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Abstract
This paper presents a new simple and accurate frequency estimator of a sinusoidal signal based on the signal
autocorrelation function (ACF). Such an estimator was termed as the reformed covariance for half-length
autocorrelation (RC-HLA). The designed estimator was compared with frequency estimators well-known
from the literature, such as the modified covariance for half-length autocorrelation (MC-HLA), reformed Pis-
arenko harmonic decomposition for half-length autocorrelation(RPHD-HLA), modified Pisarenko harmonic
decomposition for half-length autocorrelation (MPHD-HLA), zero-crossing (ZC), and iterative interpolated
DFT (IpDFT-IR) estimators. We determined the samples of the ACF of a sinusoidal signal disturbed by
Gaussian noise (simulations studies) and the samples of the ACF of a sinusoidal voltage(experimental stud-
ies), calculated estimators based on the obtained samples, and computed the mean squared error(MSE) to
compare the estimators. The errors were juxtaposed with the Cramér–Rao lower bound (CRLB). The research
results have shown that the proposed estimator is one of the most accurate, especially for SNR > 25 dB. Then
the RC-HLA estimator errors are comparable to the MPHD-HLA estimator errors. However, the biggest
advantage of the developed estimator is the ability to quickly and accurately determine the frequency based
on samples collected from no more than five signal periods. In this case, the RC-HLA estimator is the most
accurate of the estimators tested.
Keywords: frequency estimator, sinusoidal signal, autocorrelation function, mean squared error.
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1. Introduction

This paper investigates the problem of single-tone signal frequency estimation. Such a signal
is called a sinusoidal signal. This class of signal with noise is measured in radar [1] and sonar [2]
technologies, wireless communications [3], and speech signal analysis [4]. For this reason, this
paper concerns the study of frequency estimators carried out for a model of a sinusoidal signal
disturbed by Gaussian noise, like in [5–16].

Various frequency estimators of a sinusoidal signal have been designed over the years. An
important group of time-discrete frequency estimators calculated in the time domain based on
signal samples or signal autocorrelation function (ACF) samples has been developed. The most
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well-known member of this group of estimators is the modified covariance (MC) [5] estima-
tor which can be calculated based on any number of consecutive sinusoidal signal samples.
A special case of the MC estimator is the aforementioned three-point estimator [5–12]. Such
an estimator follows from the equation of linear signal sample prediction [17]. If the signal
samples in the MC estimator are replaced with samples of the ACF of the signal, then a corre-
lation frequency estimator known as the modified covariance for correlation (MCC), is obtained
[10, 11]. If the MCC is calculated on the basis of half of the number of the ACF samples,
it is called the MC-HLA (modified covariance for half-length autocorrelation) [12]. Both es-
timators offer a highly accurate frequency estimation due to which it is often compared with
other sinusoidal signal frequency estimators. Apart from the MCC estimator, there are various
other estimators calculated based on either the samples of the ACF or its components. Par-
ticular focus should be on the Pisarenko harmonic decomposition (PHD) estimator. Pisarenko
observed that the eigenvalues and eigenvector of the matrix of ACF samples could be used to
estimate the frequency. This laid the foundation for the design of a sinusoidal signal estimator
calculated based on two samples of the signal ACF [18]. In subsequent years, a few important
modifications of the PHD estimator were developed such as the reformed Pisarenko harmonic
decomposition (RPHD) [13] and modified Pisarenko harmonic decomposition (MPHD) [14]
estimators. If the RPHD and MPHD are calculated with the HLA, then they are called the
RPHD-HLA and MPHD-HLA, respectively [12]. In addition to the estimators listed, the time-
discrete zero-crossing (ZC) estimators are also noteworthy [19]. The ZC estimators use the zero
crossings of a sinusoidal signal for frequency estimation. In this paper, for comparative stud-
ies, the ZC estimator with linear interpolation of signal samples at the zero crossing point was
used [1]. The ZC estimators are sensitive to noise that occurs in the signal. Therefore, pre-
filtering of the signal is often performed before using the ZC estimators. One of the effects
of this is an increasing the SNR (signal-to-noise ratio) level. No filters were used in estima-
tors tests presented in the paper, but simulations and experiments were also performed with
high SNR.

Furthermore, besides the estimators calculated in the time domain, there is also a group of
estimators calculated in the frequency domain such as the popular IpDFT (interpolated DFT).
Such estimators are calculated based on the harmonics of the DFT spectrum of a signal [20–26].
Nowadays, the possibility of obtaining high accuracy frequency estimation is offered by the IpDFT
iterative algorithms [22–26]. One of the newest and most accurate is the IpDFT-IR algorithm
developed by Belega, Petri and Dallet [26], which was applied in this paper for comparative
studies.

