid.

Buckling coefficient function based on the one assumed by Eurocode 3 for steel columns is a 

solution of the equation (1.10) alternative to (1.11), and recommended in [2] for columns made of 

both monolithic glass types:

(1.14) �  2
t0,tt2

t
2

)(15,0for    
1 ���!"

�""
� 
�
�

�

� ,

where:

tu,
1

1

cr
t

70
3.99  ,

fi
L

�
	

� �
�

� – relative and comparative slenderness, respectively.
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The function (1.14) is depicted in Fig. 3 (the bottom continuous line) for unified imperfection 

parameters specified in the pre-code [2], and having the values of ! = 0.43 and .89.00t, ��

Fig. 3. Buckling curves, from the top: according to Euler, formulae (1.11) and (1.14). Source [2].

The dimensionless bearing capacity formula for beam-ribs susceptible to lateral-torsional buckling 

subjected to bending and made of monolithic glass has not been specified in CEN/TC 250 N 1060 

[2], only the following bearing capacity condition has been formulated:

(1.15) �   .for1,0
cr

tu,
LT

del, M
fW

    
M

M 	
��

	
el

LT

Ed �
��

where:

Wel = b	 t2/6 – strength index of a glass pane having the width b and thickness t, Mcr – critical moment at 

lateral-torsional buckling of a bar subjected to bending and having the same cross section as above.

1.3. BEARING CAPACITY FORMULAE FOR BARS MADE OF  

LAMINATED GLASS

In the case of bars made of laminated glass two or three ply panes are used, having the dimensions 

indicated in Fig. 4. The bonding layer is characterized by high susceptibility to rheological 

phenomena, which, at the stage of engineering analyses may be accounted for by reduced 

geometrical characteristics. The formulae for bearing capacity of columns made of laminated glass 
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may be derived according to CEN/TC 250 N 1060 [2] from the model of a bar burdened with initial 

arched imperfection, but with real geometrical properties superseded by effective characteristics

(1.16) TTG),(for  MPa 120or  HSG)(for  MPa 70
1

tu,

effcr,

ff,

��
�

	



#
�� f

N
N

e
W

N
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N o

ei
t

i
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(1.17) MPa. 500 -
1
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�

	
�

#
�� f

N
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e
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N
A
N o

ei
t

i
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Fig. 4. Denotation of dimensions in laminated glass panes

where the effective strength index of double laminated glass for the i-th pane is:
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The effective strength index of triple laminated glass in document [2]. Assuming the above 

ancillary expressions (tint, Gint – thickness and modulus of elasticity in shear of the bonding layer), 

the effective critical force may be expressed as:

(1.20)
m

I
L

E
L

IEN f 	�
#

	�
	

�
%

��
12

2

2
eff

2
i

efcr, ,

where:
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Ii – moments of inertia of single panes (I1 or I2), % = z1 + z2.

The formula for dimensionless bearing capacity of a bar made of laminated glass may be derived 

based on conditions (1.16) and (1.17):

(1.21) & '2
efft,0t,efft,2

efft,
2
efft,efft,

efft, )(15.0for    
1 ���!"

�""
� 
�
��




� feft, ,

(1.22) & '2
efft,0t,effc,2

efft,
2
effc,effc,

effc, )(15.0for    
1 ���!"

�""
� 
�
�

	�

� f

fn
eft, ,

The bearing capacity criterion may then be expressed as:

(1.23)                                 0,1
/ Mtu,ieff

Ed �
# �� fA

N
for 

effcr,N
fAi tu,

efft,

	#
�� .

2. MEMBERS IN BENDING AND AXIAL COMPRESSION

The formulae for bearing capacity of glass components subjected to complex state of eccentric 

bending have been restricted in CEN/TC 250 N 1060 [2] to the case of eccentricities introduced 

during assembly in structures made of monolithic glass. Columns made of heat strengthened glass 

HSG may be burdened with increased initial deflection having the maximum value of eo = L/400 + 

ep ≈ 1/170, while the components made of thermally toughened glass TTG may have the maximum 

initial deflection increased to eo = L/300 + ep ≈ 1/130.

The increased initial deflections are to be accounted for in the formula (1.13) and introduced into 

the dimensionless formulae for bearing capacity of columns �t according to (1.11) and �c according 

to (1.12). The formula for buckling coefficient (1.14) with imperfection parameters listed in the pre-

code [2], having the values of ! = 1.0 and 20.00t, �� may be treated as alternative solution.

