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Abstract
The paper presents an algorithm for determining parameters of single sinusoidal components contained
in the analyzed digital signal with the use of a small number of mathematical operations. The proposed
algorithm can be applied, among others, in measuring devices to monitor basic parameters of electric energy
quality as well as in devices used to determine the phasor in the power system. The proposed simplification of
the algorithm for determining the sinusoidal components of the analyzed signal allows to use it in embedded
devices with low computing power, which translates into lower cost of construction of devices of this type,
while maintaining full functionality of the measuring system. The article contains a mathematical argument,
which leads to the proposed algorithm, then the optimization of the number of performed mathematical
operations is presented. The last part of the paper includes information about performed mathematical
operations and presents exemplary times of execution of the algorithm for simple embedded devices.
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1. Introduction

Analysis of digital measurement signals based on the estimation of parameters of its sinu-
soidal components is a very extensive subject. In measurement and monitoring systems, Fourier
transform implementations have been used for many years to determine the parameters of the
estimated components. This field, among other aspects, includes analyses aimed at estimating
a single sinusoidal component with the highest possible accuracy and short calculation time.

In recent years, the rapidly growing market for inverter systems for the production of electricity
from renewable energy sources has made the estimation of voltage and current phasors in the
grid increasingly important. Some modifications of the Fourier transforms can also be used in
this application area [1–4]. Modifications of Prony’s method also bring good results [5–8].

Methods of estimating the parameters of single sinusoidal components in the time domain
constitute a separate class of methods. The methods are the three- and four-point estimators
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proposed by Vizireanu [9, 10]. Works concerning these methods and their modifications were
also conducted by Sienkowski et al., and published in [11, 12]. Works concerning related iteration
methods are being carried out as well [13].

The proposition of the method presented in the article is to a certain extent based on the
considerations presented in papers concerning four-point methods [9].

This article presents an optimized method for determining the parameters of single sinusoidal
components of the analyzed digital signal to be used it in simple systems to analyze and monitor
the parameters of signals from various sources.

The priority when working on the proposed solution was to obtain the simplest possible
method with a low number of computational operations, using basic mathematical operations on
real data types, while maintaining high accuracy of estimation of parameters of single components
of the signal. The article deliberately does not present an advanced analysis of the accuracy of
estimation of parameters and the examples of using this method in specific applications. This is
quite an extensive subject, which will be addressed in further publications.

The article consists of four sections. Section 1 provides the introduction to the article. Section 2
includes the proposed method and modifications leading to the simplification of calculations.
Section 3 presents the results of analyses of the contribution of particular mathematical operations
to the method and the results of measurements of the time of algorithm execution in real embedded
systems. Section 3 also contains very basic (illustrative) measurements of the method accuracy
for the sample signals. Section 4 is the summary of the article.

2. Description of the proposed method

The proposed method consists of two main stages. The amplitudes are determined in the first
stage and frequencies and initial phases of single sinusoidal components of the analysed digital
signal are determined in the second stage.

2.1. Determination of amplitudes

In the first stage of calculations, in the proposed method based on samples x1, . . . , x4 of
the analyzed signal, the equations modelling the analyzed signal with the use of a sinusoid are
formed:

x1 = A · sin (ω · t1 + ϕ) , x2 = A · sin (ω · t2 + ϕ) ,
x3 = A · sin (ω · t3 + ϕ) , x4 = A · sin (ω · t4 + ϕ) ,

(1)

where:ω – pulsation, A – estimated amplitude, t1, . . . , t4 – sampling time for 1 . . . 4 of the sample
to be analysed. For x1 and x2 after simple transformations, we can write down:

ω · t1 + ϕ = arcsin
( x1

A

)
, (2)

ω · t2 + ϕ = arcsin
( x2

A

)
. (3)

Subtracting equations (3) and (2) by sides and substituting: ∆t = t2 − t1, we get:

ω · ∆t = arcsin
( x2

A

)
− arcsin

( x1

A

)
(4)
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and, analogously, for samples x3 and x4 we define ∆t = t4 − t3 and get:

ω · ∆t = arcsin
( x4

A

)
− arcsin

( x3

A

)
. (5)

Substituting equation (4) for (5) we can write down:

arcsin
( x2

A

)
− arcsin

( x1

A

)
= arcsin

( x4

A

)
− arcsin

( x3

A

)
. (6)

This is an equation with one unknown which, after the transformation, can be used to determine
the amplitude of a single sinusoidal component to be searched for. For transformations, a program
enabling automated transformations of equations was used. Substituting the following: x1 = a,
x2 = b, x3 = c, x4 = d and by entering the following commands into the program workbook:

Given
asin(b/A) – asin(a/A) = asin(d/A) – asin(c/A)
Find(A) –>

a solution has been obtained which in its general form can be presented in the form of a depen-
dency:

A = −2
√

m1 · m2

m1
(7)

where:

m1 = a4 + b4 + c4 + d4 − 2
(
a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

)
+ 8abcd (8)

and:

m2 = a3bcd + ab3cd + abc3d + abcd3 −
(
a2b2c2 + a2b2d2 + a2c2d2 + b2c2d2

)
. (9)

In the form of a code in Matlab language equations (7), (8), (9) can be written as follows:

m1 = – 2*d^2*b^2 + b^4 – 2*c^2*b^2 + c^4 + a^4 – 2*d^2*a^2 + 8*c*d*a*b
– 2*a^2*b^2 – 2*c^2*a^2 + d^4 – 2*c^2*d^2;

m2 = – ^2*b^2*c^2 + c*a^3*b*d – c^2*d^2*a^2 + c^3*a*b*d – d^2*b^2*a^2
+ c*a*b^3*d – a^2*b^2*c^2 + c*d^3*a*b;

A = – 2*sqrt(m1*m2)/m1.

The next step is to optimize the number of mathematical operations at the expense of the
memory size needed to store intermediate results. By grouping similar operations and storing
them in temporary variables, we get:

a2 = a*a; b2 = b*b; c2 = c*c; d2 = d*d;
a3 = a2*a; b3 = b2*b; c3 = c2*c; d3 = d2*d;
a4 = a3*a; b4 = b3*b; c4 = c3*c; d4 = d3*d;
ad = a*d; bc = b*c; abcd = ad*bc;
c2d2 = c2*d2; b2c2d2 = b2*c2d2;
c2_d2 = c2 + d2; b2_c2_d2 = b2 + c2_d2;
b2c2_d2 = b2*c2_d2; a2b2_c2_d2 = a2*b2_c2_d2;
b3c = b3*c; c3b = c3*b; d3a = d3*a; a3d = a3*d;
m1 = a4 + b4 + c4 + d4 – 2*(a2b2_c2_d2 + b2c2_d2 + c2d2) + 8*abcd;
m2 = ad*(b3c + c3b) + bc*(a3d + d3a) – a2*(b2c2_d2 + c2d2) – b2c2d2;
A = – 2*sqrt(m1*m2)/m1.
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To sum up, for the calculation of the first stage of the proposed method, the following operations
are required after optimization: 30 multiplications, 15 additions/subtractions, 1 division, and
additionally 1 root extraction. Importantly, all the operations are performed on real data types.

It is worth noting that for the case where a = 0, the calculations are simplified considerably. It
can be used in some applications of the method, for example in devices with hardware detection
of the passage of the analyzed signal through zero.

If a = 0 then:
m1 = b4 + c4 + d4 − 2

(
b2c2 + b2d2 + c2d2

)
(10)

and:
m2 = −b2c2d2 (11)

and then:

m1 = b4 + c4 + d4 – 2*(b2c2_d2 + c2d2);
m2 = – b2c2d2;
A = – 2*sqrt(m1*m2)/m1.

For this case (a = 0) for the calculation of the first stage of the proposed method, the
following operations are required after optimization: 15 multiplications, 5 additions 1 division,
and additionally 1 root extraction.

2.2. Determination of frequencies and initial phases

With the amplitude determined in point 2.1, it is possible to determine the missing parameters
of frequency and initial phase of the component being searched for. Subtracting equations (3)
and (2) manually after simple transformations, assuming that the sampling period of the signal is
Ts = t2 − t1 and ω = 2π f dependence on the frequency of the component being searched will be
expressed by the following formula:

f =
arcsin (x2/A) − arcsin (x1/A)

2πTs
(12)

and the initial phase is determined from the dependence (2) where after the transformations we
obtain:

ϕ = arcsin
( x1

A

)
− 2 · π · f · t1 . (13)

In the form of a code in Matlab after simplifying equation (12) and (13), substituting for:
x1 = a, x2 = b we can write down:

k1 = asin(a/A);
k2 = asin(b/A);
dk = k2 – k1;
pi2 = 2*pi; %constant
pi2Ts = pi2*Ts; %constant
f = dk/pi2Ts;
fi = k1 – pi2*f*t1;

To sum up, for the calculation of the second stage of the proposed method, the following
operations are required after optimisation: 2 multiplications, 2 additions/subtractions, 3 divisions,
and 2 additional arcus sinus operations. In this case also all operations are performed on real data
types.