This paper presents a new simple and accurate frequency estimator of a sinusoidal signal based
on the ACF. Such an estimator is termed as the reformed covariance for half-length autocorrelation
(RC-HLA). Section 2 presents the mathematical model of a sinusoidal signal disturbed by additive
Gaussian noise, whose frequency was estimated using the designed estimator. Section 2 also
presents the ACF and its properties which were later applied to determine the theoretical mean
square error (MSE) of the RC-HLA estimator. Section 3 presents the RC-HLA estimator and
its properties and the MSEs of the RC-HLA frequency estimation obtained by simulations and
experimental studies. These errors were juxtaposed with the errors corresponding to the selected
MC-HLA, RPHD-HLA, MPHD-HLA, ZC, and IpDFT-IR estimators and the Cramér–Rao lower
bound (CRLB). The research results have shown that the proposed estimator is one of the most
accurate, especially for SNR > 25 dB. Then the RC-HLA estimator errors are comparable to the
MPHD-HLA estimator errors. However, the biggest advantage of the developed estimator is the
ability to quickly and accurately determine the frequency based on samples collected from no
more than five signal periods. In this case, the RC-HLA estimator is the most accurate of the
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estimators tested. Section 3 also presents computational complexities of the analyzed estimators,
while Section 4 summarizes the research results. One appendix related to Section 3 can be found
at the end.

2. Signal autocorrelation function and its properties

Let y(t) be the sum of a sinusoidal signal x(t) with amplitude A, frequency f , angular
frequency ω0 ∈ (0, π), initial phase φ ∈ [0, 2π), and additive Gaussian noise q(t) with a zero
mean value µq and standard deviation σq . If y(t) is sampled at a sampling frequency fs , then its
samples can be described by the formula:

y[n] = x[n] + q[n], n = 0 . . . 2M − 1, (1)

where
x[n] = A sin (ω0n + φ) (2)

and q[n] are the samples of the signal x(t) and noise q(t), respectively. Significant relationships
exist between ω0, f , and fs as detailed below:

ω0 = 2π
f
fs
, fs =

2M
N

f , (3)

where N represent the number of periods of the signal x(t).
Let R(s, τ) represent the ACF of the signal s(t) occurring in the form of a periodic signal,

random signal(noise), or sum of both signals. Samples of the ACF of the signal s(t) can be
determined by applying the formula

R̃ [s, k] =
1
M

M−1∑
n=0

s[n] s[n + k], k = 0 . . .M − 1. (4)

Formula (4) is an half-length estimator of the ACF calculated based on the samples s[n] of
the signal s(t), and the samples s[n + k] of its copy s(t + τ) delayed by time τ [27].

The results of the estimation of the function R(s, τ) can be evaluated based on the mean
square error

MSE
[
R̃ [s, k]

]
= Var

[
R̃ [s, k]

]
+ b2

[
R̃ [s, k]

]
(5)

of the estimator R̃[s, k]. This error results from the bias

b
[
R̃ [s, k]

]
= E

[
R̃ [s, k]

]
− R(s, τ) (6)

and variance
Var

[
R̃ [s, k]

]
= E

[
R̃2 [s, k]

]
− E2

[
R̃ [s, k]

]
(7)

of the estimator, where E[ · ] is the expected value operator.
If s(t) is the sinusoidal signal x(t), then by substituting (2) in (4) the following formula can

be obtained

R̃ [x, k] =
1
M

M−1∑
n=0

x[n]x[n + k] =
A2

2
cos (kω0) + ρ(k), (8)
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where
ρ(k) =

A2

4M
sin ((k − 1)ω0 + 2φ) − sin ((2M + k − 1)ω0 + 2φ)

sin (ω0)
. (9)

As

R(x, τ) =
1
T

T∫
0

x(t)x(t + τ)d t =
A2

2
cos

(
2π
T
τ

)
, T =

1
f
, (10)

then
R̃ [x, k] = R (x, k · Ts) + ρ(k), Ts =

1
fs
. (11)

The expected value and variance of the estimator R̃[x, k] are given by

E
[
R̃ [x, k]

]
= R (x, k · Ts) + ρ(k), Var

[
R̃ [x, k]

]
= 0. (12)

Based on (5)–(7), (10) and (12), we obtain

MSE
[
R̃ [x, k]

]
= ρ2(k). (13)

If s(t) is the signal y(t), then

R̃
[
y, k

]
=

1
M

M−1∑
n=0

y[n] y[n + k]

= R̃ [x, k] + R̃
[
q, k

]
+

1
M

M−1∑
n=0

(
x[n]q[n + k]

)
+

1
M

M−1∑
n=0

(
x[n + k]q[n]

) (14)

and

E
[
R̃

[
y, k

] ]
=


R̃ [x, 0] + σ2

q , k = 0,

R̃ [x, k] , k > 0,

Var
[
R̃

[
y, k

] ]
=


2σ4

q

M
+

4σ2
q

M
R̃ [x, 0] , k = 0,

σ4
q

M
+

2σ2
q

M
R̃ [x, 0] +

2σ2
q

M2 (M − k)R̃ [x, 2k] , k > 0.

(15)

Then

MSE
[
R̃

[
y, k

] ]
=



2σ4
q

M
+

4σ2
q

M
R̃[x, 0] +

(
R̃ [x, 0] + σ2

q − R(x, 0)
)2
, k = 0,

σ4
q

M
+

2σ2
q

M
R̃[x, 0] +

2σ2
q

M2 (M − k)R̃[x, 2k]+

+
(
R̃[x, k] − R (x, k · Ts)

)2
, k > 0.

