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1. Introduction

Teletraffic modelling is an inseparable part of the informa-
tion and communication technology infrastructure. Whatever
changes new networking technologies may bring, the essential
task of teletraffic models is to determine and evaluate the main
quality of service (QoS) parameters such as call blocking prob-
abilities (CBP) and network resources utilization. This task is
complex in contemporary networks, not only due to the growth
of network traffic, but also due to the high diversity of traffic
streams [1]. The latter requires the development of call/packet-
level loss/queueing models based on the input traffic stream
(e.g., [2–7]). Such models assist in network optimization and
dimensioning procedures and can also be used as an input to
computational intelligent techniques such as fuzzy analytical
hierarchy process techniques (e.g., [8, 9]). In this paper, we con-
centrate on call-level teletraffic loss models.

The simplest call arrival process, adopted in teletraffic mod-
elling, is the Poisson process since it leads to analytically
tractable formulas for the determination of the various perfor-
mance measures (e.g., CBP). In the Poisson process, calls orig-
inate from an infinite number of traffic sources. Thus, the Pois-
son process cannot capture the case of calls generated via a fi-
nite number of sources. The latter can be described by the quasi-
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random arrival process which is smoother than the Poisson pro-
cess. For possible applications of the quasi-random process in
loss systems, an interested reader may resort to [10–15].

We consider the case of quasi-random traffic and study the
downlink of an orthogonal frequency division multiplexing
(OFDM) based cell that accommodates calls from different
service-classes with different QoS requirements. The spring-
board for the analysis of this system are models from [16–19],
in which the Poisson call arrival is considered. More specif-
ically, in [16], Paik and Suh (P-S) consider the downlink of
an OFDM-based cell that accommodates Poisson arriving calls
generated by multiservice classes. The system is described via
a multirate loss model, i.e., new calls are blocked and lost if
their required resources are not available. This implies that the
resource sharing policy used in the P-S model is the classical
complete sharing (CS) policy. It is characterized as complete,
since the only restriction in call admission is the “complete”
system capacity.

Contrary to [17] and [18], where the acceptance of a new call
in the cell depends only on the availability of subcarriers, in the
P-S model both the subcarriers and power are modelled as sys-
tem resources and participate in call admission. The P-S model
is noteworthy since power is a limited resource in OFDM wire-
less networks and should be taken into account in call admis-
sion. In addition, the steady-state probabilities in the P-S model
are described using a product form solution (PFS). The latter
is important in teletraffic modelling, because it usually results
in computationally efficient formulas for the determination of
performance measures. However, the calculation of CBP and
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resource utilization in the P-S model is based on highly com-
plexed formulas which are not attractive for network planning
and dimensioning procedures. To solve this problem, a recur-
sive formula is proposed in [19] for determining the occupancy
distribution. This formula substantially reduces the complexity
of the calculations of the P-S model.

In this paper, firstly we extend the models of [16, 19] by
incorporating the bandwidth reservation (BR) policy (P-S/BR
model). The BR policy allows the reservation of subcarriers in
order to favor calls with high subcarrier requirements. In that
sense, and contrary to the CS policy which is unfavorable to
service-classes of high subcarrier requirements, the BR policy
can provide a certain QoS to calls of certain service-classes
[20–24]. Due to the existence of the BR policy, the steady-
state probabilities in the P-S/BR model do not have a PFS.
However, we show that recursive formulas do exist for the de-
termination of the main performance measures. Secondly, we
extend the P-S model by examining the quasi-random call ar-
rival process. We name the proposed model quasi-random P-S
model (qr-P-S model). Thirdly, we show that the steady-state
probabilities in the proposed qr-P-S model can be analytically
described via a PFS. Fourthly, we propose recursive formulas
for the determination of time congestion (TC) and call conges-
tion (CC) probabilities as well as resource utilization, which
are attractive for network planning and dimensioning proce-
dures. TC probabilities for calls of a particular service-class
can be determined by the proportion of time during which the
system has no available resources for this service-class. CC
probabilities for calls of a particular service-class can be de-
termined by the proportion of arriving calls that find no avail-
able resources in the system. Note that TC and CC proba-
bilities coincide in the case of the Poisson process. Finally,
we further extend the qr-P-S model by considering the BR
policy (qr-P-S/BR model). Due to the BR policy, the steady-
state probabilities in the qr-P-S/BR model do not have a PFS.
However, we show that recursive formulas do exist for the
determination of performance measures. The accuracy of the
proposed formulas in all models (P-S/BR, qr-P-S and qr-P-
S/BR) is verified via simulation and found to be quite satis-
factory.