The bearing capacity problems of columns subjected to eccentric compression or compression and 

bending have been treated in the pre-code [2] marginally, redirecting the interested reader to 

specialist literature, though indicating the concept proposed by M. Feldman and K. Langosch cf. 

[7]. Cited authors derive the appropriate formulae for bearing capacity from the generalized 
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problem of a compressed column burdened with initial arched imperfection e(x) compounded by 

bending induced deflections fM(x). The strength conditions in the most stressed cross section then 

take the following form:

(2.1) TTG),(for  MPa 120or  HSG)(for  MPa 70
1

1
tu,

cr

t ��
�


	

�� f

N
NW

MeN
A
N

y

I
Qo�

(2.2)  MPa. 500
1

1
cu, ���

�


	
��� f

N
NW

MeN
A
N

cr

y

I
Qo

c�

Transforming the formulae (2.1) and (2.2) to dimensionless bearing capacity, one obtains the 

formulae for generalized instability coefficients:

(2.3) �  2
ttt2

t
2
tt

t
tt )(15,0for    

)1(

1
)( ���!"

(�""
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2
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2
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t
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��


�
� f

t

n
n

n
o

f ,

in which the imperfection parameters are equal to ! = 0.430 for HSG glass, ! = 0.329 for TTG 

glass and 0�o� for both curves, according to [6]. The parameter (t has the following form in 

formulae (2.3) and (2.4):

(2.5)
tu,y

I
Q

I
Q

fW
M

M
M

	
��

el

t( ,

where I
QM – extreme bending moment determined according to the 1st order theory, the remaining 

denotations used in (2.3) and (2.4) are identical to those assumed in chapter 1. The ultimate bearing 

capacity condition for columns subjected to eccentric compression is thus expressed by the 

following formula:
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may be linearized to the following form:
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a)                                                           b)

Fig. 5. Interaction curves in the dimensionless coordinates: a) (N/Nel – M/Mel), b) (N/�t	Nel – M/Mel).

Source: K. Langosch [6]

The denotation �t = �t ((t = 0) has been assumed in the formulae (2.6) and (2.7), i.e. it is a buckling 

coefficient for a compressed column according to (2.3). The graphs of interaction curves according 

to (2.6) and [6] for selected relative slendernesses are depicted in Fig. 5. Fig. 5/a depicts the 

solution in (N/Nel – M/Mel) coordinates, while Fig. 5/b depicts the solution in (N/�t	Nel – M/Mel)

coordinates.

3. SUMMARY

The bearing capacity formulae juxtaposed in this paper according to the pre-code [2] for monolithic 

or laminated glass bars subjected to compression or bending raise doubts in terms of modeling 

assumptions listed in chapter 1.1, results of research documented in analytical works [3, 5, 7, 9], 
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[10], as well as experimental verification [8]. The bearing capacity of monolithic glass columns has 

been verified experimentally in 2004 in the dissertation of A. Lubile [8]. The later theoretical 

analyses, for instance [6, 7], as well as the pre-code CEN/TC 250 N 1060 [2] refer to the results of 

these experiments. Fig. 3 depicts the scanned results of experiments performed by A. Lubile, as 

cited in [6], and denoted with crosses. The results of these experiments do not justify the application 

of Ayrton-Perry formula according to the formulas (1.11) or (1.14) to interpolate the experimental 

results. In addition, the analysis of curves (1.11) indicates, that the bearing capacity of glass 

columns does not depend on the glass type, as the differences between the bearing capacity curves 

obtained for HSG and TTG glass are negligible. According to the author of this paper, this is the 

result of incorrectly assumed model of the structure used to analyze buckling of glass columns. The 

Ayrton-Perry curves yield correct results for structures made of elastic-plastic material, like steel 

exhibiting clear yield limit. The continuous curve according to (1.11) or (1.14) with inflection point 

for average slendernesses correctly describes the bearing capacity of steel columns, but for glass

ones loses cognitive value. The linear elastic material model depicted in Fig. 1 is appropriate for 

glass structures. The glass is a linearly elastic material until brittle failure. It does not exhibit plastic 

behavior and thus local stress concentrations may not be relieved by redistribution of internal 

forces, as is the case in case of steels exhibiting definite yield limit. The bearing capacity of 

columns made of such material is quite well explained by the buckling theorem due to Euler. The 

dimensionless Euler curve depicted in Fig. 3 does not depend on the glass type and is expressed by 

the following formula:

(3.1)  , 
2perf

1

�
� � where relative slenderness:

crN
fA tu, 

	
�� .

