
10.24425/acs.2020.134672
Archives of Control Sciences

Volume 30(LXVI), 2020
No. 3, pages 411–435

Improving the TSAB algorithm through
parallel computing

JAROSŁAW RUDY, JAROSŁAW PEMPERA and CZESŁAW SMUTNICKI

In this paper, a parallel multi-path variant of the well-known TSAB algorithm for the job
shop scheduling problem is proposed. Coarse-grained parallelization method is employed, which
allows for great scalability of the algorithm with accordance to Gustafon’s law. The resulting
P-TSAB algorithm is tested using 162 well-known literature benchmarks. Results indicate that
P-TSAB algorithm with a running time of one minute on a modern PC provides solutions
comparable to the ones provided by the newest literature approaches to the job shop scheduling
problem. Moreover, on average P-TSAB achieves two times smaller percentage relative deviation
from the best known solutions than the standard variant of TSAB. The use of parallelization
also relieves the user from having to fine-tune the algorithm. The P-TSAB algorithm can thus be
used as module in real-life production planning systems or as a local search procedure in other
algorithms. It can also provide the upper bound of minimal cycle time for certain problems of
cyclic scheduling.

Key words: job shop scheduling, parallel computing, operations research, taboo search,
TSAB algorithm, coarse-grained parallelization

1. Introduction

The job shop scheduling problem (JSSP) is amongst the most classic, well-
known and hard problems in combinatorial optimization and operations research.
This is due to the fact that it allows modeling of many real-life processes of
manufacturing of independent items in the so-called batch scheduling model.
At the same time, JSSP is an example of an NP-hard problem. Thus, for a long time

Copyright © 2020. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

J. Rudy (corresponding Author) E-mail: jaroslaw.rudy@pwr.edu.pl and C. Smutnicki (E-mail: czes-
law.smutnicki@pwr.edu.pl) are with Department of Computer Engineering, Faculty of Electronics, Wrocław
University of Science and Technology, Janiszewskiego 11-17, 50-372 Wrocław, Poland.

J. Pempera (E-mail: jaroslaw.pempera@pwr.edu.pl) is with Department of Automatics, Mecha-
tronics and Control Systems, Faculty of Electronics, Wrocław University of Science and Technology,
Janiszewskiego 11-17, 50-372 Wrocław, Poland.

Received 21.8.2019.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jaroslaw.rudy@pwr.edu.pl
mailto:czeslaw.smutnicki@pwr.edu.pl
mailto:czeslaw.smutnicki@pwr.edu.pl
mailto:jaroslaw.pempera@pwr.edu.pl

412 J. RUDY, J. PEMPERA, C. SMUTNICKI

solving it with acceptable quality in acceptable time for practical instance sizes
was a considerable challenge. A famous example is ft10 instance by Fisher and
Thompson which was introduced in 1963 and was solved only 25 years later [14].
Thus, JSSP has garnered considerable attention, both from practitioners (due to
economical advantages of solving JSSP problem more efficiently) and researchers
(development of new solving method), resulting in a very large number of papers
and different approaches to solving JSSP.

One of the most well-known and most often employed solving method for
JSSP with the criterion of minimizing makespan is the Taboo Search Algorithm
with Back Jump Tracking (or TSAB) by Nowicki and Smutnicki [33] and its
enhanced version, the i-TSAB algorithm [34]. Both methods are modifications of
the basic Taboo Search (TS) scheme and their high effectiveness is due to several
innovative factors, including, but not limited to: the use of the new N5 neigh-
borhood (according to commonly used naming classification for neighborhoods),
the choice of starting solution, Jump Back Tracking method and exploiting the
shape of the search space (the Big Valley phenomenon).

In recent years there have been considerable advances in various techniques
of parallel computing, both single-machine (increased number of cores in pro-
cessors, Intel Xeon Phi manycore processors, GPGPU devices) and over many
machines (computer clusters, grid and cloud computing). Thus, it has become
common to improve the efficiency and speed of algorithms as well as solving
methods by employing parallel computing.

The purpose of this paper is to improve the quality of the still numerically
excellent TSAB algorithm for the JSSP with makespan criterion by effective use
of modern parallel computing techniques. Moreover, due to advances in processor
speed in the last decade, the comparison of TSAB to the current approaches to
JSSP is difficult. Thus, this paper also aims to provide the result of running
TSAB on modern computers. We also research the performance of TSAB for use
in situations where short running time is essential. Such cases include computer-
aided production planning in industry and use of TSAB as a local search procedure
in other JSSP solving methods. An example of the latter is the use of TSAB to
find the minimal cycle time in cyclic job shop scheduling problem (this is because
the makespan is the upper bound for the minimal cycle time). Thus, a fast parallel
TSAB variant can be an important part of a more general hybrid solving method
for cyclic job shop scheduling problem (this approaches was shown in [42]).

The remainder of this paper is organized as follows. Section 2 contains
overview of recent approaches to JSSP in the literature. The formulation of JSSP
is shown in Section 3. Section 4 provides brief description of the key features
of TSAB and i-TSAB algorithms, along with their impact on the field of com-
binatorial optimization. In Section 5 the parallel version of TSAB is presented.
The results of computer experiments are shown in Section 6. Finally, Section 7
contains the conclusions.

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 413

2. Literature overview

In this section we present short overview on the literature concerning JSSP.
The majority of currently researched solving methods are based on metaheuristic
approaches, especially when they are combined. Some of such hybrid methods
employ TSAB to enhance the search process (this will be covered in more details
in Section 4).

Cheng et al. [10] proposed Hybrid Evolutionary Algorithm (HEA), which uses
a Taboo Search method as a local search procedure. The computational results
of HEA are high quality, but the running time is very long for many instances.
An interesting approach is presented in the work by Gonçalves and Resende [15]
who proposed the Biased Random-Key Genetic Algorithm (BRKGA) method.
BRKGA employs Taboo Search-based local search, a biased random key and
extends the graphical method of Akers (originally for 2 jobs only). Aker’s method
transforms the JSSP problem into a certain problem of finding the shortest path
on a 2-dimensional plane with obstacles.

On the other hand, Pardalos and Shylo consider in their paper algorithm based
on Global Equilibrium Search (GES) method [35]. The GES method is similar
to the Simulated Annealing (SA) method and provides good-quality solutions
in shorter time than many different approaches. By combining the GES method
with the phenomenon of Big Valley, Pardalos et al. presented the AlgFix algo-
rithm [36]. AlgFix had good quality-to-running-time ratio for smaller instances,
however for larger instances the time limit was set to largely impractical 10 000
seconds. Another hybrid approach is the Tabu Search-Path Relinking (TS-PR) by
Penga et al. [37]. This hybrid method, combining two search techniques, allowed
to find new upper bounds for 49 benchmark instances, but it was at the cost of
very long running time of algorithms. As last example of hybrid solving methods,
Zhang et al. proposed a fast TS/SA hybrid algorithm [52]. Their approach was
based on running the TS method on the starting solution provided by the SA
method. This allowed to intensify the search on already very promising part of
the solution space.

From non-hybrid approaches, Kurdi [29] employed a Genetic Algorithm (GA)
with a new island model and migration method. The author presented a wide
range of results on different versions of the algorithm, detailing the effect of each
version on the quality of results. Next, Suganthan et al. proposed an Artificial
Bee Colony (ABC) method supplemented with a local search for JSSP with no-
wait constraint [44]. The results proved the new method to be superior to two
alternative approaches. Yet another approach is shown in paper by Asadzadeh [2].
The author employed a multi-agent system to implement multiple local search
methods for a Genetic Algorithm to enhance its performance.