This paper is organized as follows. In Section 2, we review
the P-S model and present the formulas for the CBP determi-
nation and resource utilization. In Section 3, we propose the
P-S/BR model and the corresponding recursive formulas. In
Section 4, we propose the qr-P-S model, show the PFS and
present recursive formulas for the determination of the various
performance measures. In Section 5, we propose the qr-P-S/BR
model. In Section 6, we compare the analytical with simula-
tion results for the P-S, the P-S/BR and the qr-P-S models. The
comparison verifies the accuracy of the proposed formulas. We
conclude in Section 7.

2. Review of the P-S loss model

To describe the P-S model, consider the downlink of an OFDM-
based cell that has M subcarriers and let R, P and B be the av-

erage data rate per subcarrier, the available power in the cell
and the system’s bandwidth, respectively. We assume that the
entire range of channel gains or signal to noise ratios per unit
power is partitioned into K consecutive and non-overlapping in-
tervals and denote as γk, k = 1, . . . ,K the average channel gain
of the kth interval. By further assuming L subcarrier require-
ments and K average channel gains, the cell accommodates KL
service-classes. A new call of service-class (k, l) (k = 1, . . . ,K
and l = 1, . . . ,L) requires bl subcarriers in order to be accepted
in the cell. This means that each call has a data rate require-
ment blR. In addition, it has an average channel gain γk. If these
subcarriers are not available, then call blocking occurs. Other-
wise, the call remains in the cell for a generally distributed ser-
vice time with mean µ−1. To calculate the power pk required
to achieve the data rate R of a subcarrier assigned to a call
whose average channel gain is γk, we use the Shannon theorem:
R = (B/M) log2(1+ γk pk).

Assuming that service-class (k, l) calls follow a Poisson pro-
cess with rate λkl and that nkl is the number of in-service calls of
service-class (k, l), then the system can be described as a multi-
rate loss model whose steady-state probabilities π(n) have the
following PFS [16]

π(n) = G−1

(
K

∏
k=1

L

∏
l=1

ankl
kl

/
nkl!

)
, (1)

where n = (n11, . . . , nk1, . . . , nK1, . . . , n1L, . . . , nkL, . . . , nKL),

G is the normalization constant, G= ∑
n∈ΩΩΩ

(
K

∏
k=1

L

∏
l=1

pnkl
kl

/
nkl!

)
,

ΩΩΩ is the state space of the system denoted as

ΩΩΩ =

{
n : 0 ≤

K

∑
k=1

L

∑
l=1

nklbl ≤ M, 0 ≤
K

∑
k=1

L

∑
l=1

pknklbl ≤ P

}

and akl = λkl/µ is the offered traffic-load (in Erlang) of service-
class (k, l) calls.

To derive (1), it is required that the available power in the
cell, P, and the power pk are integers. This is achieved by mul-
tiplying both P and pk by a constant so as to have an equivalent

representation of
K

∑
k=1

L

∑
l=1

p′knklbl ≤ P′ where P′ and p′k are inte-

gers. Thus, without loss of generality, it is assumed that P and
pk are integers.

According to [16], all performance metrics are based on the
calculation of all π(n) using (1). As an example, the CBP
B(k, l) of service-class (k, l) calls is determined via

B(k, l) = 1−G(P− pkbl ,M−bl)
/

G(ΩΩΩ). (2)

However, since the cardinality of ΩΩΩ grows as (MP)KL, the ap-
plicability of (1) (and consequently of (2)) is limited to systems
of moderate size and therefore is not recommended for network
planning and dimensioning.

In [16], Paik and Suh propose the algorithms from [25] and
[26] for the determination of G(P− pkbl ,M − bl) (and conse-
quently for the CBP calculation of B(k, l)) without providing
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explicit details. The algorithms of [25] and [26] are proposed in
the literature for the CBP determination in circuit-switched net-
works (see e.g., [27, 28]). The algorithms from [25] are based
on z-transforms and mean-value analysis. On the other hand,
the algorithm from [26] is based on numerical inversion of
generating functions which is a quite complex approach (see
e.g., [29, 30]). Both algorithms: i) are applied to loss models
whose steady-state probabilities have a PFS and ii) are less gen-
eral than the Kaufman-Roberts (K-R) recursive formula ([31,
32]). The latter provides an efficient way for the CBP determi-
nation in a multirate loss system that accommodates Poisson
traffic. Due to the effectiveness of the K-R formula, there is
an extensive list of applications in PFS and non-PFS models
(e.g., [33–40]).

To circumvent the complexity problem of (1), a recursive
yet efficient formula that resembles the K-R formula is pro-
posed in [19]. To present this formula, the following notation is

necessary: j1 =
K

∑
k=1

L

∑
l=1

nklbl denotes the occupied subcarriers,

i.e., j1 = 0, . . . ,M and j2 =
K

∑
k=1

L

∑
l=1

pknklbl denote the occupied

power in the cell, i.e., j2 = 0, . . . ,P. Also, let q(�j) = q( j1, j2)
be occupancy distribution, given by

q(�j) = q( j1, j2) = ∑
n∈ΩΩΩ�j

π(n), (3)

where ΩΩΩ�j is the set of states in which the occupied subcarriers
and the occupied power in the cell is j1 and j2, respectively.

