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Abstract There is a consensus in signal processing that the Gaussian kernel and its partial
derivatives enable the development of robust algorithms for feature detection. Fourier analysis
and convolution theory have a central role in such development. In this paper, we collect
theoretical elements to follow this avenue but using the q-Gaussian kernel that is a nonextensive
generalization of the Gaussian one. Firstly, we review the one-dimensional q-Gaussian and its
Fourier transform. Then, we consider the two-dimensional q-Gaussian and we highlight the
issues behind its analytical Fourier transform computation. In the computational experiments,
we analyze the q-Gaussian kernel in the space and Fourier domains using the concepts of space
window, cut-off frequency, and the Heisenberg inequality.
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1 Introduction

Feature extraction is an essential step for image analysis and computer vision tasks such as image
matching and object recognition [1]. The specific case of edge detection has been extensively
considered in the image processing literature [2]. In this subject, the Gaussian kernel and its
partial derivatives have inspired a wide range of works in the image analysis community for the
development of multiscale approaches [3].

These works had established the background for multiscale representation based on the view-
point of the functional structure of digital images [4, 5]. Basically, the grayscale of the observed
image is realized as a general function f of the space of square integrable functions on R2, denoted
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by L2
(
R2
)
. The linear scale-space is generated by the convolution with scaled Gaussian kernels

with filtering properties analyzed in the frequency space given by the Fourier transform. Such ap-
proach can be seen from the isotropic diffusion equation viewpoint, which opens the possibility of
generating more general multiscale representations based on the anisotropic diffusion equation [6].

The Gaussian kernel also plays a fundamental role in statistical physics due to the fact that
an enormous amount of phenomena in nature follow the Gaussian distribution and the exten-
sive thermostatistics. The latter is governed by the Boltzmann-Gibbs entropy and the standard
central limit theorem [7]. More recently, Tsallis nonextensive entropy and generalizations of the
central limit theorem give the foundations for nonextensive counterparts of the Boltzmann-Gibbs
statistical mechanics [8,9]. In this context, a generalization of Gaussian kernel within the Tsallis
nonextensive scenario, named q-Gaussian, has been proposed [10] and applied for smoothing and
edge detection [11,12]. These works demonstrate the potential of the q-Gaussian based methods
by comparing their results with the ones obtained with traditional techniques that rely on the
Gaussian function. However, the behaviour of the q-Gaussian in the frequency domain has been
ignored.

In this paper, we collect theoretical elements, published in the references [13–15], to perform
such analysis. We review the q-exponential function and the q-Gaussian distribution. Then, we
offer details of the Fourier transform computation of the 1D q-Gaussian. The two-dimensional
q-Gaussian and its Fourier transform are also considered from the analytical viewpoint. In the
experimental results, we analyze the q-Gaussian in the frequency domain and compare its profile
with the Gaussian one. In fact, we consider the Fourier transform of the one-dimensional q-
Gaussian which emphasizes the fact that a q-Gaussian is a low-pass filter. We study the size of
the space window and analyze the influence of the parameter q in the cut-off frequency and the
Heisenberg inequality.

The paper is organized as follows. Sec. 2 focuses on Tsallis entropy, the q-exponential, q-
Gaussian, and summarizes some of their basic properties. The Fourier transform computation of
the q-Gaussian is discussed in Sec. 3 and 4. The computational results are presented in Sec. 5.
Next, Sec. 6 discusses challenges of q-Gaussian and its Fourier analysis for signal processing,
as well as possible directions to address some drawbacks of existing works in this area. Then,
the conclusions are offered in Sec. 7. The Appendices A–D complete the material with details
about the q-Gaussian and its Fourier transform. For details about the special Gamma (Γ),
Whittaker (W ), Bessel (J) and Beta (B) functions, used along the text, we direct the reader to
the references [16,17].