An analysis of the experimental results by A. Lubile [8], indicated with crosses in Fig. 3 shows, that 

the theoretical curve according to (3.1) yields values slightly overestimated with respect to the 

experiment. The glass structures in bearing capacity and stability limit states are characterized by 

large deformations, which in turn affect the results of statical and strength analyses. Thus when 

formulating the Euler problem for glass columns, one should account for the exact curvature of bar 

axis and solve the problem using appropriate computer programs. At the level of engineering 

analyses, with small modeling errors, one may alternatively use the simple solutions of reliability 

theory. In particular when dimensioning glass columns by the method of load and bearing capacity 

according to code PN-EN 1990, one should reduce the critical force of flexural buckling Ncr
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applying the modeling error coefficient �Rd, i.e. in order to obtain satisfactory agreement between 

experimental results depicted in Fig. 3 and the theory one may modify the slenderness formula (3.1)

to take the following shape:

(3.2) tRd
Rd

tu,

/
 ��

�
� 	�

	
�

crN
fA

,

The buckling coefficient according to (3.1) may then be expressed as:

(3.3)    
2

t�
�

�
�� ��

2
t

Rd
t

/1
.

The modeling error coefficient �Rd in formula (3.3) may be determined by matching the values of 

function (3.3) and function (1.14) for the relative slenderness 0,1�t� , this approach yields the 

value �Rd = 1.242. Fig. 6 depicts the buckling curves of glass columns according to the 

recommendations of pre-code [2] and formula (3.3) for � = 1/1.242 = 0.805.

Fig. 6. Buckling curves for glass columns according to (1.14) and formula (3.3)

A proposal to derive the formula for eccentric compression from the model of compressed bar 

with initial imperfection compounded by deflection due to bending according to the formulae (2.1) 

and (2.2) is as controversial as formulae in the case of compressed glass columns. The convex 

interaction curves M-N depicted in Fig. 5, appropriate for bars made of materials exhibiting elastic-

plastic behavior, and not for glass structures are a result of such modeling. For glass structures, due 
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to large deflections, the stiffening principle should be renounced. The solution of such problem 

yields concave (not convex) interaction boundaries, which in engineering calculations may be 

simplified to the following:

(3.4)   ,1
el

I
Q

elt

�
��


�
��
�

�
	 M

M
N

N
)

�

where the buckling coefficient is assumed according to (3.4), and exponent ) � 1 may be 

determined by model experiments. One should note, that the empirical basis necessary to verify the 

bearing capacity models for columns made of monolithic and laminated glass is insufficient and 

should be expanded or complemented by in-depth numerical modeling.
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FORMUŁY NOŚNOŚCI WYBOCZENIOWEJ ELEMENTÓW KONSTRUKCJI  SZKLANYCH

Słowa kluczowe: szkło, nośność, wytrzymałość, wyboczenie sprężyste, zwichrzenie 

STRESZCZENIE. Rozwój nowoczesnego budownictwa i związane z tym poszukiwanie nowych rozwiązań w 

zakresie estetyki i funkcjonalności budynków reprezentacyjnych w centrach dużych miast, stało się przyczyną 

zainteresowania szkłem. Atrakcyjność szkła jako materiału budowlanego wynika z faktu, że łączy ono w sobie 

przeźroczystość i estetyczny wygląd z innymi cechami użytkowymi. Jego zastosowanie nadaje nowoczesny wygląd 

elewacjom budynków i polepsza komfort przebywania w pomieszczeniach, nie ograniczając przy tym naturalnego 

oświetlenia dziennego, Wdrożenie nowej, wysokowydajnej technologii produkcji szkła płaskiego float, w powiązaniu z 

rosnącymi wymaganiami budownictwa, dotyczącymi nowych funkcji szkła, doprowadziło do znacznego rozwoju teorii 

konstrukcji szklanych, por. prace [1, 3, 4, 5, 9, 10]. Wieloletnie badania naukowe prowadzone w krajach Unii 

Europejskiej zostały zwieńczone opracowanym dokumentem CEN/TC 250 N 1050 [2], zredagowanym w ramach prac

Europejskiego Komitetu Normalizacyjnego nad drugą edycją Eurokodów. W wydaniu tym zaproponowano poszerzenie 

pierwszej edycji między innymi o rekomendacje w/z projektowania konstrukcji szklanych, a w szczególności o 

nowoczesne procedury w zakresie obliczania konstrukcji budowlanych szklanych. W Polsce zaproponowane w pre-

normie [2] procedury nie są powszechnie znane, a ich implementacja do norm projektowania wymaga przeprowadzenia 

weryfikacji krajowej, co podejmuje niniejsza praca.
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