The determination of all q( j1, j2) is based on the following
recursive formula [19]

q( j1, j2) =




1, for j1 = j2 = 0

1
j1

K

∑
k=1

L

∑
l=1

aklblq( j1−bl , j2−pkbl)

for j1 = 1, . . . ,M and j2 = 1, . . . ,P

. (4)

The recursive form of (4) and its lower computational com-
plexity, in the order of O(MPKL), makes (4) attractive for net-
work planning and dimensioning.

Having obtained the unnormalized values of q( j1, j2), we
calculate the CBP B(k, l) of service-class (k, l) using

B(k, l) = ∑
{( j1+bl>M)∪( j2+pkbl>P)}

G−1q( j1, j2), (5)

and the mean number of in-service calls of service-class (k, l),
E(k, l) using

E(k, l) = akl (1−B(k, l)) , (6)

where G is the normalization constant, determined via the for-

mula G =
M

∑
j1=0

P

∑
j2=0

q( j1, j2).

Having determined the values of E(k, l), we can also calcu-
late the entire system blocking probability (BP), the subcarrier

utilization (SU) and the power utilization (PU), using the for-
mulas

BP =
K

∑
k=1

L

∑
l=1

B(k, l)λk,l
/

Λ, Λ =
K

∑
k=1

L

∑
l=1

λk,l , (7)

SU =
K

∑
k=1

L

∑
l=1

E(k, l)bl
/

M , (8)

PU =
K

∑
k=1

L

∑
l=1

pkE(k, l)bl
/

P. (9)

3. The proposed P-S/BR loss model

In the BR policy, a new service-class (k, l) call requests bl sub-
carriers and has a reservation parameter tl similar to the MFCR
policy. The call admission mechanism in the proposed P-S/BR
model is as follows: a) if (M− j1 − tl ≥ bl)∩ ( j2 + pkbl ≤ P)
then the call is accepted in the cell, b) if (M− j1 − tl < bl)∪
( j2 + pkbl > P) then the call is blocked and lost.

The steady-state probabilities in the P-S/BR model do not
have a PFS, since the BR policy destroys local balance (LB)
between the adjacent states n−

kl and n, where n−
kl = (n11, . . . ,nk1,

. . . ,nK1, . . . ,n1l , . . . ,nkl −1, . . . ,nKl ,n1L, . . ., nkL, . . . ,nKL).
However, based on Section 2, it can be proved that the un-

normalized values of all q( j1, j2) are given by

q( j1, j2) =




1, for j1 = j2 = 0

1
j1

K

∑
k=1

L

∑
l=1

akl( j1 −bl)blq( j1−bl , j2−pkbl)

for j1 = 1, . . . ,M and j2 = 1, . . . ,P

, (10)

where akl( j1 −bl) = akl , for j1 ≤ M− tl .
Having obtained q( j1, j2) we calculate B(k, l) via

B(k, l) = ∑
{( j1+bl+tl>M)∪( j2+pkbl>P}

G−1q( j1, j2), (11)

while the values of E(k, l), BP, SU and PU can be determined
via (6), (7), (8) and (9), respectively.

4. The proposed qr-P-S loss model

Consider again the downlink of an OFDM-based cell that ac-
commodates calls from KL different service-classes. New calls
of service-class (k, l) come from a finite source population
Nk,l . The mean arrival rate of service-class (k, l) idle sources
is λkl,fin = (Nkl −nkl)vkl , where nkl is the number of in-service
calls of service-class (k, l) and vkl is the arrival rate per idle
source. Based on the above, the offered traffic-load per idle
source of service-class (k, l) is determined by akl,idle = vkl/µ
(in Erlang). If Nkl → ∞ for all service-classes and the total of-
fered traffic-load is constant, then we have the Poisson process.
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In the BR policy, a new service-class (k, l) call requests bl sub-
carriers and has a reservation parameter tl similar to the MFCR
policy. The call admission mechanism in the proposed P-S/BR
model is as follows: a) if (M− j1 − tl ≥ bl)∩ ( j2 + pkbl ≤ P)
then the call is accepted in the cell, b) if (M− j1 − tl < bl)∪
( j2 + pkbl > P) then the call is blocked and lost.