A completely different line of research are papers researching the performance
and properties of various types of neighborhoods for JSSP. One example is paper

414 J. RUDY, J. PEMPERA, C. SMUTNICKI

by Kuhpfahl and Bierwirth [28], where 6 new neighborhoods are presented and
analyzed.

3. Problem formulation

In this section we formulate the mathematical model and notation for the job
shop scheduling problem with the criterion of minimizing makespan. All values
belong to the set of positive integers unless stated otherwise.

LetM = {1, 2, . . . ,m} be a set of m machines and J = {1, 2, . . . , n} be a set
of n jobs. Each job j consists of o j operations from the set O j = {l j−1+1, l j−1+2,

. . . , l j }, where l0 = 0 and l j =

j∑
i=1

o j . Next, we define the set of all operations

O = {1, 2, . . . , o} consisting of o =
n∑

i=1
oi operations. From this it follows that

sets O j are disjoint:
∀

i, j,i∈J
Oi ∩ O j = ∅, (1)∪

j∈J
O j = O. (2)

Next, let pi ­ 0 and µi ∈ M denote the processing time of operation i ∈ O
and the machine on which it has to be processed respectively. Finally, let Ok =
{i ∈ O : µi = k} be the set of operations that have to be processed on machine k.
Sets Ok are also disjoint:

∀
k,l,k∈M

Ok ∩ Ol = ∅, (3)

∪
k∈M
Ok = O, (4)

|Ok | = ok, k ∈ M . (5)
To complete operation i it has to be processed on machine µi without in-

terruption for time pi. A given machine can process at most one operation at
a time. Similarly, at most one operation from a given job can be processed at
a time. Finally, operations from each set O j have to be processed in the or-
der of their increasing numbers, i.e. the order given by sequence (permutation)
(l j−1 + 1, l j−1 + 2, . . . , l j).

A schedule of operations can be represented by ordered set π of m permu-
tations (in fact an m-tuple): π = (π1, π2, . . . , πm), where πk is a permutation of

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 415

elements from Ok and describes the processing order of operations from Ok on
machine k ∈ M. Thus, πk (j) ∈ Ok is the operation which will be processed as
j-th on machine k. Hereinafter π will be called the processing order.

By α(i) we denote the machine predecessor of operation i ∈ O, which is the
operation to be processed on the considered machine immediately before i (note
that the machine is determined by i itself). Thus, α(πk (i)) = πk (i − 1). First
operation to be processed on a given machine k has no machine predecessor. For
this fact we set α(πk (1)) = 0. Similarly, by β(i) we denote the job predecessor of
operation i, which is the operation in the considered job that has to be processed
immediately before i (once again, the job is determined by i itself). Thus, β(i) =
i − 1 (from the definition of sets O j). First operation to be processed in a job j
has no job predecessor. For this fact we set β(l j−1 + 1) = 0.

Now, let Si be the starting time of operation i ∈ O and let Ci be its completion
time. The schedule described by S = (S1, S2, . . . , So} and C = (C1,C2, . . . ,Co} is
feasible if and only if the previously mentioned constraints are satisfied, which
can be formally stated as follows:

Si ­ 0, i ∈ O, (6)
Ci = Si + pi, i ∈ O, (7)
Si ­ Cα(i), i ∈ O, (8)
Si ­ Cβ(i), i ∈ O. (9)

Equation (6) is obvious. Equation (7) guarantees that operations will be processed
for the required amount of time without interruption. Inequality (8) ensures
an operation cannot start before its machine predecessor completes, while also
guaranteeing that no more than one operation is processed by a given machine at
any time. Similarly, inequality (9) ensures that operation can only start when its
job predecessor has completed and it also guarantees no more than one operation
of a given job is processed at any time.

A given processing order π can represent many schedules (many sequences S),
but one can construct from it a single left-shifted schedule i.e. a schedule in which
no operation can be shifted to start earlier without violating constraints (6)–(9).
The left-shifted schedule for π can be constructed using the following recursive
formula:

Si = max
{
Sα(i) + pα(i), Sβ(i) + pβ(i)

}
, i ∈ O, (10)

where values S0 = 0, p0 = 0 are used for “zeroth” job/machine predecessors.
For a given processing order π the makespan Cmax(π) is defined as the maxi-

mum completion time over all operations:

Cmax(π) = max
i∈O

Ci = max
i∈O

(Si + pi). (11)

416 J. RUDY, J. PEMPERA, C. SMUTNICKI

The value of Cmax(π) can also be determined by finding the length of the longest
path (critical path) in a certain directed graph (appropriate method is shown
in [33]).

The goal of optimization is to find the processing order π∗ that minimizes the
makespan:

Cmax(π∗) = min
π∈A⊂Π

Cmax(π), (12)

where Π is the set of all feasible processing orders (i.e. the ones that represent
schedules satisfying constraints (6)–(9)) and A is a certain subset of Π.

4. TSAB algorithm

In this section we briefly describe the TSAB and i-TSAB algorithms and their
most important features that determined their effectiveness in solving difficult
JSSP instances from literature benchmarks. For full details of the algorithms
refer to the original papers by Nowicki and Smutnicki [33, 34]. Here we also
discuss the impact of the algorithms on the development of other solving method
for JSSP.

4.1. Features

The effectiveness of the TSAB algorithm is not caused by a single factor,
but rather it is due to several design features working together. However, it is
also true that one of the key distinguishing features of the TSAB algorithm
is the use of the N5 neighborhood. N5 was designed as a subset of the N1
neighborhood introduced by van Laarhoven et al. [47]. Both N1 and N5 use
moves that interchange adjacent operations on the critical path and both generate
only feasible solutions.

However, the size of the N1 neighborhood is relatively large. The N5 neigh-
borhood offsets this by interchanging only pairs of operations in the beginning
and ending of operations blocks (block is defined as a maximal subsequence of
operations on the critical path that belong to the same machine, a concept orig-
inally introduced by Grabowski et al. [21]). This significantly reduced the size
of the neighborhood. Moreover, the size of the N5 neighborhood is dependent
on only one (arbitrary chosen) critical path, whereas the N1 neighborhood grows
in size when more than one critical path is present. The small size of the N5
neighborhood is what allows the TSAB algorithm a fast exploration of the solu-
tion space. Additionally, if the N5 neighborhood of the current solution is empty,
then the current solution is the optimal solution. This property was employed as
an additional stopping condition for the TSAB algorithm.

Finally, Nowicki and Smutnicki had proven that applying moves from the N1
neighborhood that are not in N5 neighborhood never leads to immediate improve-

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 417

ment of the makespan. This is the key property that decided the effectiveness of
the N5 neighborhood, even despite its lack of the connectivity property (i.e. there
is no guarantee that any optimal solution can be reached from an arbitrary initial
feasible solution in finite number of moves with the use of the N5 neighborhood).

Second important feature, which gives the TSAB algorithm its name, is the
use of the Back Jump Tracking technique. This technique is based on the known
idea of restarting the TSAB algorithm using the best found solution from its
previous execution as a starting solution. However, unlike the basic idea, the
TSAB algorithm stores additional information during its search, which allows the
Back Jump Tracking method to explore the neighbors unvisited during previous
run of the algorithm.

