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Marine mammal identification and classification for passive acoustic monitoring remain a challenging
task. Mainly the interspecific and intraspecific variations in calls within species and among different
individuals of single species make it more challenging. Varieties of species along with geographical diversity
induce more complications towards an accurate analysis of marine mammal classification using acoustic
signatures. Prior methods for classification focused on spectral features which result in increasing bias
for contour base classifiers in automatic detection algorithms. In this study, acoustic marine mammal
classification is performed through the fusion of 1D Local Binary Pattern (1D-LBP) and Mel Frequency
Cepstral Coefficient (MFCC) based features. Multi-class Support Vector Machines (SVM) classifier is
employed to identify different classes of mammal sounds. Classification of six species named Tursiops
truncatus, Delphinus delphis, Peponocephala electra, Grampus griseus, Stenella longirostris, and Stenella
attenuate are targeted in this research. The proposed model achieved 90.4% accuracy on 70–30% training
testing and 89.6% on 5-fold cross-validation experiments.

Keywords: marine mammals; 1D Local Binary Patterns; Mel frequency cepstral coefficients; feature
extraction; passive acoustic monitoring.

1. Introduction

Wildlife management and conservation require ex-
tensive and robust information about animals’ be-
haviour. Cetologists are interested to identify the an-
imal’s population structure, anatomy, physiology, ge-
netics, parasites, diseases, behaviour and sensory abili-
ties, evolutionary relationships, ecology, and conserva-
tion. Cetacean (whales, dolphins, and porpoises) plays
a vital role in the oceanic ecosystem by taking control
of the lower trophic level population (Bowen, 1997).
Dolphins usually live in beach areas and use the same
seafood which humans consume and hence become
a great sign of pollution and health for the ecosystem.
Whales are responsible to balance ocean ecosystems
through establishing proper food chain and popula-
tion, i.e. blue whales consume 40 million krill per day
and ensure that certain species do not overpopulate
the ecosystem (Sakthivel et al., 2014). Cetacean’s
(whale) poop helps in phytoplankton’s growth which

takes out the carbon from the environment and pro-
vides a healthier and clean atmosphere for all the
land and sea animals making cetaceans more impor-
tant (Ojala et al., 1996). Now, spectating activities
of dolphins introduce them as a source of economic
growth for many countries (Amin, Thomas, 1996).

In dark water, acoustical detection of mines and
other dangerous objects remains a difficult target to
achieve. Navy and other federal organizations require
dolphins (Binder, Hines, 2014) and sea lions be-
cause of their excellent sensory and diving compe-
tencies which help to protect lives and naval assets
(Kaniklides, 2014) as they can detect and locate
enemy swimmers and mines which threaten human
lives, military and civilian ships. Adaptability, train-
ability and hearty nature of bottlenose dolphins and
white whales make them well-known species for navy
tasks (Nalavade, Meshram, 2012). Blue whales are
good consumers of certain species like krill. Sperm
whale helps to offset the carbon from the atmosphere.
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Thus, the classification of marine mammals becomes
an emerging subject for researchers. Instead of visual
methods such as films and photos, audio provides bet-
ter means of tracking animals from a great distance.
This kind of tracking involves information about the
environmental circumstances. Some parameters like
the time of day and night, inaccessibility of some area,
costs, time spans animals use to spend at that location
definitely affect the visual observations. Acoustic ob-
servations provide confident results as sounds are not
affected by the weather.

PAM (Passive Acoustic Monitoring) (Lin et al.,
2014) is an enhanced way of monitoring marine mam-
mals. Acoustic identification emerges as a beneficial
source because sound can transmit much faster than
light. Vocal of whales can travel at a great distance
which helps to identify them from tens of kilometres
and can be used to classify different species/individuals
based on their unique characteristics. Traditionally,
long-term monitoring has employed archival instru-
ments from which data are accessed only when the
recording instrument is retrieved (Baumgartner
et al., 2018). Some current PAM systems implement
real-time processing like hydrophone arrays where pro-
cessing is done on-board or on a discrete system (a type
of PAM system) which records all sounds for post-
processing such as noise loggers.