The steady-state probabilities in the P-S/BR model do not
have a PFS, since the BR policy destroys local balance (LB)
between the adjacent states n−

kl and n, where n−
kl = (n11, . . . ,nk1,

. . . ,nK1, . . . ,n1l , . . . ,nkl −1, . . . ,nKl ,n1L, . . ., nkL, . . . ,nKL).
However, based on Section 2, it can be proved that the un-

normalized values of all q( j1, j2) are given by

q( j1, j2) =




1, for j1 = j2 = 0

1
j1

K

∑
k=1

L

∑
l=1

akl( j1 −bl)blq( j1−bl , j2−pkbl)

for j1 = 1, . . . ,M and j2 = 1, . . . ,P

, (10)

where akl( j1 −bl) = akl , for j1 ≤ M− tl .
Having obtained q( j1, j2) we calculate B(k, l) via

B(k, l) = ∑
{( j1+bl+tl>M)∪( j2+pkbl>P}

G−1q( j1, j2), (11)

while the values of E(k, l), BP, SU and PU can be determined
via (6), (7), (8) and (9), respectively.

4. The proposed qr-P-S loss model

Consider again the downlink of an OFDM-based cell that ac-
commodates calls from KL different service-classes. New calls
of service-class (k, l) come from a finite source population
Nk,l . The mean arrival rate of service-class (k, l) idle sources
is λkl,fin = (Nkl −nkl)vkl , where nkl is the number of in-service
calls of service-class (k, l) and vkl is the arrival rate per idle
source. Based on the above, the offered traffic-load per idle
source of service-class (k, l) is determined by akl,idle = vkl/µ
(in Erlang). If Nkl → ∞ for all service-classes and the total of-
fered traffic-load is constant, then we have the Poisson process.
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A new call of service-class (k, l) requires bl subcarriers in
order to be accepted in the cell. If these subcarriers are avail-
able then the call remains in the cell for a generally distributed
service time with mean µ−1.

To analyze the qr-P-S model, we show that the steady-state
probability, π(n), has a PFS. Based on the steady-state transi-
tion rates of the proposed model, the global balance equation
(rate in = rate out) for state n is

K

∑
k=1

L

∑
l=1

(Nkl −nkl +1)vklπ(n−
kl)+

+
K

∑
k=1

L

∑
l=1

(nkl +1)µπ(n+
kl) =

=
K

∑
k=1

L

∑
l=1

(Nkl −nkl)vklπ(n)+
K

∑
k=1

L

∑
l=1

nkl µπ(n),

(12)

where

n−
kl =

(
n11, . . . ,nk1, . . . ,nK1, . . . ,n1l , . . . ,nkl−1, . . . ,nKl ,

n1L, . . . ,nkL, . . . ,nKL
)
,

n+
kl =

(
n11, . . . ,nk1, . . . ,nK1, . . . ,n1l , . . . ,nkl+1, . . . ,nKl ,

n1L, . . . ,nkL, . . . ,nKL
)

and π(n), π(n−
kl), π(n+

kl) are the probability distributions of the
corresponding states n, n−

kl , n+
kl , respectively.

Let us assume the existence of LB between adjacent states.
Equations (13) and (14) are the LB equations which exist be-
cause the Markov chain of the proposed model is reversible

(Nkl −nkl +1)vklπ(n−
kl) = nkl µπ(n), (13)

(Nkl −nkl)vklπ(n) = (nkl +1)µπ(n+
kl), (14)

for k = 1, . . . , K, l = 1, . . . , L and n ∈ ΩΩΩ.
Based on the LB assumption, the probability distribution

π(n) has the following PFS

π(n) = G−1

(
K

∏
k=1

L

∏
l=1

(
Nkl

nkl

)
ankl

kl,idle

)
, (15)

where akl,idle = vkl/µ is the offered traffic-load per idle source
of service-class (k, l) and

G = ∑
n∈ΩΩΩ

(
K

∏
k=1

L

∏
l=1

(
Nkl

nkl

)
ankl

kl,idle

)
.

Let qfin(�j) = qfin( j1, j2) be the occupancy distribution in the
proposed model, given by

qfin(�j) = qfin( j1, j2) = ∑
n∈ΩΩΩ�j

π(n). (16)

To prove a recursive formula for the determination of qfin(�j)
we initially sum both sides of (13) over ΩΩΩ�j

Nklakl,idle ∑
n∈ΩΩΩ�j

π(n−
kl)−akl,idle ∑

n∈ΩΩΩ�j

(nkl −1)π(n−
kl)

= ∑
n∈ΩΩΩ�j

nklπ(n),
(17)

We initially examine the left hand side of (17) (whose final form
is given in (20)) and then the right hand side of (17) (whose
final form is given in (21)). The left hand side of (17) can be
written as

Nklakl,idle ∑
n∈ΩΩΩ�j

π(n−
kl)−akl,idle ∑

n∈ΩΩΩ�j

(nkl −1)π(n−
kl)