(16)

Formula (15) was derived based on [12, 27, 28]. Unlike formulas known from the literature, it
allows determining the expected value and variance of the estimator R̃[y, 0](mean squared value)
taking into account the component (9) influence. The presented properties of the R̃[y, k] estimator
were employed while evaluating the developed RC-HLA frequency estimator.
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3. RC-HLA frequency estimator

3.1. The estimator and its properties

Let m and w be such that 3 ≤ m ≤ M and 0 ≤ w ≤ m−3. Then the angular frequency ω0
of the signal x(t) can be calculated based on the samples R̃[y, k] of the autocorrelation function
R(x, τ) of the signal x(t) using the formula

ω0 = cos−1
(

C1

2C2

)
, (17)

where

C1 =

m−w−2∑
k=1

w∑
n=0

a (x, n + k) r (x, n + k) , C2 =
1
2

m−w−2∑
k=1

w∑
n=0

a (x, n + k) , (18)

and

a (x, k) = R̃2 [x, k] , r (x, k) =
R̃ [x, k − 1] + R̃ [x, k + 1]

2R̃ [x, k]
. (19)

Formula (17) results directly from model 3 of the frequency estimation proposed by Adelson
in [5]. From this model it follows that if we consider the expressions r(x, 1) and r(x, 2) and assume
such expressions to be uncorrelated, then cos(ω0) = C1/(2C2), where C1 = a · r(x, 1)+ b · r(x, 2),
C2 = (a + b)/2, with a = a(x, 1) and b = a(x, 2). If we develop the coefficients C1 and C2 into
finite sums with the limit w(internal sums from formula (18)) and apply a generalization of the
Vizirenau estimator [6] to the MC-HLA estimator [12] (external sums from formula (18)), we can
obtain the final form of the presented formula after determining the inverse function of cos(·).

Let us assume without loss of generality that m = M . If we substitute the samples R̃[x, k]
with the samples R̃[y, k] of the autocorrelation function R(y, τ) of the signal y(t), then

ω̃RC-HLA
0 = cos−1

(
C1

2C2

)
, (20)

would be an estimator of the angular frequency ω0, where

C1 =

M−w−2∑
k=1

w∑
n=0

a
(
y, n + k

)
r
(
y, n + k

)
,

C2 =
1
2

M−w−2∑
k=1

w∑
n=0

a
(
y, n + k

)
,

(21)

and

a
(
y, k

)
= R̃2 [

y, k
]
, r

(
y, k

)
=

R̃
[
y, k − 1

]
+ R̃

[
y, k + 1

]
2R̃

[
y, k

] . (22)

We shall term estimator (20) as the RC-HLA (reformed covariance for half-length autocorrela-
tion).

It can easily be noted that if we assume M = 3 in (20), then

ω̃RC-HLA
0 = cos−1 (

r(y, 1)
)
. (23)
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We can thus obtain an instantaneous estimator corresponding/similar to a three-point estimator of
the angular frequency ω0 presented previously for e.g. in Vizireanu’s works [6]. If the parameter
w in (20) is equal to zero (w = 0), then the RC-HLA assumes the form

ω̃RC-HLA
0 = ω̃MC-HLA

0 = cos−1
(

C1

2C2

)
, (24)

where

C1 =

M−2∑
k=1

a
(
y, k

)
r
(
y, k

)
, C2 =

1
2

M−2∑
k=1

a
(
y, k

)
. (25)

Estimator (24) is known as the MC-HLA [12]. Thus, the MC-HLA is a special case of the
RC-HLA estimator. It can be noted that if M − w = 3, then both the RC-HLA and MC-HLA
yield the same results when estimating the angular frequency ω0. Moreover, if M = 3 and w = 1
in (20), another special case of the RC-HLA estimator can be obtained that corresponds to the
one presented by Adelson in [5].

One of the most important terms of the RC-HLA estimator is the parameter w. Various studies
have investigated the effect of the parameter w on the accuracy achieved when estimating the
angular frequency ω0. For this purpose, estimator errors

M̃SE
[
ω̃RC-HLA

0

]
=

1
K

K−1∑
j=0

(
ω̃RC-HLA

0 [ j] − ω0
)2

(26)

in the function w were determined where K is the repetitions number of the angular frequency
estimationω0. The results indicated that selecting an appropriate parameter value is critical when
M is large and the SNR(SNR = 10 · log(0.5A2/σ2

q) is small and positive(e.g. SNR = 10 dB).
We can then assume that w ≪ M markedly increases the accuracy of the results when estimating
ω0. The maximum accuracy was predominantly obtained when 3 ≤ w̃ ≤ 5, where

w̃ = argmin
0≤w≤M−3

{
M̃SE

[
ω̃RC-HLA

0

]}
. (27)

The authors recommend selecting w = w̃ = 5 in this situation. The same w value is also
recommended for other measurement conditions. In cases where M − w̃ < 3, w = 1 should be
assumed.