2 Tsallis Entropy and q-Gaussian

In the last decades, Tsallis [9] has proposed the following generalized nonextensive entropic form

Sq = k
1−

∑η
i=1 p

q
i

q − 1
, (1)

where k is a positive constant, pi is a probability distribution, q ∈ R is called the entropic index,
or q-index also, and η is the number of possible states of the system. This expression recovers
the Shannon entropy in the limit q → 1. The Tsallis entropy offers a new formalism in which the
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real parameter q quantifies the level of nonextensivity of a physical systems [18]. In particular a
general principle of maximum entropy (PME) has been considered to find out the distribution pi
to describe such systems. In this PME, the goal is to find the maximum of Sq subjected to

η∑
i=1

pi = 1 (2)

and ∑η
i=1 eip

q
i∑η

i=1 p
q
i

= Uq, (3)

where Uq is a known application dependent value, ei represent the possible states of the system
(in image processing, the gray-level intensities), and η is the number of system states. Eq. (2) is
just a necessary condition for pi to be probability and Eq. (3) is a generalized expectation value
of the ei (if q = 1 we get the usual mean value). The proposed PME can be solved using Lagrange
multipliers and the solution has the form [18,19]

pj =

[
1− (1− q)β̃ej

] 1
1−q

Z̃q
, (4)

where β̃ and Z̃q are defined by the expressions

β̃ =
β∑η

j=1 p
q
j + (1− q)βUq

, (5)

Z̃q =

η∑
j=1

[
1− (1− q)β̃ej

] 1
1−q

, (6)

with β being the Lagrange multiplier associated with the constraint given by Eq. (3) and, if q < 1,
then pi = 0 whenever 1 − (1 − q)β̃ej < 0 (cut-off condition). The Eq. (1) and (4) inspire the
definition of the q-exponential function [20]

expq (x) =

{
[1 + (1− q)x]

1
1−q , if 1 + (1− q)x > 0,

0, otherwise.
(7)

It can be shown that the traditional exponential function exp is given by the limit

exp (x) = lim
q→1

expq (x) . (8)

The Eq. (8) motivates the definition of the d-dimensional q-Gaussian as [15]

Gd,q (x,Σ, β) = Cd,q (Σ, β) expq
(
−βxTΣ−1x

)
, (9)

where

Cd,q (Σ, β) =

(∫
Rd

expq
(
−βxTΣ−1x

)
dx

)−1

, (10)
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Σ is the covariance matrix (symmetric and positive definite), and β is a positive real parameter;
that means, β ∈ R∗+. Due to Eq. (8) it is straightforward to show that

lim
q→1

expq
(
−βxTΣ−1x

)
= exp

(
−βxTΣ−1x

)
. (11)

Consequently, depending on the Cd,q (β) functional form, we can recover the d-dimensional
Gaussian, represented in the nonextensive literature as [21,22]

Gd,1 (x,Σ) =
[
(2π)d/2 |Σ|1/2

]−1
exp

(
−1

2
xTΣ−1x

)
, (12)

by taking the limit of Gd,q (x,Σ, β) at q → 1. In the Appendices B and C we give details of that
developments showing that, if β = 1/2, then we obtain the one and two-dimensional Gaussian
functions in this way. The corresponding q-expressions are reproduced bellow.

1. One-Dimensional q-Gaussian (see Appendix B)

G1,q (x, σ, β) = C1,q (σ, β) expq

(
− β

σ2
x2

)
= C1,q (β)

[
1 + (q − 1)

β

σ2
x2

] 1
1−q

,

(13)

where

C1,q (σ, β) =
Γ
(

1
q−1

) [
(q − 1) β

σ2

]1/2

√
πΓ
(

1
q−1 −

1
2

) , 1 < q < 3, (14)

and

C1,q (σ, β) =
Γ
(

1
1−q + 3

2

)(
(1− q) β

σ2

)1/2

√
πΓ
(

1
1−q + 1

) , q < 1 (15)

with Eq. (13) being subject to

|x| ≤
(

(1− q) β
σ2

)−1/2

, q < 1. (16)

2. Two-Dimensional q-Gaussian (see Appendix C)

G2,q (x,Σ, β) =
β (2− q)
π
√
|Σ|

[
1 + (1− q)

(
−βxTΣ−1x

)] 1
1−q

, 1 < q < 2, (17)

G2,q (x,Σ, β) =
β (2− q)
π
√
|Σ|

[
1 + (1− q)

(
−βxTΣ−1x

)] 1
1−q

, q < 1, (18)

subject to the constraint

0 <
(
xTΣ−1x

)1/2
<

1√
β (1− q)

, q < 1. (19)
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The Fig. (1) shows the evolution of the one dimensional q-Gaussian profile respect to q. We
must observe in Fig. (1).(a) that the profile of the q-Gaussian is far from the Gaussian one for
q ∈ {−0.5, 0.0} but for q = 0.5 (blue curve) the result is closer the Gaussian plot. The constraint
given by Eq. (16) is responsible for this behavior. For q > 1.0, such constraint is not valid and
the curve shapes look like the Gaussian profile, as we can visually check in Fig. (1).(b).
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Figure 1 (a) One dimensional q-Gaussian (Eq. (13)) for σ = 0.1, β = 0.5 and q = −0.5 (red),
q = 0.0 (green), and q = 0.5 (blue). (b) Behavior of Eq. (13) for σ = 0.1, β = 0.5 and q = 1.5
(red), q = 2.0 (green), and q = 2.5 (blue).