Identification and classification of marine mammals
using their calls remain a challenging task in PAM
(Lin et al., 2014). Cetacean uses calls and whistles to
communicate with each other. High variation exists in
whistles within species which makes their classification
problematic. Along with the variation in calls within
species similar calls are produced by different species
which is another challenge. To meet these challenges,
Lin and Chou (2015) and Lin et al. (2013) introduce
a Local-max detector to identify frequencies of calls
of marine mammals to classify them. Recordings of
seven different species were included in this research
achieved from MobySound.org (Mellinger, Clark,
2006). Three acoustical parameters were measured for
the distribution of frequencies. Using the statistical
analysis this study achieved a 70.3% correct classifi-
cation rate.

González-Hernández et al. (2017) applied 1/6-
octave analysis for feature extraction and a combina-
tion of four parallel feed-forward neural networks with
a 90% classification rate. Teager-Kaiser Energy Oper-
ator based method was used for clicks detection (Luo
et al., 2017). Naive Bayesian, K-nearest neighbors, ar-
tificial neural networks, support vector machines and
hidden Markov models were used for classification af-
ter preprocessing and feature extraction. Feroze et al.
(2018) demonstrated that a single classification ap-
proach is not enough to classify signals with very
high accuracy. With an emphasis on non-stationary
noise sources, many DCL algorithms were enhanced.

To detect the nearest neighbour approach along with
3D localization with multiple arrivals was established
by applying time-difference-of-arrival (TDOA) meth-
ods, recalling TDOAs a few times more than nor-
mal three detections while associations among given
phone’s detections with the nearest neighbors were
used (Mellinger et al., 2017). The network-based
classification method proves effective for unsupervised
and rapid marine call classification using large datasets
that contain clicks types that may not be recognized
as a priori (Frasier et al., 2017).

To classify blue whale calls, wavelet packet trans-
forms and short-time Fourier are proposed and to com-
pute and construct energies and vocalization, charac-
teristics feature vectors are constructed (Bahoura,
Simard, 2010). 86.25% classification accuracy is
achieved by using multilevel perceptron on the tested
dataset. Rankin et al. (2017) introduced BANTER
– a classification method that includes data of all
call types. For echolocation clicks, whistles and burst
pulses, an individual classifier was created by using
PAM Guard with an 84% accuracy rate for all classes.
Feature of sound produced by similar groups was ex-
tracted by using four types of individual features and
three classifiers were utilized to classify introduced
species. Sparse classifier and Mel Frequency Cepstral
coefficients (MFCCs) identify species with an accuracy
rate of 82.7% (Ibrahim, et al. 2018).

PAM often shows inaccurate results which over-
burdened acoustic analyst. To overcome this prob-
lem automatic recognition methods were proposed by
(Binder, Hines, 2014). The whole process is divided
into two steps. Firstly, automatic detection (Bougher
et al., 2012) is applied to a dataset of four species
of cetacean bowhead (Mellinger, Clark, 2000),
humpback (Payne, McVay, 1971), North Atlantic
right (Bort et al., 2015) and sperm whales (Thode
et al., 2002). Secondly, automatic classifier is used to
accurately distinguish between species which shows
85% accuracy but aural classifier was applied on a lim-
ited dataset (Young, Hines, 2007).

High intra-specific variation makes species classi-
fication a challenging task (Lin et al. 2014). To ob-
serve seasonal changes in species diversity automatic
classification and detection techniques (Guisan et al.,
2002, Seavy et al., 2005) were applied on acoustic fea-
tures of marine by using marine cable hosted Observa-
tory(MACHO) (Hsu et al., 2007) with twelve features
vector and to classify four cetacean species discrimi-
nant function analysis was used which results in 72.2%
classification rate (Ramayah et al., 2010). Local Bi-
nary Patterns is widely used approach for 2D image
processing such as facial recognition and texture iden-
tification. This research aims to develop a 1D Local
Binary Patterns for feature extraction directly from
acoustic features rather than converting acoustic sig-
nals into images/histograms.
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2. Materials and methods

2.1. Data collection

WMMS-DB (The Watkins Marine Mammals
Sound Database, Woods Hole Oceanographic Institu-
tion) is a standard dataset, explicitly designed for per-
sonal and academic use. The dataset contains about
2000 recordings of more than 60 species approxi-
mately. AX-58, Tyack Suction cup, Ithaco 602M108
hydrophones were used to detect the sound waves un-
derwater along with Magnemite and Magnecorder tape
recorders with the frequency response of 70–8000 Hz.
Table 1 describes the dataset used in the study.