Presence of cycles in the search path, especially long ones, is a commonly
known drawback of TS-based approaches. Unlike some other approaches, the
TSAB algorithm does not prevent the cycles, but detects them instead and stops
the current search path is cycle has been detected. The detection can be done in
time O(1) and is able to find cycles of length up to maxδ in the last maxc · maxδ
iterations. Values maxc and maxδ are two of the algorithm parameters and they
have to be chosen experimentally in order to compromise between cycle detection
capabilities and running time of the algorithm.

The final important element of the TSAB algorithm is the choice of the starting
solution. While any heuristic algorithm can be used for this, the TSAB uses the
specifically designed INSertion Algorithm (or INSA), which was based on an
earlier insertion technique for the flow shop scheduling problem and tailored for
the job shop scheduling problem. While the complexity of INSA was stated to
be O(n3m2), it is fast in practice and its quality was comparable to employing 10
direct dispatch priority rules schemes.

The use of the above techniques, amongst others, resulted in a very fast
and very accurate method. It allowed TSAB to obtain good quality solution in
matter of seconds and improve the best known upper bounds for 33 instances of
the Taillard JSSP benchmarks. As a last note, it should be emphasized that the
TSAB algorithm is a deterministic method. Thus, it does not share the drawback
displayed by many other metaheuristic approaches (like Genetic Algorithm or
Simulated Annealing) and is guaranteed to provide the same solution when run
twice for the same problem instance with the same parameters.

The i-TSAB algorithm introduced a few new features. The algorithm relies
on Path Relinking method and the Big Valley phenomenon. Discovery of new
neighborhood properties allowed to reduce the time required to calculate Cmax(π).
The original TSAB required O(hnm) time assuming each job had Θ(m) oper-
ations on average (h is the size of the neighborhood, dependent on the number
of blocks on the chosen critical path), while i-TSAB required only O(hn log m).
Computer experiments indicated that the resulting speedup for i-TSAB algorithm
was from 8 to 13.6, depending on instance size (with larger instances yielding

418 J. RUDY, J. PEMPERA, C. SMUTNICKI

higher speedup). Additionally, the i-TSAB algorithm used the elite solutions from
the Big Valley fragment of the search space and transformed them using the New
Initial Solution (NIS) generator. NIS solution were then used as a basis for further
local exploration. The i-TSAB algorithm proved to be very fast and effective and
managed to provide new upper bounds for 91 benchmark JSSP instances.

4.2. Impact

The TSAB and i-TSAB algorithms influenced many papers in the field of
operations research, some of which consider topics fairly distant from the TS
scheme or even from JSSP. This shows that many ideas introduced in TSAB are
applicable for a wide range of methods and had been used actively and effectively
by many researchers over the years.

The most common aspect of TSAB which was used or modified in different
solving method is the N5 neighborhood. It was used by Li et al. in their hybrid
process planning and scheduling integration algorithm [31]. Similarly, Rego and
Duarte employed the N5 neighborhood in their filter-and-fan approach to JSSP
[38], while Chiang and Lin used it to solve multi-objective variant of the flexible
JSSP [11]. Modified or extended versions of the N5 neighborhood were also
developed. An example is paper by Geyik and Cedimoglu [17]. Their Taboo
Search method used a new neighborhood based on N5.

While designed for Taboo Search method, the N5 neighborhood was also
used in other local search or even in population-based metaheuristics. The neigh-
borhood, either directly or through modification, was used for the SA [26] and
GA [20] methods. In particular, Engin et al. designed one of the operators for their
GA based on the N5 neighborhood. The neighborhood or its modification was
also used in local search procedures for several Ant Colony Optimization-based
approaches [5, 6, 39].

Another commonly used element is the Back Jump Tracking. Gonzáles et
al. employed this technique to solve the problem of minimization of lateness for
a variant of JSSP with sequence-dependent setup times [19]. On the other hand,
Liaw [32] used Back Jump Tracking for Open Shop Scheduling Problem. Finally,
the technique appears in paper by Vredeveld and Hurkens [48], which compares
multiple approximation algorithms for scheduling on unrelated parallel machines.
Those examples showcase that elements of TSAB are also used for application
outside of solving JSSP with makespan criterion.

Other elements of TSAB are used less commonly. Zhang et al. [52] employed
the mechanism for detecting cycles, while Grabowski and Wodecki used the
INSA algorithm [22]. Finally, Watson [49] made use of the property that allows
to detect that the current solution is optimal if its neighborhood is empty.

A separate branch are approaches which implement complete algorithm based
on the structure of TSAB or use TSAB directly as a subprocedure. It is common for

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 419

different authors to implement the TSAB algorithm while omitting and replacing
some elements. The first example is approach by Huang and Liao [25]. The authors
employ traditional TSAB, except that its starting solution is provided by a separate
ACO method. This helps TSAB to re-intensify the search on a promising part of
the solution space. In another paper, Gröflin and Klinkert implement the TSAB
algorithm for the blocking variant of JSSP, but with a different neighborhood.
In their approach by Sha and Hsu, the authors propose a hybrid particle swarm
optimization for JSSP [41]. They employ the TSAB algorithm, but without the
Jump Back Tracking procedure (this results in a less advanced algorithm refereed
to as TSA in original paper by Nowicki and Smutnicki).

In paper by Huang and Lin [24] the TSAB algorithm is used as a local search
in their GA approach supplemented by MapReduce scheme. TSAB has naturally
been used as a base for different Taboo Search approaches, like the one proposed
by Scrich et al. [40]. Less intuitive are methods like Artificial Bee Colony (ABC),
which were based on TSAB, like the one by Chong et al. [12]. Finally, Beck had
implemented methods for JSSP with probabilistic durations based on TSAB [4].

Yet another branch are papers in which authors compare their results to
those obtained by TSAB (just to name a few examples: [3, 13, 16, 20, 43, 51]).
However, perhaps the best testament to the effectiveness and importance of TSAB
and i-TSAB, are scientific papers dedicated entirely to study of their theoretical
properties and inner workings and mechanics. This was shown in papers by Jain
et al. [27] and Watson et al. [50]. Similarly, Geyik and Cedimoglu [17] studied
the properties of the N5 neighborhood (among others).

5. Parallelization of the TSAB algorithm

The natural next step in increasing the effectiveness of the TSAB algorithm
seems to be designing a parallel version of the algorithm. In this section we will
discuss challenges that make such design non-trivial. We will also propose our
own approach to parallel version of the TSAB algorithm through coarse-grained
parallelization.

5.1. Parallelization challenges

The idea of employing parallel computing techniques is not new. In general,
parallelization techniques can be divided into fine-grained and coarse-grained
approach.

While it is hard to pinpoint a boundary between those two approaches, in the
fine-grained approach the code that undergoes parallelization is shorter. Thus the
synchronization and communication between parallel threads occurs more often.
The fine-grained parallelization for JSSP was considered in the past, mainly in

420 J. RUDY, J. PEMPERA, C. SMUTNICKI

papers by Bożejko et al. [7, 9], where the authors considered parallel computa-
tion of the cost function through GPGPU devices. A mixed fine-coarse-grained
approach was also shown in [8], where a framework for running a TS method on
a cluster of GPGPU devices was proposed.