Researching the probabilistic properties of estimators belonging to the MCC (also MC-HLA)
class is a complex task. A few researchers have proposed mathematical formulae to calculate
the MSE of the estimators with good approximation [10–12, 14, 15]. However, the developed
formulae are often complicated. Formulae are usually developed by using Taylor’s series to expand
the expressions for random variable function moments [29, 30]. On this basis, an approximation
of the RC-HLA estimator MSE was determined. In deriving the formula for theoretical MSE, it
was assumed without loss of generality that the component (9) is negligible.

If w = 5, then the MSE of the RC-HLA estimator can be determined from the formula (see
Appendix)

MSE
[
ω̃RC-HLA

0

]
≈ hTD h

9A4(M − 7)2 sin2 (ω0)
, (28)

where D is a covariance matrix with size M ×M and elements dk,m, k, m = 1 . . .M , while h is a
vector with size M × 1 and elements hi , i = 1 . . .M . The elements dk,m and hi can be described
by formulas (34) and (45).
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Based on (28), MSE characteristics of the RC-HLA estimator as a function of the SNR, M ,
and N were determined (Fig. 1). We set A = 2 V, w = 5, and K = 1000 in the simulations.
The phase φ was randomized using a pseudo-random number generator with uniform distribution
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Fig. 1. Results showing the MSE and M̃SE of the RC-HLA estimator as functions of
the N , SNR, and M for w = 5, and K = 1000. (a) 0.01 ≤ ω0/π ≤ 0.99, M = 100,
SNR = 40 dB, (b) ω0/π = 0.5, N = 50, M = 100, and(c) ω0/π = 0.5, SNR = 40 dB.
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in the range [0, 2π]. To verify the MSE results, the estimator M̃SE of the MSE was also calculated
based on the K results obtained from estimating the angular frequency ω0. The MSE and M̃SE
results were juxtaposed with the calculated CRLB based on the formula [31]

CRLB ≈ 12
10 SNR

10 (2M)
(
4M2 − 1

) . (29)

Research shows that if the SNR is large, then MSE ≈ M̃SE. This proves that formula (28)
would be useful for a large SNR which is consistent with the results of similar analyses presented
for e.g. in [10–12]. Moreover, the MSE and M̃SE depend on the variance to a greater degree than
the bias of the estimator when the SNR has a large, positive value.

3.2. Simulation studies

Various studies have focused on estimating the angular frequency ω0 by applying the
RC-HLA along with other estimators such as the MC-HLA, RPHD-HLA, MPHD-HLA [12],
ZC [1], and IpDFT-IR [26]. The M̃SE of the estimators has been determined and compared for
various N(or ω0/π), SNR, and M values. We set A = 2 V, w = 5, and K = 1000 in the simu-
lations. Nevertheless, it should be taken into account that in case of the ACF-based estimators
the signal amplitude A does not affect of the M̃SE. On the other hand, assuming the number of
repetitions K above 100 allows obtaining high repeatability of the research results. The initial
phase was randomized during the simulations using a pseudo-random number generator with
a uniform distribution over the range [0, 2π]. The IpDFT-IR estimator was calculated in three
iterations. The M̃SE results were juxtaposed with the CRLB. The mean deviations

∆ =
1
W

W−1∑
k=0

(
M̃SE

[
ω̃0, k

] − CRLB[k]
)

(30)

of the M̃SE values of each estimator from the CRLB values were determined for each M̃SE
characteristic, where W is the number of points on the M̃SE characteristic. The research results
are presented and discussed in three sections.

3.2.1. Estimation errors as a function of number of periods

Examples of measurement situations have been considered for 0.005 ≤ ω0/π ≤ 0.05 and
0.01 ≤ ω0/π ≤ 0.99. From (3) it follows that the first situation we deal with a small number
of signal periods, i.e. 0.5 ≤ N ≤ 5 (Figs. 2a and 2b). In the second situation, the M̃SE results
were presented in a wide range of 1 ≤ N ≤ 99 (Figs. 3a and 3b). All the studies were carried
out for M = 100. The obtained results have shown that if N < 5, then the RC-HLA estimator
is the most accurate. This is confirmed by the ∆ results presented in Table 1. For example, if
SNR = 40 dB, then the RC-HLA estimator is more accurate than the MPHD-HLA, MC-HLA,
RPHD-HLA, IpDFT-IR and ZC estimators by 1.08, 4.41, 4.45, 5.85, and 9.75 dB, respectively.
The obtained results (Table 1) shows that if N > 5, then the RC-HLA and MPHD-HLA estimators
have a comparable accuracy. However, they are more accurate than the other estimators that use
the ACF by around 0.5 dB and more accurate than the ZC and IpDFT-IR estimators by around 32
and 7 dB for SNR = 40 dB, respectively.
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Table 1. The results of deviations ∆ [dB] obtained on the basis of data from Figs. 2 and 3.