Table 1. Summary of sound recordings examined
in this study.

S# Species No. of files
1 Bottlenose dolphins 24
2 Common dolphins 52
3 Melon headed whales 63
4 Risso’s dolphins 67
5 Spinner dolphins 114
6 Spotted dolphins 66

2.2. Bottlenose dolphins

Bottlenose dolphins got the name because of their
short stubby beak which looks like a bottle. Scientifi-
cally they are known as Tursiops Truncatus. They can
usually weigh up to 1000 pounds and can grow up to
12 feet long. Bottlenose dolphins are frequently met
in coastal and oceanic water, generally in moderate
water among 45○N and 45○S (Baumann-Pickering
et al., 2010). Three different types of vocal learning
are present in bottlenose dolphins like comprehension,
production, and usage. These learning capabilities are
utilized to recognize the unique signature clicks of in-
dividuals (Janik, 2013).

2.3. Common dolphins

Based on genetic and morphological differences,
common species are categorized into two species “short-
beaked common dolphin” (Delphinus delphis) and
“long-beaked common dolphins” (Delphinus capensis).
Delphinus dolphins mostly live in deeper water up to
590 feet (López et al., 2013). Short beak common dol-
phins use four types of clicks and whistles to communi-
cate, e.g. pure tones, visual cues, tactile cues, and non-
vocal acoustic cues. These dolphins mostly use pure
clicks to express happiness, excitement and even panic.
Their clicks/whistles have basics from 3 to 24 kHz and
last 0.01–4 s (Erbe et al., 2017).

2.4. Melon-headed whales

Melon-headed whales (Peponocephalaelectra) are
found worldwide in oceanic water from 20○N to 20○S

and frequently in Palmyra Atoll (northern line island).
They usually grow up to 2.78 m long. Female whales
are often smaller than males. Melon-headed whales
use acoustic signals like clicks and whistles to prey
and communicate among groups. They have a dom-
inant frequency range of whistles between 8 kHz to
29.7 kHz (Frankel, Yin, 2010). Frequency of their
calls depends on their motions, they usually produce
low-frequency calls among 8–12 kHz while they rest or
swim but when they feel excited or frightened, their
clicks can reach up to 20–40 kHz.

2.5. Risso’s dolphins

Risso’s dolphins (Grampusgriseus) were named
after French naturalist Antoine Risso. They are also
known as “a big fish” because they are mostly 4 m
long and weigh more than 500 kg. Risso’s dolphins live
where the continental slope is near to shore and they
are widespread in the Mediterranean Sea (Bearzi
et al., 2011). Risso has a life span of 20–30 years where
carnal development starts at the age of 8–10 and 10–12
years for females and males respectively. At a trophic
level, reduction in Risso’s dolphins population as
prey items will affect the energy budgets of consumer
species.

2.6. Spotted dolphins

Atlantic spotted dolphins are often misidentified
species because as they grow they develop special
spots on their bodies, unlike young spotted dolphins.
Male dolphins are much longer than females as they
mature with a size of 71/2 feet and with a weight of
240 to 360 kilograms. A significant number of spotted
dolphins are in the Bahamas ocean but they also live
in different locations, e.g. Africa, Europe, the United
States and the Gulf of Mexico. This species has a
broad frequency range of whistles and clicks from 1.15
to 23.44 kHz.

2.7. Spinner dolphins

Spinner dolphins (Stenellalongirostris) are well
known “acrobats” of the ocean. Spinners named due to
their ability to spin their bodies multiple times. They
are approximately 61/2 feet long with dark gray backs
and white bellies. They mostly live in warm water 30
to 40○C around the world, e.g. Thailand, Hawaiian Is-
land and Pacific Ocean of America (Thorne et al.,
2012). Spinner dolphins usually travel in groups called
“schools”. Their schools contain other species such as
humpback whales, tunas and other species of dolphins.
They have a special hearing sense which enables them
to determine the size, movement, and position of a par-
ticular object with the utilization of sounds (Benoit-
Bird, Au, 2009).