The fine-grained parallelization of a cost function is very desirable. However,
such approach has several important restrictions, both theoretical and practical.
In the context of the TSAB algorithm the main problem arises from the speed of
the algorithm. Fine-grained parallelization should occur during each iteration of
the algorithm. Original paper by Nowicki and Smutnicki approximated the time
to perform a single iteration as 4.5 ·10−5 ·o seconds on PC with 386DX processor
(with clock up to 40 MHz). This means that for 20 jobs and 10 machines the
algorithm could run over 100 iterations per second. Nowadays, with processor
clock speeds at over 3 GHz, this result would likely grow around 1 or 2 orders
of magnitude. Such a short time for a single iteration makes parallelization more
difficult. This is especially true because, while computation of the goal function
(which depend on the number of operation o) takes up the most of the time, there
are also different actions done during a single iteration. This includes the search
of the N5 neighborhood (which depends on the number of blocks B on the chosen
critical path) and the lookup of the taboo list (which has size T). Thus, parallel
computation of the entire iteration of TSAB is not a trivial task, especially as the
value of B changes from iteration to iteration unreliably and is generally small,
which makes the parallelization less effective. The small neighborhood ironically
makes parallelization more difficult.

The above observation can be considered both on theoretical and practical
level. On theoretical level, the effectiveness of parallelization is limited by the
Amdahl’s law [1]. The law predicts a limit of the speedup S(p) using p (ideal)
processors as the number of processors approaches infinity:

lim
p→∞

S(p) =
T (1)
1 − r

, (13)

where T (1) is the running time of the algorithm using a single processor (no
parallelization) and 1 − r is the part of the algorithm that is sequential (serial)
i.e. cannot or is not run in parallel. For r = 0 (so called embarrassingly parallel
problem) the S(p) function is not bounded and S(p) = p (in theory). For any
r > 0 there is a limit of speedup. For example, for r = 0.9 (meaning 90% of the
algorithm is run in parallel and only 10% is sequential), the limit of speedup is
10 and this is only achievable as p approaches infinity. For p = 20 (reasonable
number of cores to expect from a modern single machine) the actual speedup
is still below 7. Even that theoretical result is hard to achieve in practice due to
real-life processors being far from the ideal assumed by the Amdahl’s law. This
is further complicated by the interference from the RAM cache and overhead
caused by the operating system. Also, use of GPGPU devices can cause frequent

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 421

transfer of data between the host devices (CPU and RAM) and GPGPU devices,
which becomes a bottleneck.

In result, the possible speedup of TSAB through the use of fine-grained
parallelization is severely limited. Moreover, the benefits from such speedup are
also limited. TSAB is already a fast method, so the purpose of using parallel
computing is not shorter computation time. The purpose is to allow TSAB to
perform more iterations in the given time. The issue is that the stopping condition
of TSAB is specific, i.e. TSAB stops after a given number of iterations without
improvement completed (which is search path- and instance-dependent) instead
of typical number of iterations in general. The algorithm also uses Back Jump
Tracking (with the number of possible jumps being search path- and instance-
dependent as well). This makes the running time of the algorithm less predictable.
Finally, for many metaheuristic methods, increasing the running time beyond
a certain number of iterations yields relatively little gain in quality of results.

5.2. P-TSAB algorithm

Due to the above considerations, we propose a different approach to parallel
TSAB algorithm. Our approach is based on coarse-grained parallelization and
employs the Gustafson’s law instead of the restrictive Amdahl’s law.

Amdahl’s law assumes that the number of calculations to be done is fixed (in
our case it is the number of instructions needed for TSAB to stop on given JSSP
instance) and the purpose is to shorten the time required for those calculations,
by supplying more parallel processors. On the other hand, Gustafson’s law [23]
works in the opposite direction: it assumes the computation time is fixed, but the
number of computations can increase. The logic behind the law is simple: it is
possible to do kn computations in the same time as n computations, provided
we increase the number of processors k times. The use of Gustafson’s law is not
always possible, but it is very desirable, because unlike the Amdahl’s law it has
not limit, i.e. k can be any integer number.

In our case, the “single” computation is a single search path explored by
a single run of the TSAB algorithm. The Gustafson’s law can be now applied by
running multiple versions of TSAB in parallel, each exploring a different search
path. However, it should be noted that TSAB is a deterministic method. Thus,
on first glance it seems like such multi-run approach would be useless – unlike
probabilistic methods (like SA or GA), TSAB would always follow the same
search path on each run.

However, the solution arrives in the form of the running parameters of TSAB.
To run the TSAB algorithm, one needs to provide it with several parameters. Like
with many metaheuristic methods, the choice of those parameters is not a trivial
task. In their original paper Nowicki and Smutnicki provided the parameters they
used for computer experiments, but also mentioned the choice should be based on

422 J. RUDY, J. PEMPERA, C. SMUTNICKI

specific instance being solved. Our hypothesis is that the various sets of starting
parameters might be used to control the search process of TSAB and direct it
into different parts of the solution space. Thus, combining the result of several
independent TSAB runs should provide better results than the standard TSAB,
while still maintaining practically the same short running time.

The technique of using multiple parallel runs of the same algorithm have
been employed for some metaheuristics before. In particular, for GA method it
can take the form of several subpopulations (often called islands) that evolve
independently. However, the solutions (specimens, chromosomes) are allowed to
migrate to a different island. In this way, subpopulations can exchange solutions
to intensify the search or increase the genetic diversity. It would seem natural
to use similar technique in the parallel version of the TSAB algorithm, but we
consciously refrained from doing so. The reason for this is that such action would
interfere with carefully crafted search mechanics of TSAB. A similar reason is
why the cycle prevention procedure was omitted in the original TSAB algorithm:
such a procedure negatively affected the search process. For this reason cycle
prevention in TSAB was replaced with cycle detection procedure instead.

Thus, our implementation of the parallel TSAB algorithm, called P-TSAB, is
very simple. We assume the PRAM CREW model of parallel computations. Next,
we assume we run k independent TSAB paths on p parallel processors. To allow
the use of P-TSAB in industry applications and as a local search subprocedure
in other algorithms (as mentioned in Section 1), we assume that each individual
TSAB run will take no longer than some constant time T (due to iterative nature
of TSAB this can be done trivially by forcing the algorithm to stop with the output
being the solution with the best makespan found so far). This is justified by the
speed of the basic TSAB algorithm and the size of currently considered practical
instances of JSSP that P-TSAB is intended to solve. We also assume that we have
sequence K of length k, where element K (i) represents the set of parameters for
the i-th run of the TSAB algorithm. We also assume that all TSAB runs start
from the same initial solution provided by the INSA algorithm. The P-TSAB
algorithm can be divided into three steps, which are illustrated in Figure 1 for
k = 16 parallel TSAB paths.

The first step is to start all k TSAB instances. If p ­ k then this can be
done in time O(log k). This is a commonly known technique, where in the first
step processor 1 starts processor 2. In the second step both processors start one
processor each. Generally, after k steps there will be 2k processors running.
By applying logarithm we get that after O

(
log k

)
steps there will k processors

running. After k steps each processor i starts a TSAB run on the i-th set of
parameters. Thus, the total time for this step when p ­ k is O(log k). If p < k,

then the above step can still be done in time O
(⌈ k

p

⌉
log k

)
. This is a well-known

result, following from the Brent’s theorem. Explanation can be found in [18].