N(ω0/π)
SNR
[dB]

MC-
HLA

RPHD-
HLA

MPHD-
HLA

RC-
HLA ZC IpDFT-

IR

0.5 ≤ N ≤ 5
(0.005 ≤ ω0/π ≤ 0.05) 40 8.86 8.90 5.53 4.45 14.2 10.3

0.5 ≤ N ≤ 5
(0.005 ≤ ω0/π ≤ 0.05) 70 8.00 8.00 5.52 4.34 14.3 31.9

1 ≤ N ≤ 99
(0.01 ≤ ω0/π ≤ 0.99) 40 2.53 2.53 2.02 1.89 34.3 9.03

1 ≤ N ≤ 99
(0.01 ≤ ω0/π ≤ 0.99) 70 2.44 2.44 2.06 1.94 59.5 11.5
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Fig. 2. Results showing the M̃SE as a function of N for 0.005 ≤ ω0/π ≤ 0.05, M = 100,
w = 5, and K = 1000. (a) SNR = 40 dB, and (b) SNR = 70 dB.
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Fig. 3. Results showing the M̃SE as a function of N for 0.01 ≤ ω0/π ≤ 0.99, M = 100,
w = 5, and K = 1000.(a) SNR = 40 dB, and(b) SNR = 70 dB.

3.2.2. Estimation errors as a function of SNR

Examples of measurement situations have been considered for N = 2 (Fig. 4a) and N = 50
(Fig. 4b). The research results have shown that the RC-HLA estimator is characterized by the
highest accuracy when SNR > 25 dB and N is small. For example, if N = 2, then the differences
between the mean deviation ∆ of the RC-HLA estimator and the mean deviations ∆ of the
MPHD-HLA, MC-HLA, RPHD-HLA, ZC and IpDFT-IR estimators are equal to 1.45, 5.76,
5.76, 20.3, and 25.8 dB, respectively (Table 2). If SNR > 25 dB and N is large, then the
RC-HLA estimator is less accurate than the MC-HLA and RPHD-HLA estimators e.g. for
N = 50 by around 0.1 dB. In the same measurement conditions, the RC-HLA and MPHD-HLA
estimators are more accurate than the ZC and IpDFT-IR estimators by around 11 and 6 dB,
respectively.
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Fig. 4. Results showing the M̃SE as a function of SNR for M = 100, w = 5, and
K = 1000.(a) ω0/π = 0.02, N = 2, and(b) ω0/π = 0.5, N = 50.

Table 2. The results of deviations ∆ [dB] obtained on the basis of data from Fig. 4.

N(ω0/π)
SNR
[dB]

MC-
HLA

RPHD-
HLA

MPHD-
HLA

RC-
HLA ZC IpDFT-

IR

2(0.02) −20÷80 22.2 22.5 14.7 16.4 43.5 24.8

2(0.02) 26÷80 10.6 10.6 6.29 4.84 25.1 30.6

50(0.5) −20÷80 6.92 8.87 8.48 6.77 20.7 11.4

50(0.5) 26÷80 1.37 1.37 1.54 1.49 12.7 7.49

3.2.3. Estimation errors as a function of number of samples

Examples of measurement situations have been considered when 10 ≤ M ≤ 200 for ω0/π =
0.01 (Fig. 5a) and ω0/π = 0.5 (Fig. 5b). The research results have shown that if SNR = 40 dB
and ω0/π = 0.5, then the RC-HLA estimator has a mean deviation ∆ equal to around 1.5 dB,
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similar to the deviations of the other estimators that use the ACF. The RC-HLA estimator is
the most accurate when SNR = 40 dB and ω0/π = 0.01. Then the differences between the
mean deviation ∆ of the RC-HLA estimator, and the mean deviations ∆ of the MPHD-HLA,
ZC, MC-HLA, RPHD-HLA, and IpDFT-IR estimators are equal to 2, 4.9, 6.9, 6.9, and 19.3 dB,
respectively(Table 3).
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Fig. 5. Results showing the M̃SE as a function of M for w = 5, and K = 1000.(a)
ω0/π = 0.01, SNR = 40 dB, and(b) ω0/π = 0.5, SNR = 40 dB.

Table 3. The results of deviations ∆ [dB] obtained on the basis of data from Fig. 5.

(ω0/π) M MC-
HLA

RPHD-
HLA

MPHD-
HLA

RC-
HLA ZC IpDFT-

IR

0.01 10÷200 17.8 17.8 12.9 10.9 15.8 30.2

0.01 100÷200 14.2 14.2 7.97 6.27 15.8 21.6

0.5 10÷200 1.40 1.40 1.68 1.58 12.2 9.14

0.5 100÷200 1.38 1.38 1.48 1.47 14.4 9.08
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3.3. Experimental studies

In order to present the operation of time algorithms in real conditions, measurements were
carried out. A sinusoidal voltage with an rms value VRMS = 3 V was generated by an Agilent
33220A function generator. The alternating voltage was sampled using a National Instruments
PCI-6024E data acquisition card (Fig. 6). The sampling rate was set fs = 50 kHz. As a result of the
measurements, a file containing K = 100 measurement series was obtained. Each measurement
series contained 5000 samples. The SNR was determined for each series. It was obtained that
SNR∈ [67, 69] dB. An AIM-TTI TF930 frequency meter was additionally connected to the
generator (measurement time was set to 100 seconds). Its task was to measure the reference
frequency value fref required to determine the estimator errors. In the presented example fref =
49.9984 Hz. This sinusoidal signal frequency was assumed due to the limited maximum sampling
frequency of the measuring card used (200 kS/s) and a greater generator voltage stability in the low
frequency range. The standard uncertainty of the frequency measurement was equal to 0.6 ppm
and was mainly due to the occurrence of noise in the voltage from the generator (systematic errors
of the frequency meter were negligibly small).