The features of the species mentioned above are
shown in Table 2.



724 Archives of Acoustics – Volume 45, Number 4, 2020

Table 2. Summary of sound recordings examined in this study.

Species Scientific name Frequency range [kHz] Weight/length

Bottlenose dolphins Tursiops Truncatus 60–140 1000 pounds/12 feet long
Common dolphins Delphinus delphis/Delphinus capensis 3–24 440 pounds/9 feet long

Melon-headed Whales Peponocephalaelectra 8–29.7 2.78 m long
Risso’s dolphins Grampusgriseus 4–22 500 kg/4 m long
Spotted dolphins Stenella frontalis 1.15–23.44 240–360 kg/71/2 feet long
Spinner dolphins Stenellalongirostris 32.3–65 61/2 feet long

3. Feature extraction and classification approach

3.1. Mel Frequency Cepstral Coefficient (MFCC)

To extract spectral features MFCC becomes the
most dominant feature extraction method which
extracts audio features by extracting parameters
of the speech while de-emphasizing all other data
(Chaudhari et al., 2015; Aziz et al., 2019a). As an
acoustic descriptor MFCCs have been widely used
in the research using audio signals (Valero, Alías,
2012; Bhalke et al., 2016; Reljin, Pokrajac, 2017;
Aziz et al., 2019d). The base of MFCC is the frequency
domain while using the Mel scale (Das, Parekh,
2012). Mel-scale can be defined as a scale on which
each tone of a sound signal with frequency t is mea-
sured in hertz (Dash et al., 2012).

After the conversion of an analog signal into a digi-
tal signal, speech samples go through the procedure of
frame blocking in which they are segmented into small
frames with the maximum length of 40 ms. Voice sig-
nals are divided into N -sample’s frames. Neighbouring
samples are isolated by some value M , where M > N
and mostly M has value 100 when N is 256 (Aida-
Zade et al., 2006). Hamming window is used for win-
dowing steps in the feature extraction process that
assimilates those frequency lines which are the clos-
est. Now time domain to frequency domain conversion
is performed for frames of N samples in Fast Fourier
Transform (FFT). The convolution of vocal tract im-
pulse response H[n] and a pulse U[n] is converted
into the time domain using Fourier transforms. The
linear scale is not followed by voice signal because of
this; filters are applied according to Mel scale in the
fourth step Mel-frequency wrapping of this chain. For
the centre frequency of two contiguous filters linearly

Fig. 1. MFCC Derivation.

is declined to zero by using each filter (Tiwari, 2010).
For the given frequency f Eq. (1) is applied to extract
the Mel frequency

fMel = 25951 log10 (1 + f

700
) . (1)

To extract the Mel Frequency Cepstral Coefficient,
the log Mel spectrum is converted into the time domain
using a Discrete Cosine Transform (DCT) in the last
step of MFCC (Dash et al., 2012). The resultant set
of Mel Frequency Cepstral Coefficient is called acoustic
vectors. In this study 13 MFCCs were used to form an
acoustic vector of a certain sample.

3.2. Local Binary Pattern (LBP)

LBP is a widely used gray-scale texture operator in
many computer vision applications because of its com-
putation simplicity (Morales et al., 2017). The LBP
operator works on a local approach that defines the re-
lationship between the centre pixel and its neighbour
pixels. Generally, LBP operator compares the gray val-
ues of 8 neighborhood pixels with respect to their cen-
tre pixel with the rule that each neighbour pixel will
assign the value 1 if they have greater or equal value
than a centre pixel, otherwise they will be given value 0
(Tang et al., 2015). To form a binary number, each
neighbour is assigned a binary number acquired clock-
wise.

LBP is commonly used for feature extraction from
images. For one-dimensional signal processing, an
adaption from LBP was introduced that produced
histograms from data generated from 1D-LBP codes
(Chatlani, Soraghan, 2010; Irtaza et al., 2017).
1D-LBP is computed by comparing the neighbouring
samples with X[n] (McCool et al., 2012)
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LBPP (x[n]) =
P
2 −1

∑
n=0

{S [x [n + r − P
2
] − x[n]]2r

+S[x[n + r + 1] − x[n]]2r+
P
2 }, (2)

where P is the value of the current neighbour, in this
case it is 8, r is the radius and S[⋅] is the sign function
defined by

S[x] = { 1 if x ≥ 0,
0 otherwise.