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 423

Figure 1: Three steps of the P-TSAB algorithm for k = 16 parallel paths

The second step has k TSAB algorithms run independently. Since in our
assumptions any TSAB completes in time T , then running k TSAB algorithms

can be done in time O(T), when p ­ k or in time O
(⌈

k
p

⌉
T
)

when p < k.

The last step is to compute the minimum of the solutions provided by k
independent TSAB runs. This can be once again done in logarithmic time with
k − 1 processors as follows. Let s(i) be the readable and writable location where
the result of the i-th TSAB run (i.e. schedule and corresponding makespan value)
is held. On step 1, the i-th processor (indexes starts at 1) compares solutions
s(2i−1) and s(2i) and places the solution with the smaller makespan in s(2i−1).

On step 2 we have only
k − 1

2
processors and processor i compares solutions

s(4i−3) and (4i−1) and puts the solution with the smaller makespan in s(4i−3).
In general in step c the i-th processor compares solutions at s(2ci − (2k − 1)) and
s(2ci − 1). Thus, we can calculate the solution with the smallest makespan out

of all k solutions in time O(log k) when p ­ k and in time O
(⌈

k
p

⌉
log k

)
when

p < k.
To summarize, the P-TSAB algorithm runs in time O(log k +T), when p ­ k

and in time O
(⌈

k
p

⌉
(log k + T)

)
, when p < k. It should be also noted that for small

values k the term log k is negligible in practice. Furthermore, P-TSAB is viable
for a wide range of parallel computing environments: from regular PCs with

424 J. RUDY, J. PEMPERA, C. SMUTNICKI

several processor cores, through manycore devices (like Xeon Phi coprocessors)
to distributed multi-node grids, cluster systems or cloud environments.

6. Computer experiment

In order to establish the effectiveness of the P-TSAB algorithm, a set of
computer experiments was conducted. In those experiments, we researched the
possible values for the sequence of parameters K , the length k of such sequence
and the quality of solutions provided by P-TSAB compared to the original TSAB
algorithm.

The P-TSAB algorithm was developed in C++. The experiment was conducted
on a computer with 3.33 GHz Intel Core i7-980X. 162 JSSP benchmarks from
the literature were used. Those benchmarks were divided into three main groups.
Groups 2 and 3 contained the benchmarks proposed by Lawrence [30] and Taillard
[45]. The first group included benchmarks from other authors. The value of T
was set to 60 seconds.

Next, we have to decide upon a way to measure the performance of algorithms.
Let πA

I be the schedule provided by algorithm A for JSSP instance I. We define the
quality of schedule πA

I as the Percentage Relative Deviation (PRD) of Cmax(πA
I)

from the best known makespan for I denoted as Cre f
I :

PRD
(
πA

I

)
=

Cmax
(
πA

I

)
− Cre f

I

Cre f
I

× 100%. (14)

Values Cre f
I were taken from the supplementary materials to van Hoorn’s paper

[46]. In the case of the P-TSAB algorithm the value Cmax(πA
I) was the solution

from all k parallel runs of P-TSAB with the best (smallest) value of the makespan.
The final value for each tested algorithm was the value of PRD(πA

I) averaged
over all 162 instances.

Next, we had to decide on the sequence K : how many elements it has, what are
those elements and what TSAB parameters does each value K (i) represents. We
used 4 parameters from the original TSAB algorithm: maxt, maxl, maxiter and
diter. For each parameter we considered 6 different values, partially based on the
values suggested in the original paper by Nowicki and Smutnicki. This, however,
yielded 64 = 1296 possible parameter sets. Of course, it would be impractical
to run 1296 versions of TSAB in parallel. We would like to narrow that value to
the sets of parameters that complement each other and provide high quality of
solutions. In other words, some set of parameters have to be kept and some have
to be removed.

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 425

However, it would be infeasible to check all possible ways K could be made,
which is 21296−1 (the number of subsets of a 1296 element set, without the empty
set). Thus, we used a greedy heuristic method t hat was divided into two steps. In
the first step, parameter sets were iteratively added to the, initially empty, collec-
tion of parameter sets. In each iteration we added the parameter set which yielded
the greatest decrease in averaged value PRD(πA

I). This step stopped when adding
the next parameter set did not decrease the averaged PRD(πA

I). In the second step
we tried to iteratively remove elements from the collection. A parameter set was
removed if it did not result in lowered quality, after which another iteration was
started. The algorithm stopped when there was no parameter set that could be
removed without decreasing the quality. The approach converged at 42 parameter
sets, which served as the base for the following computer experiments.

6.1. Influence of parameters

For the first experiment, we ran the TSAB algorithm for each of the 42
parameter sets to research which values of parameters had the greatest influence
on the quality of solutions. Let W1 to W6 be the values of the given parameter in
non-decreasing order (i.e. W1 ¬ W2 ¬ · · · ¬ W6). For example, for maxiter the
values W1 to W6 were 3000, 5000, 8000, 10000, 15000 and 20000. The frequency
of each value in the final sequence K for each parameter is shown in Table 1.

Table 1: Percentage of each value W1–W6 for each parameter that appeared in the final
42 parameter sets

Parameter W1 W2 W3 W4 W5 W6

maxt 4.8% 11.9% 9.52% 23.8% 23.8% 26.2%
maxl 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

maxiter 0.0% 0.0% 9.5% 19.0% 31.0% 40.5%
diter 14.3% 19.0% 16.7% 23.8% 14.3% 11.9%

The first observation concerns the maxl parameter (which controls the long-
term memory of TSAB). The only relevant value that ended up in the final
sequence of parameters set is the largest value. It seems to indicate that this
parameter is not suitable for controlling the search process of TSAB. Whether
higher value of maxl is always better remains an open question. As for parameters
maxt and maxiter, we also observe that larger values appear more often. However,
smaller values also significantly contribute to the final result.

The most interesting parameter turns out to be diter: each of the 6 values of this
parameter appeared in the K sequence nearly equally often as the others. There
seems to be no obvious relation between the value of diter and its contribution
to the parameter sets: the contribution increases and then decreases again. We

426 J. RUDY, J. PEMPERA, C. SMUTNICKI

conclude that diter parameter is important for controlling the search process of
the multiple runs of the TSAB algorithm.

To illustrate the advantage of using various (not only large) values of the
parameters, we removed from the sequence K all parameter sets that contained
smaller values of parameters (i.e. the ones from Table 1 that are not in bold).
In result, the average PRD of P-TSAB increased from 0.42% to 0.53% (growth
of 25%).

The next experiment considers the number of search paths k used n P-TSAB.
Using all 42 paths either requires access to machine (or distributed sets of ma-
chines) able to run 42 processes in parallel or increases the time of computation.
Thus, another approach is to use smaller number of paths. For example, let us
consider using only 21 paths instead of 42. The issue is that we have to choose
which 21 of search paths to keep. The number of different ways to do this is(
42
21

)
= 5.38× 1011. If we remove wrong paths, the quality of the final result will

decrease and we would like to minimize that decrease.
In order to research the possible decrease in quality we performed the follow-

ing test. For each value of k from 1 to 41 we ran the P-TSAB algorithm twice.
On the first run we used the best k search paths (i.e. paths which yielded the best
result). In the second run we used the worst k search paths. These tests were used
to estimate the possible difference in quality for given value k. The results are
shown in Fig. 2.