Fig. 6. Block diagram of measurement system.

Based on the obtained data, the MSE charts for the MC-HLA, RPHD-HLA, MPHD-HLA,
ZC, and IpDFT-IR estimators as a function of N were prepared (Fig. 7). For this purpose, every
Z-th voltage sample was selected from each series. In this way, K = 100 series consisting of
5000/Z voltage samples (M = 5000/(2Z ) samples per period) were obtained. Then, assuming
z = 1 . . . Z , new values f (z)

s = fs/z, ω(z)
0 = 2π fref/ f (z)

s , N (z) = Mω(z)
0 /π and R̃[y, k] were

determined. This enabled the estimators calculation and the MSE determination for different
ω0/π values. The calculations were made for Z = 250 (M = 10, 0 < ω0/π ≤ 0.5, 0 < N ≤ 5,
Fig. 7a) and Z = 25(M = 100, 0 < ω0/π ≤ 0.05, 0 < N ≤ 5, Fig. 7b). The MSE results were
compared with the CRLB calculated on the basis of SNR = 67 dB. The experimental results
confirmed the simulation results. In a situation where SNR ≫ 0, the RC-HLA estimator was
determining the frequency with the highest accuracy.
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Fig. 7. Results showing the M̃SE as a function of N for w = 5, and K = 100.
(a) 0 < ω0/π ≤ 0.5, M = 10, Z = 250, and(b) 0 < ω0/π ≤ 0.05, M = 100, Z = 25.

3.4. Comparison of computational complexity

We analyzed the computational complexity of the RC-HLA estimator. Let RC represent the
reformed covariance estimator calculated using formula (17) and samples y[n] of signal y(t).
To calculate the RC estimator, S = 3M – 8 additions and P = 2M + 2w − 3 multiplications if
M ≥ 2w+ 3, or P = 4M − 2w− 9 multiplications if M < 2w+ 3 are required. The computational
complexity of the RC estimator corresponds to that of the MC estimator(S = 3M−8, P = 2M−3)
for w = 0 [12]. The computational complexity of the RC-HLA estimator was determined based
on that of the RC estimator. To calculate the RC-HLA, S = M2 + 2M − 8 additions and P =
M2 + 2M + 2w − 3 multiplications if M ≥ 2w + 3, or P = M2 + 4M − 2w − 9 multiplications if
M ≥ 2w + 3 are required.

Table 4 presents the S (number of additions/subtractions) and P (number of multiplica-
tion/division) values for the selected estimators which were determined based on the literature
[10, 12, 15] and results of our own study. Table 5 presents S and P values for the selected M .
The research results have shown that the ZC estimator has the least computational complexity.
Moreover, the ZC estimator does not require the calculation of trigonometric functions. If we
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consider only the estimators that use the ACF, then the developed estimator is characterized by
the smallest number of additions(on a par with the MC-HLA) as well as the largest number of
multiplications(the maximum multiplication difference against the best MPHD-HLA algorithm
was 11 for w = 5). Whereas, the advantage of the RC-HLA and MC-HLA over the RPHD-HLA
and MPHD-HLA estimators is that they do not require root square operations. Table 5 shows
that the IpDFT-IR estimator requires fewer summations and multiplications than the estimators
that use the ACF. However, it should be borne in mind that the formulas developed deal with
one iteration of the algorithm(three iterations were assumed in the tests) and do not take into
account the calculations that should be made earlier to determine the DFT bin with the maximum
magnitude. In addition, compared with the other estimators, the use of the IpDFT-IR requires the
calculation of a much larger number of trigonometric functions in operations on real numbers.

Table 4. Computational complexities of the frequency estimators.

Estimator Addition/
subtraction(S) Multiplication/division(P) Square root Trigonometric

functions

RC-HLA
M2 + 2M − 8

M2 + 2M + 2w − 3 if M ≥ 2w + 3
0

1
M2 + 4M − 2w − 9 if M < 2w + 3

MC-HLA M2 + 2M − 3

RPHD-HLA M2 + 2M − 3 M2 + 2M + 5
1

MPHD-HLA M2 + 3M − 16 M2 + 2M − 4

ZC∗ 5N ′ + 1 2N ′ + 3 0 0

IpDFT-IR∗∗ 16M + 3 24M + 1 4 16M − 8

∗ N ′ = floor(N ) – number of sinusoidal signal periods detected(N ′ > 1),
∗∗ Computational complexity deals with one iteration of the algorithm and does not include calculations
necessary to determine the DFT bin with the maximum magnitude.

Table 5. The number of additions/subtraction(S) and multiplications/division(P) for the selected M
and for the different frequency estimators.