= Nklakl,idle ∑
n∈ΩΩΩ�j∩{nkl≥1}

π(n−
kl)

−akl,idle ∑
n∈ΩΩΩ�j∩{nkl≥1}

(nkl −1)π(n−
kl),

(18)

Since

ΩΩΩ−→
j ∩{nkl ≥ 1}=

{
n : ∑

m�=k
∑
t �=l

nmtbt +(nkl −1)bl = j1 −bl ,

∑
m�=k

∑
t �=l

pmnmtbt +(nkl −1)bl = j2 − pkbl ,nkl ≥ 1,nmt ≥ 0

}
,

we may write the right hand side of (18) as follows

Nklakl,idle ∑
n∈ΩΩΩ�j∩{nkl≥1}

π(n−
kl)−akl,idle ∑

n∈ΩΩΩ�j∩{nkl≥1}
(nkl−1)π(n−

kl) =

Nklakl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

π(n̂)−akl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

n̂klπ(n̂),
(19)

where

n̂mt =

{
nkl if m �= k and t �= l

nkl −1 if m = k and t = l
.

The term
Nklakl,idle ∑

n̂∈ΩΩΩ( j1−bl , j2−pkbl )

π(n̂)

can be written as Nklakl,idleqfin( j1−bl , j2− pkbl) while the term

akl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

n̂klπ(n̂)

as

akl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

n̂klπ(n̂)
qfin( j1−bl , j2−pkbl)

qfin( j1−bl , j2−pkbl)=

= akl,idleykl,fin( j1 −bl , j2 − pkbl)qfin( j1 −bl , j2 − pkbl)
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where ykl,fin( j1 − bl , j2 − pkbl) is the mean number of service-
class (k, l) calls in state ( j1 −bl , j2 − pkbl).

The right hand side of (19) can now be written as

Nklakl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

π(n̂)−akl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

n̂klπ(n̂) =

= Nklakl,idleqfin( j1−bl , j2−pkbl)+ (20)

+akl,idleykl,fin( j1−bl , j2−pkbl)qfin( j1−bl , j2−pkbl).

The right hand side of (17) is written as

∑
n∈ΩΩΩ�j

nklπ(n) = ∑
n∈ΩΩΩ�j

nkl
π(n)

qfin( j1, j2)
qfin( j1, j2) =

= ykl,fin( j1, j2)qfin( j1, j2).

(21)

By equating (20) and (21) we have

(
Nkl − ykl,fin( j1 −bl , j2 − pkbl)

)

akl,idleqfin( j1 −bl , j2 − pkbl) =

= ykl,fin( j1, j2)qfin( j1, j2).

(22)

Multiplying both sides of (22) by bl and summing over k and l
we have

K

∑
k=1

L

∑
l=1

(
Nkl − ykl,fin( j1 −bl , j2 − pkbl)

)

akl,idleblqfin( j1 −bl , j2 − pkbl) =

= j1qfin( j1, j2).

(23)

The value of ykl,fin( j1 − bl , j2 − pkbl) in (23) is not known.
To determine it, we use the following lemma [41]: two
stochastic systems are equivalent and result in the same
CBP, if they have: a) the same traffic description parameters
(K,L,Nkl ,akl,idle) where k = 1, . . . , K, l = 1, . . . , L and b) ex-
actly the same set of states.

The purpose is therefore to find a new stochastic system,
whereby we can determine the values of ykl,fin( j1−bl , j2−pkbl).
The subcarriers requirements of calls of all service-classes and
the values of M and P in the new stochastic system are chosen
according to the following two criteria: 1) conditions (a) and (b)
are valid and 2) each state �j has a unique occupancy ( j1, j2).

Now, state �j = ( j1, j2) can be reached only via the state
( j1 −bl , j2 − pkbl). Thus, ykl,fin( j1 −bl , j2 − pkbl) = nkl −1.

Based on the above, (23) can be written as

qfin( j1, j2) =




1, for j1= j2=0

1
j1

K

∑
k=1

L

∑
l=1

(Nkl −nkl +1)

akl,idleblqfin( j1 −bl , j2 − pkbl)

for j1=1, . . . ,M and j2=1, . . . ,P

. (24)

Note that if Nkl → ∞ for all service-classes and the total of-
fered traffic-load remains constant, then we have (4) of the P-S
model.

Having obtained the unnormalized values of qfin( j1, j2), we
can calculate the TC probabilities of service-class (k, l) calls,
BTC(k, l), via the formula

BTC(k, l) = ∑
{( j1+bl>M)∪( j2+pkbl>P)}

G−1qfin( j1, j2), (25)

and the CC probabilities of service-class (k, l) calls via (25) but
for a system with Nkl−1 traffic sources.