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45

P
R

D
 [

%
]

Number of TSAB paths k

maximum
minimum

Figure 2: Estimation of minimal and maximal PRD of the P-TSAB
algorithm in terms of the number of search paths k

In the best-case scenario reducing the number of search paths to 30 results in
increase of average PRD of P-TSAB of just 5%. However, in the worst-case sce-
nario the increase is 18%. For k = 21 those values are 9% and 29%, respectively.
From this we conclude that the decrease of the number of search paths will allow

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 427

P-TSAB to maintain its speed on a smaller number of parallel processors, but will
decrease the quality of results. For k < 30 that quality decrease is considerable.

6.2. TSAB and P-TSAB comparison

The second set of experiments concerns the performance of P-TSAB. For
comparison purposes, we also run the standard variant of TSAB (here denoted S-
TSAB for Sequential TSAB). S-TSAB was run for the best of the aforementioned
42 paths (i.e. a path that provided the best PRD(πA

I) averaged over all instances).
Moreover, we compared our results to some of the literature approaches described
in Section 2, namely HEA [10], BRKGA [15], GES [35], AlgFix [36], TS-PR [37]
and TS/SA [52].

When comparing algorithms it is important to take their running time and
running method into account and the running time is dependent on the computer
the algorithm was run on. Below we summarized the details of running times of
algorithms for reference:

S-TSAB 60 second limit using single best-of-42 search path for all instances (on
3.33 GHz Intel Core i7-980X).

P-TSAB 60 second limit using 42 parallel search paths (on 3.33 GHz Intel Core
i7-980X).

HEA For the first group of instances: on average 540 (abz7–9), 700 (yn1–4),
1100 (swv01–05) and 1200 (swv06–10) seconds for a single run. For the
second group: under 20 seconds for a single run, except for 217 seconds
in the case of the la36–40 group. Best and average result of 10 runs were
reported. Run on AMD 2.8 GHz Opteron.

BRKGA First group: under 14 (ft01–20 and orb01–10), 55 (abz7–9 and swv01–
05), 78 (swv06–10), 105 (yn1–4) and 2300 (swv11–15) seconds for a single
run. Second group: under 6 (la01–20), 22 (la21–30 and la36–40) and 40
(la31–35) seconds for a single run. Third group: under 30 (ta01–10), 70
(ta11–20), 150 (ta21–30), 490 (ta31–40) and 1070 (ta41–50) seconds for
a single run. Best and average run results were reported. Run on AMD
2.2 GHz Opteron.

GES First group: under 7 seconds except for orb01 (10 seconds), orb09 (11
seconds) and orb04 (50 seconds) for a single run. Second group: under
17 (la21–30) and 110 (la36–40) seconds for a single run. Under 85 (ta01–
10), 1160 (ta11–20), 1670 (ta21–30), 1460 (ta31–40), 2110 (ta41–50), 7
(ta51–60), 185 (ta61–70) and 40 (ta71–80) seconds for a single run. Run
on Pentium 2.8 GHz.

428 J. RUDY, J. PEMPERA, C. SMUTNICKI

AlgFix Hard time limit of 10 000 seconds was used. For ta01–10 a time limit of
100 seconds was used and AlgFix provided time-to-quality ratio comparable
to results by Nowicki and Smutnicki from [34]. Run Pentium 2.8 GHz.

TS-PR First group: under 5 (ft01–20), 7 (orb01–10), 350 (yn1–4), 440 (abz7–9),
630 (swv01–10), 6000 (swv11–15) for a single run. Second group: under 12
seconds except for la29 (74 seconds), la37 (26 seconds), la38 (33 seconds)
and la40 (385 seconds) for a single run. Third group: under 180 (ta01–10),
220 (ta11–20), 780 (ta21–30), 705 (ta31–40), 1730 (ta41–50) seconds for
a single run. Best and average results for 10 runs were reported. Run on
Quad-Core AMD Athlon 3.0.

TS/SA First group: under 15 (orb01–10), 90 (abz7–9), 110 (yn1–4), 150 (swv01–
05) and 200 (swv06–10) seconds for a single run. Second group: under 16
seconds except for 36 seconds for la36–40 on a single run. Third group:
under 140 (ta01–10), 270 (ta11–20), 450 (ta21–30), 620 (ta31–40) and
920 (ta41–50) seconds for a single run. Best and average run results were
reported. Run on Pentium 4 3.0 GHz.

The averaged values of PRD(πA
I) for each algorithm and each instance group

are shown in Tables 2, 3, and 4. For the first group of instances the average
PRD(πA

I) value for S-TSAB was around 1%. S-TSAB found optimal solutions for
benchmarks from ft06–20 and swv16–20 groups. The largest value of averaged
PRD(πA

I) was 3.05% and occurred for group swv06–10. The use of parallel
computing provided increase the quality of solutions: averaged value for P-TSAB
is only 0.6% and is almost two times smaller than for S-TSAB (which uses the best

Table 2: Averaged values of PRD(πAI) for the first group of benchmark instances

Group n × m S-TSAB P-TSAB HEA BRKGA GES TS-PR TS/SA
ft06–20 0.00 0.00 0.00 0.00 0.00
orb01–10 10×10 0.22 0.04 0.01 0.00 0.00 0.17
yn1–4 20×20 1.71 0.47 0.23 0.29 0.22 0.62
swv01–05 20×10 1.80 1.41 0.21 0.32 0.23 1.14
swv06–10 20×15 3.05 1.87 0.51 0.65 0.53 2.10
swv11–15 1.27 0.84 0.28 0.10
swv16–20 0.00 0.00
abz5–6 10×10 0.16 0.00
abz7–9 15×20 1.44 0.75 0.23 0.28 0.20 0.89
average 1.07 0.60

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 429

path out of 42). The largest improvement over S-TSAB occurred in the swv06–10
group, for which average PRD(πA

I) decreased from 3.05% to 1.87%.

Table 3: Averaged values of PRD(πAI) for the second group of benchmark instances

Group n × m S-TSAB P-TSAB HEA BRKGA GES TS-PR TS/SA
la01–05 10×5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
la06–10 15×5 0.00 0.00 0.00 0.00 0.00 0.00
la11–15 20×5 0.00 0.00 0.00 0.00 0.00 0.00
la16–20 10×10 0.11 0.00 0.00 0.00 0.00 0.00 0.00
la21–25 15×10 0.51 0.08 0.00 0.00 0.00 0.00 0.03
la26–30 20×10 0.37 0.22 0.02 0.05 0.00 0.02 0.02
la31–35 30×10 0.00 0.00 0.00 0.00 0.00 0.00
la36–40 15×15 0.32 0.11 0.01 0.02 0.00 0.00 0.19
average 0.16 0.05 0.00 0.01 0.00 0.00

Table 4: Averaged values of PRD(πAI) for the third group of benchmark instances

Group n × m S-TSAB P-TSAB HEA BRKGA GES TS-PR TS/SA
ta01–10 15×15 0.55 0.23 0.05 0.01 0.01 0.01 0.11
ta11–20 20×15 1.26 0.69 0.31 0.10 0.09 0.24 0.65
ta21–30 20×20 1.22 0.57 0.34 0.23 0.07 0.31 0.60
ta31–40 30×15 1.64 0.81 0.26 0.22 0.18 0.22 0.56
ta41–50 30×20 3.19 2.13 0.59 0.69 0.64 0.65 1.23
ta51–60 50×15 0.09 0.04 0.00
ta61–70 50×20 0.13 0.02 0.01
ta71–80 100×20 0.01 0.01 0.00
average 1.01 0.56 0.16

The second group of benchmark instances is easily solved by the S-TSAB
algorithm: its average PRD(πA

I) is only 0.16%. Due to this, the use of parallel
computing reduces PRD by only 0.11% to 0.05%. The average PRD for S-TSAB
in the third group of benchmarks is similar to the one in the first group at 1.01%.
The lowest values occur for instance groups with high number of operations
i.e. ta51–80. The parallel P-TSAB algorithm once again managed to reduce the
average PRD by half to the value of 0.56%. The largest relative improvement
(almost 5 times lower average PRD) happened for instance group ta61–70. The
largest absolute improvement of 1.06% occurs for group ta41–50.