M
RC-HLA(w = 5) MC-HLA

S P S P

10 112 121 112 117

100 10192 10207 10192 10197

RPHD-HLA MPHD-HLA

10 117 125 114 116

100 10197 10205 10284 10196

ZC IpDFT-IR(one iteration)

10 6÷51 5÷23(1 ≤ N ′ ≤ 10) 163 241

100 6÷501(1 ≤ N ′ ≤ 100) 5÷203 1603 2401

4. Conclusions

In this paper, a new sinusoidal signal frequency estimator based on the signal autocorrelation
function(RC-HLA) was presented. The proposed estimator has a simple closed form and high
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accuracy. The designed estimator was compared with other estimators such as the MC-HLA,
RPHD-HLA, MPHD-HLA, ZC, and IpDFT-IR.

The obtained results have shown that the RC-HLA estimator and the other estimators that
use the ACF are more accurate than the popular zero crossing (ZC) estimator and an iterative
estimator based on the discrete Fourier transform IpDFT-IR. The largest mean deviations of the
MSE from the CRLB for the RC-HLA, MC-HLA, RPHD-HLA, MPHD-HLA, ZC, and IpDFT-IR
estimators were respectively equal to 16.4, 22.2, 22.5, 14.7, 59.5, and 24.8 dB, within a wide range
of 0.01 ≤ ω0/π ≤ 0.99(ω0/π = 2 f / fs , 1 ≤ N ≤ 99) and −20 < SNR < 80 dB. However, in the
range of 0.01 ≤ ω0/π ≤ 0.99 and the narrower range of 25 < SNR < 80 dB, the largest mean
deviations of the MSE from the CRLB for the RC-HLA, MC-HLA, RPHD-HLA, MPHD-HLA,
ZC and IpDFT-IR estimators were equal to 4.84, 10.6, 10.6, 6.29, 59.5, and 30.6 dB, respectively.
The presented results indicate that the RC-HLA and MPHD-HLA estimators are the most accurate
because their mean deviations are the smallest. However, the RC-HLA estimator is more accurate
than the other estimators for SNR > 25 dB and N < 5. In the case of SNR < 25 dB, preliminary
filtering of the signal may be considered. This will result in an increase in the SNR level. The
accuracy of frequency estimation will also increase. This applies not only to the developed
estimator, but above all to the ZC estimator whose errors were sometimes the greatest.

In summary, the RC-HLA estimator is one of the most accurate estimators that use the ACF. It
is characterized by the low computational complexity. In particular, it does not require calculating
the square root and using more than one trigonometric function. Its properties, like other ACF-
based estimators, indicate the possibility of its use in measurement applications in which the
sinusoidal signal in the presence of noise for SNR > 10 dB is analyzed.
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Appendix

This section derives the formula for the variance of the RC-HLA estimator. This formula has
a generalized form for M > 13. The formulae are different for every other value of 2 < M ≤ 13
and are thus not presented in this article. We assume M > 13 and w = 5. Then from (20) and
[12] it follows that

Var
[
ω̃RC-HLA

0

]
=

Var [ẑ]
sin2 (ω0)

, (31)

where

ẑ = f
(
R̂
)
=

M−7∑
k=1

5∑
n=0

(
R̃

[
y, k + n − 1

]
+ R̃

[
y, k + n + 1

] )
R̃

[
y, k + n

]
2
M−7∑
k=1

5∑
n=0

R̃2 [
y, k + n

] ,

R̂ =
[
R̃

[
y, 0

]
. . . R̃

[
y,M − 1

] ]T
.

(32)
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From [12] it follows that
Var [ẑ] ≈ vTD v, (33)

where v = ∇ f
(
R̂
) ���R̂=R̃

, while D is a covariance matrix with size M × M and elements

dk,m =



A2σ2
q

M
+
σ4
q

M
+

A2σ2
q

M2 (M − k − 1) cos (2(k − 1)ω0) , k = m,

A2σ2
q

2M2 ((2M − |m − k − 1|) cos ((m − k − 1)ω0) +

+ (2M − k − m − 1) cos ((m + k − 1)ω0)) , k , m,

(34)

wherein k, m = 1 . . .M . Formula (34) and its derivation are presented in [12]. The elements on
the diagonal of matrix D represent the variance Var

[
R̃[y, k]

]
(15), which takes the form shown

in formula (34) when k = m and the component (9) is negligibly small.
The vector v can be found by computing the partial derivatives of f (R̂). Let us denote:

A =
1
2

M−7∑
k=1

5∑
n=0

(
R̃

[
y, k + n − 1

]
+ R̃

[
y, k + n + 1

] )
R̃

[
y, k + n

]
, (35)

B =
M−7∑
k=1

5∑
n=0

R̃2 [
y, k + n

]
. (36)

Evaluating the first seven derivatives of function (32) at R̃[y, 0] . . . R̃[y, 6], we obtain:

∂ f

∂R̃
[
y, 0

] = R̃
[
y, 1

]
2B

=
cos(ω0)

A2C
,

∂ f

∂R̃
[
y, 1

] = R̃
[
y, 0

]
+ 3R̃

[
y, 2

]
2B

− 2A
B2 R̃

[
y, 1

]
=

R̃
[
y, 0

]
+ 3R̃

[
y, 2

]
2B

− 2R̃
[
y, 1

]
cos(ω0)

B

=
1 + 3 cos (2ω0) − 4 cos (ω0) cos (ω0)

A2C
, (37)

...