(3)

Possible local binary patterns extracted from
Eq. (2), there is 2P distribution of LBP codes within
the windowed portion of a signal is termed as LBP
histograms that can be defined as Eq. (4)

Hb = ∑
P
2 ≤n≤N−P

2

δ(LBPP (x[n]), b), (4)

where N denotes the length of the window or complete
signal and the number of histogram bins is shown by
B where b = 1, ...,B. Histograms can be uniform that
has bins with two transitions as 0 to 1 and vice versa
while non-uniform histograms which are placed in the
same bin (McCool et al., 2012). In this research, 20
LBP values were used to form a texture feature vector
of a certain sample.

i

x(i)

Tresholding

Binary weights

0 1 1 1 0 0 1 0

1286432168421

LBP Code = 2 + 4 + 8 + 64

Fig. 2. Local Binary Patterns.

3.3. Classification – Support Vector Machines (SVM)

Statistical learning is the base theory of SVM which
increase the performance of various fields because of its

Table 3. Kernel Support Vector Machine Functions.

Kernel Function Parameters

Gaussian Radial Basis K(x, y) = exp (− ∣∣x−y∣∣
2

2σ2 ) σ – width of Gaussian function

Polynomial K(x, y) = (x.y + 1)d d – degree of polynomial
Multi-layer Perception K(x, y) = tanh(k(x.y) − µ) k – scale, µ – offset

Linear Kernel K(x, y) = xT ⋅ y

Sigmoid Kernel K(x, y) = tanh(γxTy + r) r – Kernal parameter

high accuracy such as pattern recognition (Aziz et al.,
2019b; 2019c), financial forecasting, regression esti-
mation, text categorization, medical diagnosis (Khan
et al., 2019a; 2019b), face detection, marketing esti-
mation, and handwritten digit recognition etc. (Shin
et al., 2005). SVM has been recognized as a base clas-
sifier in different research problems related to classi-
fication as the final result sets (Bhalke et al., 2017;
Qian et al., 2018). SVM works on the principle of risk
minimization while minimizing upper bound on ex-
pected risk using structural risk minimization (SRM)
(Sugumaran et al., 2007). In two-class pattern recog-
nition, problem binary classifier is produced by SVM
that linearly divides the classes and selects a decision
boundary which minimizes the generalization error to
a great extent (Pal, Mather, 2005). To separate the
classes linearly SVM creates optimal hyperplanes that
isolate the data among hyperplanes with maximum
distance and closest training points with hyperplanes
are known as “support vectors”. If not the case, SVM
tries to trade-off among classification error controlled
by user constant and margin by locating hyperplanes
which maximize margin while minimizing the classi-
fication error. SVM can also handle nonlinear deci-
sion problems (Boser et al., 1992) with technique to
project the input data onto a high dimensional features
space using kernel function and formulating a linear
classification problem in that feature space. In linear
separable problems of support vector machine, optimal
hyperplanes are estimated. But in the case of multiple
classes, problems cannot be classified in linear man-
ners, hence fail to find optimal hyperplanes.

In such cases well define kernel function k(x, y) is
used that changes the inner product (x, y) of the input
vector. The defined kernel function projects the inner
product into a new high dimensional space where the
optimal hyperplane can be defined, and data can be
separable linearly.

Kernel functions can be defined by Eq. (5)

K(x, y) = φ(x)Tφ(y)T. (5)

Possible kernel functions in Support Vector Machine
for non-linear classification problems are elaborated
in Table 3. The strategy used in this paper compares
one class with all other classes taken as one class.
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For n classes, n classifiers are generated using this
method. The highest margin class becomes the final
output.

4. Results

Recordings of 386 sound files of the Cetacean
dataset described in Table 1 are used to analyze and
present the results produced by the classifier. Five-fold
cross-validation and 70–30% training/testing valida-
tion are applied to isolate training and testing data.
The classifier learns on training data and features are
extracted using Acoustic LBP and MFCC.