430 J. RUDY, J. PEMPERA, C. SMUTNICKI

It should be noted that when comparing the results obtained by S-TSAB and
P-TSAB to literature approaches, the following circumstances should be taking
into account. Literature algorithms were tested on different sets of benchmarks
(authors often omitted instances of large sizes), on different computers with
various technical parameters. Moreover, not all authors reported the running
times of algorithms. Even if it was reported, it often surpassed 60 seconds.
Nonetheless, the analysis of results shows that the quality of solutions provided
by the P-TSAB algorithm is comparable to the quality of solutions provided
by the newest literature approaches for JSSP. This shows that a simple parallel
computing technique applied to TSAB allows to improve its performance.

7. Conclusions

In this paper we proposed the parallel P-TSAB algorithm as a simple coarse-
grained parallelization of the TSAB algorithm for the job shop scheduling prob-
lem. Due to practical considerations for use in computer-aided production plan-
ning we restricted the running time of the algorithm to 60 seconds. A computer
experiment conducted using a large number of benchmark instances have shown
that the TSAB algorithm remains one of the most effective approximation methods
for the job shop scheduling problem when run on modern computers. Moreover,
the chosen parallelization method allowed to considerably increase the effec-
tiveness of TSAB (Percentage Relative Deviation from the best known solutions
was reduced in half) and free the user from having to fine-tune the algorithm
parameters based on the job shop instance being solved.

We also showed that choosing the larger value of some of TSAB parameters
does not always result in better solutions and that various values of some param-
eters can be used to obtain better results. The proposed P-TSAB algorithm can
be used in many parallel computing environments, also when smaller number
of CPU cores is available (at the cost of longer computation time or decrease in
quality of solutions). With its speed and accuracy the P-TSAB algorithm can be
used as a local search subprocedure for other methods, as a module in computer-
aided production planning or as a method of estimating the minimal cycle time
in cyclic job scheduling problem.

References

[1] G.M. Amdahl: Validity of the single processor approach to achieving large
scale computing capabilities, In Proceedings of the Spring Joint Computer
Conference (New York, NY, USA, 1967), AFIPS ’67 (Spring), ACM, 483–
485.

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 431

[2] L. Asadzadeh: A local search genetic algorithm for the job shop scheduling
problem with intelligent agents, Computers & Industrial Engineering, 85
(2015), 376–383.

[3] E. Balas and A. Vazacopoulos: Guided Local Search with Shifting Bot-
tleneck for job shop scheduling, Manage. Sci., 44(2), (1998), 262–275.

[4] J.C. Beck and N. Wilson: Proactive algorithms for job shop scheduling
with probabilistic durations, J. Artif. Int. Res., 28(1), (2007), 183–232.

[5] C. Blum and M. Dorigo: Search bias in Ant Colony Optimization: on the
role of competition-balanced systems, IEEE Transactions on Evolutionary
Computation, 9(2), (2005), 159–174.

[6] C. Blum and M. Sampels: An Ant Colony Optimization algorithm for shop
scheduling problems, Journal of Mathematical Modelling and Algorithms,
3(3), (2004), 285–308.

[7] W. Bożejko, C. Smutnicki and M. Uchroński: Parallel calculating of the
goal function in metaheuristics using GPU. In Computational Science –
ICCS 2009 (Berlin, Heidelberg, 2009), G. Allen, J. Nabrzyski, E. Seidel,
G. D. van Albada, J. Dongarra, and P. M. A. Sloot, Eds., Springer Berlin
Heidelberg, 1014–1023.

[8] W. Bożejko and M. Uchroński: Distributed Tabu Search algorithm for
the job shop problem, In 1st Australian Conference on the Applications of
Systems Engineering ACASE’12 (2012), 54.

[9] W. Bożejko, M. Uchroński and M. Wodecki: Parallel cost function deter-
mination on GPU for the job shop scheduling problem, In Parallel Process-
ing and Applied Mathematics (Berlin, Heidelberg, 2012), R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Waśniewski, Eds., Springer Berlin Hei-
delberg, 1–10.

[10] T.C.E. Cheng, B. Peng and Z. Lü: A hybrid evolutionary algorithm to solve
the job shop scheduling problem, Annals of Operations Research, 242(2),
(2016), 223–237.

[11] T.C. Chiang and H.-J. Lin: A simple and effective evolutionary algorithm
for multiobjective flexible job shop scheduling. International Journal of
Production Economics, 141(1), (2013), 87–98.

[12] C. Chong, M. Low, A.I. Sivakumar and K. Leng Gay: Using a Bee Colony
algorithm for neighborhood search in job shop scheduling problems, 21st
European Conference on Modelling and Simulation: Simulations in United
Europe, ECMS 2007, (June 2007).

432 J. RUDY, J. PEMPERA, C. SMUTNICKI

[13] C.S. Chong, M.Y. Hean Low, A.I. Sivakumar and K.L. Gay: A Bee
Colony Optimization algorithm to job shop scheduling, In Proceedings of
the 2006 Winter Simulation Conference, (Dec 2006), 1954–1961.

[14] U. Dorndorf,E. Pesch and T.P. Huy: Recent developments in schedul-
ing, In Operations Research Proceedings 1998, (Berlin, Heidelberg, 1999),
P. Kall and H.-J. Lüthi, Eds., Springer Berlin Heidelberg, 353–365.

[15] J.F. Gonçalves and M.G.C. Resende: An extended Akers graphical method
with a biased random-key genetic algorithm for job-shop scheduling, Inter-
national Transactions in Operational Research, 21(2), (2014), 215–246.

[16] H. Ge, L. Sun, Y. Liang and F. Qian: An effective PSO and AIS-based
hybrid intelligent algorithm for job-shop scheduling, IEEE Transactions
on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(2),
(2008), 358–368.

[17] F. Geyik and I.H. Cedimoglu: The strategies and parameters of Tabu
Search for job-shop scheduling, Journal of Intelligent Manufacturing, 15(4),
(2004), 439–448.

[18] A. Gibbons and P. Spirakis: Lectures in parallel computation, vol. 4, Cam-
bridge University Press, 1993.

[19] M.A. González C.R. Vela, I. González-Rodríguez and R. Varela:
Lateness minimization with Tabu Search for job shop scheduling problem
with sequence dependent setup times, Journal of Intelligent Manufacturing,
24(4), (2013), 741–754.

[20] J.F. Gonçalves, J.J. de Magalhães Mendes and M.G. Resende: A hybrid
genetic algorithm for the job shop scheduling problem, European Journal
of Operational Research, 167(1), (2005), 77–95.

[21] J. Grabowski, E. Nowicki and S. Zdrzałka: A block approach for single-
machine scheduling with release dates and due dates, European Journal of
Operational Research, 26 (1986), 278–285.