∂ f

∂R̃
[
y, 6

] = 11R̃
[
y, 5

]
+ 12R̃

[
y, 7

]
2B

− 12A
B2 R̃

[
y, 6

]
=

11 cos (5ω0) + 12 cos (7ω0) − 24 cos (6ω0) cos (ω0)
A2C

,

where

C =
M−7∑
k=1

5∑
n=0

cos2(k + n) ≈ 3M − 21. (38)
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Similarly, evaluating the last seven derivatives of function (32) at R̃[y,M − 7] . . . R̃[y,M − 1],
we obtain:

∂ f

∂R̃[y,M − 1]
=

R̃[y,M − 1]
2B

=
cos ((M − 1)ω0)

A2C
,

∂ f

∂R̃[y,M − 2]
=

R̃[y,M − 1] + 3R̃[y,M − 3]
2B

− 4A
B2 R̃[y,M − 2]

=
3 cos ((M − 3)ω0) + cos ((M − 1)ω0) − 8 cos ((M − 2)ω0) cos (ω0)

A2C
,

... (39)

∂ f

∂R̃[y,M − 7]
=

12R̃[y,M − 8] + 11R̃[y,M − 6]
2B

− 12A
B2 R̃[y,M − 7]

=
12 cos ((M − 8)ω0) + 11 cos ((M − 6)ω0) − 24 cos ((M − 7)ω0) cos(ω0)

A2C
.

It can be shown that the derivatives of function (32) calculated at R̃[y, 7] . . . R̃[y,M − 8] equal
zero, i.e.

∂ f

∂R̃[y, 7]
= . . . =

∂ f

∂R̃[y,M − 8]
= 0. (40)

For example,

∂ f

∂R̃[y, 7]
=

12R̃[y, 6] + 12R̃[y, 8]
2B

− 12A
B2 R̃[y, 7]

=
12 cos(6ω0) + 12 cos(8ω0) − 24 cos(7ω0) cos(ω0)

A2C
,

(41)
∂ f

∂R̃[y,M − 8]
=

12R̃[y,M − 9] + 12R̃[y,M − 7]
2B

− 12A
B2 R̃[y,M − 8]

=
12 cos ((M − 9)ω0) + 12 cos ((M − 7)ω0) − 24 cos ((M − 8)ω0) cos(ω0)

A2C
.

As for any ω0, the formulas

12 cos(6ω0) + 12 cos(8ω0) − 24 cos(7ω0) cos(ω0) = 0,

12 cos ((M − 9)ω0) + 12 cos ((M − 7)ω0) − 24 cos ((M − 8)ω0) cos(ω0) = 0,
(42)

then
∂ f

∂R̃[y, 7]
=

∂ f

∂R̃[y,M − 8]
= 0. (43)

Based on (38)–(43), we can obtain

v =
h

3A2(M − 7)
, (44)
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where h is a vector with size M × 1 and elements hi , i = 1 . . .M , described by formula:

hi =



cos(ω0) i = 1,
1 + 3 cos(2ω0) − 4 cos(ω0) cos(ω0) i = 2,
3 cos(ω0) + 5 cos(3ω0) − 8 cos(2ω0) cos(ω0) i = 3,
5 cos(2ω0) + 7 cos(4ω0) − 12 cos(3ω0) cos(ω0) i = 4,
7 cos(3ω0) + 9 cos(5ω0) − 16 cos(4ω0) cos(ω0) i = 5,
9 cos(4ω0) + 11 cos(6ω0) − 20 cos(5ω0) cos(ω0) i = 6,
11 cos(5ω0) + 12 cos(7ω0) − 24 cos(6ω0) cos(ω0) i = 7,
12 cos ((M−8)ω0) +11 cos ((M−6)ω0) −24 cos ((M−7)ω0) cos (ω0) i = M−6,
11 cos ((M−7)ω0) + 9 cos (M−5)ω0) − 20 cos ((M−6)ω0) cos (ω0) i = M−5,
9 cos ((M−6)ω0) + 7 cos ((M−4)ω0) − 16 cos ((M−5)ω0) cos (ω0) i = M−4,
7 cos ((M−5)ω0) + 5 cos ((M−3)ω0) − 12 cos ((M−4)ω0) cos (ω0) i = M−3,
5 cos ((M−4)ω0) + 3 cos ((M−2)ω0) − 8 cos ((M−3)ω0) cos (ω0) i = M−2,
3 cos ((M−3)ω0) + cos ((M−1)ω0) − 4 cos ((M−2)ω0) cos (ω0) i = M−1,
cos ((M−2)ω0) i = M,

0 elsewhere.

(45)

Substituting (44) into (33) and then (33) into (31), we obtain

Var
[
ω̃RC-HLA

0

]
≈ hTD h

9A4(M − 7)2 sin2 (ω0)
. (46)

As ω̃RC-HLA
0 is asymptotically unbiased (the estimator’s bias tends to zero as M increases [27]),

then

MSE
[
ω̃RC-HLA

0

]
≈ Var

[
ωRC-HLA

0

]
=

hTD h
9A4(M − 7)2 sin2 (ω0)

. (47)
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