Also, we determine the average number of in-service calls of
service-class (k, l), Efin(k, l), via the formula

Efin(k, l) =
M

∑
j1=1

P

∑
j2=1

G−1
fin ykl,fin( j1, j2)qfin( j1, j2), (26)

where Gfin is the normalization constant, determined via

Gfin =
M

∑
j1=0

P

∑
j2=0

qfin( j1, j2)

and ykl,fin( j1−bl , j2− pkbl) is the mean number of service-class
(k, l) calls in state ( j1 −bl , j2 − pkbl) calculated via

ykl,fin( j1, j2) =

=
(Nkl−nkl+1)akl,idleqfin( j1−bl , j2−pkbl)

qfin( j1, j2)
.

(27)

Having determined the values of Efin(k, l), we can also cal-
culate the entire system BP based on the TC probabilities of all
service-classes, BPTC, the SUfin and the PUfin, using the for-
mulas

BPTC =
K

∑
k=1

L

∑
l=1

BTC(k, l)Nk,lvk,l

/
Λfin ,

Λfin =
K

∑
k=1

L

∑
l=1

Nk,lvk,l ,

(28)

SUfin =
K

∑
k=1

L

∑
l=1

Efin(k, l)bl

/
M, (29)

PUfin =
K

∑
k=1

L

∑
l=1

pkEfin(k, l)bl

/
P. (30)

In order to determine the values of qfin( j1, j2) according to
(24), it is required to know the values of nkl which are unknown.
These values can be obtained via an equivalent stochastic sys-
tem, with the same traffic parameters and the same set of states
as already described for the proof of (24). However, the state
space determination of the equivalent system becomes complex
due to the large number of service-classes. To this end and con-
trary to (24), which provides the exact values of qfin( j1, j2) at
the cost of state space enumeration and processing, we propose
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where ykl,fin( j1 − bl , j2 − pkbl) is the mean number of service-
class (k, l) calls in state ( j1 −bl , j2 − pkbl).

The right hand side of (19) can now be written as

Nklakl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

π(n̂)−akl,idle ∑
n̂∈ΩΩΩ( j1−bl , j2−pkbl )

n̂klπ(n̂) =

= Nklakl,idleqfin( j1−bl , j2−pkbl)+ (20)

+akl,idleykl,fin( j1−bl , j2−pkbl)qfin( j1−bl , j2−pkbl).

The right hand side of (17) is written as

∑
n∈ΩΩΩ�j

nklπ(n) = ∑
n∈ΩΩΩ�j

nkl
π(n)

qfin( j1, j2)
qfin( j1, j2) =

= ykl,fin( j1, j2)qfin( j1, j2).

(21)

By equating (20) and (21) we have

(
Nkl − ykl,fin( j1 −bl , j2 − pkbl)

)

akl,idleqfin( j1 −bl , j2 − pkbl) =

= ykl,fin( j1, j2)qfin( j1, j2).

(22)

Multiplying both sides of (22) by bl and summing over k and l
we have

K

∑
k=1

L

∑
l=1

(
Nkl − ykl,fin( j1 −bl , j2 − pkbl)

)

akl,idleblqfin( j1 −bl , j2 − pkbl) =

= j1qfin( j1, j2).

(23)

The value of ykl,fin( j1 − bl , j2 − pkbl) in (23) is not known.
To determine it, we use the following lemma [41]: two
stochastic systems are equivalent and result in the same
CBP, if they have: a) the same traffic description parameters
(K,L,Nkl ,akl,idle) where k = 1, . . . , K, l = 1, . . . , L and b) ex-
actly the same set of states.

The purpose is therefore to find a new stochastic system,
whereby we can determine the values of ykl,fin( j1−bl , j2−pkbl).
The subcarriers requirements of calls of all service-classes and
the values of M and P in the new stochastic system are chosen
according to the following two criteria: 1) conditions (a) and (b)
are valid and 2) each state �j has a unique occupancy ( j1, j2).

Now, state �j = ( j1, j2) can be reached only via the state
( j1 −bl , j2 − pkbl). Thus, ykl,fin( j1 −bl , j2 − pkbl) = nkl −1.

Based on the above, (23) can be written as

qfin( j1, j2) =




1, for j1= j2=0

1
j1

K

∑
k=1

L

∑
l=1

(Nkl −nkl +1)

akl,idleblqfin( j1 −bl , j2 − pkbl)

for j1=1, . . . ,M and j2=1, . . . ,P

. (24)

Note that if Nkl → ∞ for all service-classes and the total of-
fered traffic-load remains constant, then we have (4) of the P-S
model.

Having obtained the unnormalized values of qfin( j1, j2), we
can calculate the TC probabilities of service-class (k, l) calls,
BTC(k, l), via the formula

BTC(k, l) = ∑
{( j1+bl>M)∪( j2+pkbl>P)}

G−1qfin( j1, j2), (25)

and the CC probabilities of service-class (k, l) calls via (25) but
for a system with Nkl−1 traffic sources.