[22] J. Grabowski and M. Wodecki: A Very Fast Tabu Search Algorithm for
Job Shop Problem, Springer US, Boston, MA, 2005, 117–144.

[23] J.L. Gustafson: Reevaluating Amdahl’s law, Commun. ACM, 31(5), (1988),
532–533.

[24] D.-W. Huang and J. Lin: Scaling populations of a genetic algorithm for
job shop scheduling problems using MapReduce, In Proceedings of the

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 433

2010 IEEE Second International Conference on Cloud Computing Technol-
ogy and Science (Washington, DC, USA, 2010), CLOUDCOM ’10, IEEE
Computer Society, 780–785.

[25] K.-L. Huang and C.-J. Liao: Ant Colony Optimization combined with
Taboo Search for the job shop scheduling problem, Computers and Opera-
tions Research, 35(4), (2008), 1030–1046.

[26] Hui J. Yang, L. Sun, H.P. Lee, Y. Qian and Chun Y. Liang: Clonal selection
based memetic algorithm for job shop scheduling problems, Journal of
Bionic Engineering, 5(2), (2008), 111–119.

[27] A.S. Jain, B. Rangaswamy and S. Meeran: New and “stronger” job-shop
neighbourhoods: A focus on the method of Nowicki and Smutnicki (1996),
Journal of Heuristics, 6(4), (2000), 457–480.

[28] J. Kuhpfahl and C. Bierwirth: A study on local search neighborhoods for
the job shop scheduling problem with total weighted tardiness objective,
Computers & Operations Research, 66 (2016), 44–57.

[29] M. Kurdi: An effective new island model genetic algorithm for job shop
scheduling problem. Computers & Operations Research, 67 (2016), 132–
142.

[30] S. Lawrence: Resource constrained project scheduling: an experimental
investigation of heuristic scheduling techniques (Supplement), Graduate
School of Industrial Administration, Carnegie-Mellon University, 1984.

[31] X. Li, X. Shao, L. Gao and W. Qian: An effective hybrid algorithm for
integrated process planning and scheduling, International Journal of Pro-
duction Economics, 126(2), (2010), 289–298.

[32] C.-F. Liaw: A hybrid genetic algorithm for the open shop scheduling prob-
lem, European Journal of Operational Research, 124(1), (2000), 28–42.

[33] E. Nowicki and C. Smutnicki: A fast Taboo Search algorithm for the job
shop problem, Management Science, 42(6), (1996), 797–813.

[34] E. Nowicki and C. Smutnicki: An advanced Tabu Search algorithm for the
job shop problem, J. of Scheduling, 8(2), (2005), 145–159.

[35] P.M. Pardalos and O.V. Shylo: An algorithm for the job shop scheduling
problem based on Global Equilibrium Search techniques, Computational
Management Science, 3(4), (2006), 331–348.

434 J. RUDY, J. PEMPERA, C. SMUTNICKI

[36] P.M. Pardalos, O.V. Shylo and A. Vazacopoulos: Solving job shop
scheduling problems utilizing the properties of backbone and “big valley”,
Computational Optimization and Applications, 47(1), (2010), 61–76.

[37] B. Peng, Z. Lü and T. Cheng: A Tabu Search/Path Relinking algorithm to
solve the job shop scheduling problem, Computers & Operations Research,
53 (2015), 154–164.

[38] C. Rego and R. Duarte: A filter-and-fan approach to the job shop scheduling
problem, European Journal of Operational Research, 194(3) (2009), 650–
662.

[39] A. Rossi and G. Dini: Flexible job-shop scheduling with routing flexibility
and separable setup times using Ant Colony Optimisation method, Robotics
and Computer-Integrated Manufacturing, 23(5), (2007), 503–516.

[40] C.R. Scrich, V.A. Armentano and M. Laguna: Tardiness minimization
in a flexible job shop: A Tabu Search approach, Journal of Intelligent Man-
ufacturing, 15(1), (2004), 103–115.

[41] D. Sha and C.-Y. Hsu: A hybrid Particle Swarm Optimization for job shop
scheduling problem, Computers & Industrial Engineering, 51(4), (2006),
791–808.

[42] C. Smutnicki: Cyclic job shop problem [cykliczny problem gniazdowy],
In Advanced models and optimisation algorithm for cyclic systems [Za-
awansowane modele i algorytmy optymalizacji w systemach cyklicznych],
W. Bożejko, J. Pempera, C. Smutnicki, and M. Wodecki, Eds., Akademicka
Oficyna Wydawnicza EXIT, Warszawa, 2017, ch. 6, pp. 105–160 (in Polish).

[43] L. Sun, X. Cheng and Y. Liang: Solving job shop scheduling problem using
genetic algorithm with penalty function, International Journal of Intelligent
Information Processing, 1 (2010), 65–77.

[44] S. Sundar, P.N. Suganthan, C.T. Jin, C.T. Xiang and C.C. Soon: A hybrid
Artificial Bee Colony algorithm for the job-shop scheduling problem with
no-wait constraint, Soft Computing, 21(5), (2017), 1193–1202.

[45] E. Taillard: Benchmarks for basic scheduling problems, European Journal
of Operational Research, 64(2), (1993), 278–285.

[46] J.J. van Hoorn: The current state of bounds on benchmark instances of
the job-shop scheduling problem. Journal of Scheduling, 21(1), (2018),
127–128.

IMPROVING THE TSAB ALGORITHM THROUGH PARALLEL COMPUTING 435

[47] P.J.M. van Laarhoven, E.H.L. Aarts and J.K. Lenstra: Job shop schedul-
ing by Simulated Annealing. Operations Research, 40(1), (1992), 113–125.

[48] T. Vredeveld and C.A.J. Hurkens: Experimental comparison of approx-
imation algorithms for scheduling unrelated parallel machines. INFORMS
J. on Computing, 14(2) (2002), 175–189.

[49] J.P. Watson: Empirical Modeling and Analysis of Local Search Algorithms
for the Job-shop Scheduling Problem. PhD thesis, Fort Collins, CO, USA,
2003. AAI3114700.

[50] J.P. Watson, A.E. Howe and L.D. Whitley: Deconstructing Nowicki and
Smutnicki’s i-TSAB tabu search algorithm for the job-shop scheduling prob-
lem. Computers & Operations Research, 33(9), (2006), 2623–2644. Part
Special Issue: Anniversary Focused Issue of Computers & Operations Re-
search on Tabu Search.

[51] C. Zhang, P. Li, Z. Guan and Y. Rao: A Tabu Search algorithm with a new
neighborhood structure for the job shop scheduling problem. Computers &
Operations Research, 34(11), (2007), 3229–3242.

[52] C.Y. Zhang, P. Li, Y. Rao and Z. Guan: A very fast TS/SA algorithm for the
job shop scheduling problem. Comput. Oper. Res., 35(1), (2008), 282–294.

	JAROSŁAW RUDY JAROSŁAW PEMPERA CZESŁAW SMUTNICKI: Improving the TSAB algorithm through parallel computing
	Introduction
	Literature overview
	Problem formulation
	TSAB algorithm
	Features
	Impact

	Parallelization of the TSAB algorithm
	Parallelization challenges
	P-TSAB algorithm

	Computer experiment
	Influence of parameters
	TSAB and P-TSAB comparison

	Conclusions