Table 4 describes the classification accuracy in
terms of percentage using MFCC and Acoustic LBP
along with 70–30% training/testing validation for the
Cetacean dataset. Our proposed method successfully
recognizes three classes of Bottlenose dolphins, Risso’s
dolphins and Spinner dolphins with 100% accuracy
rate while for Spotted dolphins it shows 65% accuracy,
hence 90.4% classification accuracy is achieved by ap-
plying proposed method using acoustic features of the
Cetacean dataset which is much greater than shown in
literature cited.

The classifier achieved 89.6% accuracy when 5-fold
cross-validation was applied on the given dataset. Clas-
sification accuracy in terms of percentage for each class
is given in Table 5. This elaborates that the proposed
method attains 100% and 74% maximum and mini-
mum accuracy for Bottlenose dolphin and Spotted dol-
phins classes, respectively.

Table 4. Confusion matrix with 70–30% training-testing.

Species True class
Predicted class

a b c d e f
Bottlenose dolphins a 100 – – – – –
Common dolphins b – 93 – – 7 –

Melon Headed Whales c – – 84 16 – –
Risso’s dolphins d – – – 100 – –
Spotted dolphins e – – – – 100 –
Spinner dolphins f – – – – 35 65

Table 5. Confusion Matrix with 5-fold cross validation.

Species True class
Predicted class

a b c d e f
Bottlenose dolphins a 100 – – – – –
Common dolphins b – 88 6 – 4 2

Melon Headed Whales c – – 89 5 3 3
Risso’s dolphins d – – 4 94 1 –
Spotted dolphins e – – 1 – 95 4
Spinner dolphins f – 2 – 5 20 74

Figure 3 provides details of the above-cited results
using 70–30% training testing data and 5-fold cross-
validation on a given dataset which briefly explains
that the accuracy rate of 70–30% training/testing data
is higher than 5-fold cross-validation. By using the true
positive, true negative, false positive and false negative
values that occurred during computation, performance
parameters, such as precision, recall, F-1 score, accu-
racy and error rate, were calculated for a given dataset.
Results of classification performance for 5-fold cross-
validation and 70–30% train test evaluation are given
in Tables 6 and 7. Figures 4 and 5 present the clas-
sification performance for 5-fold cross-validation and
70–30% train test evaluation in terms of accuracy, pre-
cision, recall, error rate, and F1 score. The output qual-
ity of a classifier is evaluated through the Precision-
Recall metric. Precision in other terms Positive Pre-
dictive Values (PPV) can be defined as a fraction of

Fig. 3. Class-wise accuracy comparison for 5-fold cross
validation and 70–30% train test experiments.
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Table 6. Classification performance with 70–30% training-testing.

Species a b c d e f
Precision 1 0.93 0.84 1 1 0.65
Recall 1 1 1 0.86 0.80 1

F-1 score 1 0.96 0.91 0.92 0.88 0.78
Accuracy 1 0.98 0.97 0.97 0.93 0.94
Error rate 0 0.01 0.02 0.02 0.06 0.05

Table 7. Classification performance with 5-fold cross validation.

Accuracy/Species a b c d e f
Precision 1 0.88 0.89 0.94 0.95 0.73
Recall 1 0.97 0.89 0.90 0.77 0.89

F-1 score 1 0.91 0.88 0.91 0.84 0.78
Accuracy 1 0.97 0.97 0.98 0.95 0.94
Error rate 0 0.02 0.03 0.02 0.05 0.06

Fig. 4. Performance evaluation with 70-30% training-testing.

Fig. 5. Performance evaluation with 5-fold cross validation.

relevant elements between extracted values, whereas
recall measures the number of true relevant results re-
turned in any information retrieval system, in other
words, defines the sensitivity of the system. Therefore,
measurement of relevance is the base key of Precision
and recall which in terms defines the output quality of
the classifier.

5. Discussions

Cetaceans play a vital role in the oceanic ecosys-
tem. Nowadays marine mammals like dolphins and
sea lions are widely trained in navy and other fed-
eral organizations because of their excellent sensory
and diving competencies which help to protect lives
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Table 8. Comparison with some state of the art methods.