Also, we determine the average number of in-service calls of
service-class (k, l), Efin(k, l), via the formula

Efin(k, l) =
M

∑
j1=1

P

∑
j2=1

G−1
fin ykl,fin( j1, j2)qfin( j1, j2), (26)

where Gfin is the normalization constant, determined via

Gfin =
M

∑
j1=0

P

∑
j2=0

qfin( j1, j2)

and ykl,fin( j1−bl , j2− pkbl) is the mean number of service-class
(k, l) calls in state ( j1 −bl , j2 − pkbl) calculated via

ykl,fin( j1, j2) =

=
(Nkl−nkl+1)akl,idleqfin( j1−bl , j2−pkbl)

qfin( j1, j2)
.

(27)

Having determined the values of Efin(k, l), we can also cal-
culate the entire system BP based on the TC probabilities of all
service-classes, BPTC, the SUfin and the PUfin, using the for-
mulas

BPTC =
K

∑
k=1

L

∑
l=1

BTC(k, l)Nk,lvk,l

/
Λfin ,

Λfin =
K

∑
k=1

L

∑
l=1

Nk,lvk,l ,

(28)

SUfin =
K

∑
k=1

L

∑
l=1

Efin(k, l)bl

/
M, (29)

PUfin =
K

∑
k=1

L

∑
l=1

pkEfin(k, l)bl

/
P. (30)

In order to determine the values of qfin( j1, j2) according to
(24), it is required to know the values of nkl which are unknown.
These values can be obtained via an equivalent stochastic sys-
tem, with the same traffic parameters and the same set of states
as already described for the proof of (24). However, the state
space determination of the equivalent system becomes complex
due to the large number of service-classes. To this end and con-
trary to (24), which provides the exact values of qfin( j1, j2) at
the cost of state space enumeration and processing, we propose
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an algorithm which provides approximate values but is much
simpler and easy to implement:

a) Determine the values of q( j1, j2) according to (4).
b) Determine the values of ykl( j1, j2) via the formula

ykl( j1, j2) = aklq( j1 −bl , j2 − pkbl)/q( j1, j2). (31)

c) Modify (24) to the following recursive formula where the
values of ykl( j1, j2) have been determined via (31),

qfin( j1, j2) =





1, for j1 = j2 = 0

1
j1

K

∑
k=1

L

∑
l=1

(Nkl − ykl( j1 −bl , j2 − pkbl))

akl,idleblqfin( j1 −bl , j2 − pkbl)

for j1=1, . . . ,M and j2=1, . . . ,P

. (32)

d) Determine the average number of in-service calls of
service-class (k, l), Efin(k, l) via (26), where the values of
ykl,fin( j1, j2) are given by

ykl,fin( j1, j2) =

=
(Nkl−ykl( j1−bl , j2−pkbl))akl,idleqfin( j1−bl , j2−pkbl)

qfin( j1, j2)
.

(33)

e) Determine: 1) the TC probabilities of service-class (k, l)
calls, BTC(k, l), via (25), and 2) the BPTC, the SUfin and the
PUfin, via (28), (29) and (30), respectively.

5. The proposed qr-P-S/BR loss model

The call admission mechanism in the proposed qr-P-S/BR
model is the same with that of the P-S/BR model.

The steady-state probabilities in the qr-P-S/BR model do not
have a PFS, since the BR policy destroys LB between the ad-
jacent states n−

kl and n. However, based on Section 3 and the
algorithm proposed for the determination of qfin( j1, j2) in the
qr-P-S model (Section 4), we propose the following algorithm
for the determination of qfin( j1, j2) in the qr-P-S/BR model:

a) Determine q( j1, j2) according to (10).
b) Determine ykl( j1, j2), for j1 ≤ M− tl , via (31).
c) Modify (32) to the following recursive formula where the

values of ykl( j1, j2) have been determined in step (b)

qfin( j1, j2) =




1, for j1 = j2 = 0

1
j1

K

∑
k=1

L

∑
l=1

(Nkl − ykl( j1 −bl , j2 − pkbl))

a′kl,idleblqfin( j1 −bl , j2 − pkbl)

for j1 = 1, . . . ,M and j2 = 1, . . . ,P

, (34)

where a′kl,idle ≡ akl,idle( j1 −bl) = akl,idle, for j1 ≤ M− tl .
d) Determine the average number of in-service calls of

service-class (k, l), Efin(k, l) via (26), where the values of

ykl,fin( j1, j2) are calculated for j1 ≤ M− tl , via

ykl,fin( j1, j2) =

=
(Nkl−ykl( j1−bl , j2−pkbl))akl,idleqfin( j1−bl , j2−pkbl)

qfin( j1, j2)
.