468



Metrol. Meas. Syst.,Vol. 27 (2020), No. 3, pp. 465–472
DOI: 10.24425/mms.2020.132782

2.3. Summary of the number of operations

A summary of operations required by the method is given in Table 1 and Fig. 1. Clearly
for both the full method and the reduced method (a = 0) multiplying and adding operations
dominate. In total, these operations constitute 87% for the full version of the method and 78% for
the reduced version of the method respectively.

Table 1. A summary of the number of operations of the method (on the left: full method, on the right: reduced method:
a = 0).

Operation
Number of
operations

I stage

Number of
operations

II stage
Operations

in total Operation
Number of
operations

I stage (a = 0)

Number of
operations

II stage
Operations

in total

* 30 2 32 * 15 2 17

+ 15 2 17 + 5 2 7

/ 1 3 4 / 1 3 4
√ 1 0 1 √ 1 0 1

arcsin 0 2 2 arcsin 0 2 2

total: 47 9 56 total: 22 9 31

Fig. 1. Comparison of the number of individual mathematical operations in the proposed method (on the
left: full method, on the right: reduced method: a = 0).

3. Method implementation and measurements

3.1. Analysis of computation times

The presented method has been implemented in four microprocessors of different architecture:
from simple RISC systems through ARM systems to specialized DSP signal processors. These
were the following systems:

1. 16-Bit RISC on the example of the system: MSP430G2553 (clock: 16 MHz) [14],
2. ARM Cortex M0 (32-bit), on the example: Nu-LB-NUC140 (clock: 50 MHz) [15],
3. ARM Cortex-M4F (32-bit), on the example: LM4F120H5QR (clock: 80 MHz) [16],
4. DSP Texas Instruments (32-bit), system: TMS320C28027 (clock: 60 MHz) [17].
The method was implemented in C language and calculations in all systems were performed

on double data (8 bytes). The summary of the calculation times of the full and simplified versions
of the method is presented in Table 2.

Figure 2 shows the percentage proportions of execution times of particular types of instructions
for an exemplary processor with ARM Cortex M0 architecture.
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Table 2. Comparison of computation times for different processor systems (on the left: full method, on the right: reduced
method: a = 0).

Processor Clock Computation Processor Clock Computation
[MHz] time [µs] [MHz] time [µs]

16-Bit RISC 16 2945.6 16-Bit RISC 16 1993.3

ARM Cortex M0 50 266.0 ARM Cortex M0 50 180.0

ARM Cortex M4F 80 169.7 ARM Cortex M4F 80 114.9

DSP Texas Instr. 60 217.3 DSP Texas Instr. 60 147.1

Fig. 2. Comparison of execution times of individual instructions in proposed method (computed for ARM Cortex M0).

Hardware implementations of the method allow to determine the total time share of individual
mathematical operations. It is still clearly visible that for both the full method and the reduced
method (a = 0) additions and multiplications dominate. However, their percentage share is
decreasing. This results from the fact that hardware multipliers and summators, which significantly
accelerate basic mathematical operations, appear in the analyzed processor systems. Together,
the multiplication and addition operations represent 66% for the full version of the method and
49% for the reduced version of the method, respectively.

3.2. Basic analysis of method estimation accuracy

Figure 3 below presents examples of basic characteristics for the accuracy of estimation
of amplitude and frequency parameters for the presented method. These characteristics were
determined for a simulated signal (with a frequency f = 50 Hz, with a sampling frequency of

Fig. 3. Accuracy of estimation of amplitude and frequency parameters for the proposed method for sample signals.
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fs = 1800 Hz and a random initial phase). White noise with variable SNR (Signal to Noise Ratio)
was added to the simulated signal. The tests were carried out 1,000,000 times for a given SNR
level and the characteristics show the statistical distribution of measurements. A more detailed
analysis should be made after determining the specific application of the method and with the
purpose to determine the parameters for the design of the initial filter at the input of the method.

4. Conclusions

The method presented in the article can be used in a wide range of embedded measuring
devices for estimation of parameters of single sinusoidal components of a signal. The performed
optimization of the number of mathematical operations of the method allows to obtain short
calculation times of the algorithm.

Thanks to the small number of mathematical operations, the proposed solution can be used
in devices with a low computing power, without compromising the accuracy of calculations of
the estimated components.

Using only 4 samples of the analysed signal in the method translates into very short time
windows of the analysis, which allows for correct determination of estimated parameters for
fast-changing signals with a slight delay. It is of great practical importance in many areas of
application (e.g.: protection systems against exceeding specific parameters of the monitored
object). On the other hand, with such a small number of samples being processed, it is very
important to prepare the analyzed signal before the process of component estimation. In many
applications it is necessary to use a band-pass filter [18]. Selection of this filter for a specific
implementation of an algorithm for real signal analysis will be the subject of further research.
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