References Dataset Methods Limitation Results
[%]

Lin, Chou (2015),
Lin et al. (2013)

MobySound
(7 classes)

Local-max detector Frequency-based features 70.3

Ibrahim et al. (2018) Sparse classifier and MFCC Intraspecies classification 82.7
Binder, Hines (2014) 4 cetacean species Aural classifier Limited dataset 85
Ramayah et al. (2010) 4 cetacean species Discriminant function analysis Limited dataset 72.2

and naval assets. As the role of marine mammals has
been increasing in humans’ lives the accurate iden-
tification of marine mammals becomes the need of
the day. Marine mammals use calls and whistles to
communicate with each other. High variation exists in
whistles within species which makes their classifica-
tion difficult. Along with the variation in calls within
species similar calls are produced by different species
which poses another challenge. For the identification
and classification of marine mammals using acoustic
features becomes a challenging task. Thus, different
classification techniques were developed to classify ma-
rine mammals using their acoustic features. To accu-
rately identify and classify marine mammals, we used
the WMMS dataset. In this research, we constructed
a feature vector by fusion of 1D LBP and MFCC fea-
tures for marine mammal classification. One dimen-
sional local binary pattern (1D-LBPs) aims to capture
the distribution of audio structure and is complemen-
tary to conventional Mel-scaled cepstral coefficients.
A combination of MFCC and 1D-LBP adds weight
to the benefit of capturing complex acoustic struc-
ture. Thus, a unique feature set is extracted using two
techniques MFCC and 1D-LBP. The proposed system
successfully achieved higher recognition rate with lin-
ear SVM (85.2%, 83.9%, 83.2%), cubic SVM (90.4%,
88.9%, 90.7%) and Quadratic SVM (87.8%, 89.6%,
88.8%) for given dataset with 70-30% training testing
and 5-fold cross-validation techniques which is higher
than found in literature. This high recognition accu-
racy indicates the correctness and compactness of the
unique features set we extracted using techniques like
MFCC and 1D LBP. The main purpose of this study
is to address the issue of accurately identifying and
classifying marine mammals based on their acoustic
features. Hence, the proposed classifier achieves higher
accuracy than reported in the literature. An accuracy
of 90.4% is achieved when the feature set is classified
through SVM which is higher than the existing results
found in literature work.

The work in (Lin, Chou, 2015; Lin et al., 2013)
presents a frequency-based feature extraction method
for cetacean classification. A local maximum detec-
tor was applied to seven classes and achieved a 70.3%
recognition rate. Features were extracted based on the
frequency of whistles generated by marine mammals

which limits to differentiate between inter species. Dis-
criminant function analysis and an aural classifier were
applied to classify four classes of cetacean species by
Ramayah et al. (2010) and Binder and Hines (2014)
respectively which gain 72.2 % and 85% accuracy rate
on a limited dataset. For intraspecies classification,
Ibrahim et al. (2018) classified grouper vocalization
from ambient sounds recorded by fixed hydrophones by
applying weighted MFCC and sparse classifier which
achieved an 82.7% accuracy rate. To overcome all the
limitations of existing approaches this study aims to
classify six classes of cetaceans based on their acoustic
features by applying local binary patterns and MFCC
to extract features and support vector machine to clas-
sify among classes which successfully achieved a 90.7%
accuracy rate which is better than existing approaches.

6. Conclusion

In this article, feature fusion based methodology
for accurate classification of marine mammals us-
ing acoustic signatures is presented. The proposed
method uses the fusion of one-dimensional texture pat-
terns and MFCC features with multiclass SVM for
classification. Experimental results validate the ro-
bustness of proposed features for acoustic monitor-
ing and classification of marine mammals. The pro-
posed method achieved satisfactory classification per-
formance on a small dataset containing few acoustic
samples for some classes. The research aims to develop
a 1D Local Binary Patterns for feature extraction di-
rectly from acoustic features rather than converting
acoustic signals into images/histograms. As possible
improvements, the combination of this classifier with
versions of local patterns will be explored in the future
works also an automatic system that permits to effi-
ciently identify and classify between multiple numbers
of classes will be evaluated in the classification system.
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