(35)

e) Determine: 1) the BPTC, the SUfin and the PUfin, via
(28), (29) and (30), respectively and 2) the TC probabilities of
service-class (k, l) calls, BTC(k, l), via

BTC(k, l) = ∑
{( j1+bl+tl>M)∪( j2+pkbl>P)}

G−1qfin( j1, j2). (36)

6. Evaluation

We consider the downlink of an OFDM-based cell and pro-
vide analytical and simulation congestion probabilities results
for the P-S the P-S/BR and the qr-P-S models. The input pa-
rameters for the abovementioned models are: B = 20 MHz,
P = 25 Watt, M = 256, R = 329.6 kbps, L = 64, bl = l, l = 1,
. . . , 64, and the values of bl are uniformly distributed. In addi-
tion, let K = 3 which results in LK = 192 service-classes. In the
case of the qr-P-S and the qr-P-S/BR models, we assume that
Nkl = 20 for all service-classes. Let the integer representations
of pk (k= 1, 2, 3) and P be: p′1 = 6, p′2 = 10, p′3 = 16, P′= 2500.
The values of p′k require: p1 ≈ 0.06, p2 ≈ 0.01, p3 ≈ 0.16
achieved via γ1 = 24.679 dB, γ2 = 22.460 dB, γ3 = 20.419 dB.
We further assume that the probability an arriving call has an
average channel gain γk is given by two sets: 1) set 1: rk = 1/3
(k = 1, 2, 3) and 2) set 2: r1 = 1/4, r2 = 1/4, r3 = 1/2. Accord-
ing to set 2, the amount of power assigned to calls is larger com-
pared to set 1. Also, let λkl = Λrk/L be the arrival rate of Pois-
son arriving service-class (k, l) calls, where Λ is the total arrival
rate in the cell given by Λ = aMµ/ĝ, a is the traffic intensity
of the cell, µ = 0.00625 and ĝ = 32.5 is the average subcarrier
requirement of a new call (since bl is uniformly distributed). As
far as the BR parameters are concerned, let tl = 64− l, l = 1,
. . . , 64, so that b1 + t1 = . . .= b64 + t64.

Simulation results, based on Simscript III [42], are mean val-
ues of 7 runs, while each run is based on the generation of 10
million calls. To account for a warm-up period, the blocking
events of the first 3% of these generated calls are not considered
in the results. In all figures of this section, analytical results are
quite close to the corresponding simulation results.

In Figs. 1, 2, we consider the qr-P-S and the P-S models for
both sets of rk. In the x-axis of Figs. 1, 2, the value of a in-
creases from 0.05 to 0.2 in steps of 0.025. Figures 1 and 2 show
the analytical and simulation TC probabilities of service-classes
(3, 16) and (3, 64), respectively. We observe that: 1) in the qr-P-
S model the TC probabilities are lower compared to those ob-
tained in the P-S model, which is due to the quasi-random pro-
cess and 2) the selection of set 2 for the values of rk, increases
the TC probabilities since the amount of power assigned to calls
in the case of set 2 is larger compared to set 1.

In Figs. 3–5, we consider the P-S and the P-S/BR models as-
suming that rk = 1/3 (k = 1, 2, 3). In the x-axis of Figs. 3–5, the
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value of a increases from 0.2 to 1.0. Figure 3 shows the analyt-
ical and simulation CBP of service-classes (3, 64), (2, 64) and
(1, 64), which require the highest number of subcarriers. We
see that the BR policy reduces the CBP of these service-classes
compared to the values of the P-S model. Figure 4 shows the an-
alytical and simulation CBP of service-classes (3, 48), (2, 48)
and (1, 48). We observe that, in most of the cases, the BR pol-
icy increases the CBP of these service-classes compared to the
values of the P-S model. The same behavior (CBP increase) ap-
pears in most of the service-classes whose calls require less than
64 subcarriers. On the other hand, the BP of the entire system
increases for both sets of rk (Fig. 5) since the tl parameters are
chosen to benefit service-classes with high subcarrier require-
ments. Regarding the BR policy, a similar behavior is observed
in the case of the qr-P-S and the qr-P-S/BR models.

Fig. 5. BP of the entire system

7. Conclusion

We propose teletraffic loss models for the analysis of the down-
link of an OFDM cell that accommodates quasi-random gener-
ated calls from different service-classes under the CS and the
BR policies. The cell is analysed as a loss system which leads
to a PFS for the steady-state probabilities in the case of the CS
policy. Based on the PFS, recursive formulas are proposed for
the determination of all performance measures. Modifications
of these formulas result in approximate but recursive formulas
in the case of the BR policy. The proposed formulas are quite
accurate compared to simulation and can be used in network
planning procedures.
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