3 Fourier Transform of 1D q-Gaussian

From Eq. (13) we can compute the Fourier transform of the one-dimensional q-Gaussian as

F
(
C1,q (σ, β) expq

(
− β

σ2
x2

)
, y

)
= C1,q (σ, β)F

(
expq

(
− β

σ2
x2

)
, y

)
, (20)

where F (g (x) , y) means the Fourier transform of function g computed at the frequency y. In
this paper, the Fourier transform is defined by

F (g (x) , y) =

∫ +∞

−∞
exp (−2jπxy) g (x) dx, (21)

where j2 = −1.
The Appendix D develops the computation of the Fourier transform for a q-exponential. So,
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using Eq. (124) we obtain

F (G1,q (x, σ, β) , y) = C1,q (σ, β)

[
(q − 1)

β

σ2

]−1/2

×

×

− sign

(
2π

[
(q − 1)

β

σ2

]−1/2

y

)
2π2

1
1−q

∣∣∣∣2π [(q − 1) β
σ2

]−1/2
y

∣∣∣∣ 1
q−1
−1

Γ
(

1
q−1

)
×

×W0, 1
2

+ 1
1−q

(
2

∣∣∣∣∣2π
[
(q − 1)

β

σ2

]−1/2

y

∣∣∣∣∣
)
, 1 < q < 3,

(22)

where W0, 1
2

+ 1
1−q

is a special type of Whittaker functions, defined in the Appendix F of reference

[22]. Consequently

abs [F (G1,q (x, σ, β) , y)] = abs

[
C1,q (β)×

×π3/2 [(q − 1) a]−1/2

Γ
(

1
q−1

) (
j exp

(
jπ

2

(
−1

2
− 1

1− q

)))
×

×
(z

2

) 1
q−1
− 1

2 J− 1
2

+ 1
q−1

(jz) + j

[(
z
2

) 1
q−1
− 1

2 J− 1
2

+ 1
q−1

(jz) cos
(
π
(
−1

2 + 1
q−1

))
− j

1
2
− 1
q−1S (z)

]
sin
(
π
(
−1

2 + 1
q−1

))
 ,
(23)

where z = |2π [(q − 1) a]−1/2 y|, a = β
σ2 , 1 < q < 3, with J− 1

2
+ 1
q−1

being the Bessel functions [16]

and

S (z) =
+∞∑
k=0

(
z2

4

)k
k!Γ

(
1
2 −

1
q−1 + k + 1

) . (24)

Analogously, through Eq. (135) and (140) we can show that

F (G1,q (x, σ, β) , y) = C1,q (σ, β)

√
π(

(1− q) β
σ2

)1/2
×

×

−
(

(1− q) β
σ2

)1/2

πy


1

1−q+ 1
2

Γ

(
1

1− q
+ 1

)
J 1

1−q+ 1
2

− 2πy(
(1− q) β

σ2

)1/2

 , q < 1, y 6= 0,

(25)
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and
F (G1,q (x, σ, β) , 0)

= C1,q (σ, β)
2

2
1−q+1(

(1− q) β
σ2

)1/2

Γ
(

1
(1−q) + 1

)
Γ
(

1
(1−q) + 1

)
Γ
(

2
1−q + 2

) , q < 1, y = 0
(26)

respectively.
The Fig. (2), shows the Fourier transform for the 1D q-Gaussians represented in Fig. (1). For

q < 1.0 we observe in Fig. (2).(a) some oscillations of the absolute value of the Fourier transform
for higher frequencies (y value). This happens due to the constraint given by Eq. (16) once out of
the corresponding interval the q-Gaussian is null, generating discontinuities in the first derivative,
as observed in the red and green curves of Fig. (1). The plots for q > 1 in Fig. (2).(b) do not have
such artifacts. However, we notice that while increasing q the shape of the q-Gaussian Fourier
transform becomes more different from the shape of the Gaussian distribution.
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Figure 2 (a) Absolute value of the Fourier transform of q-Gaussian (Eq. (25)) for σ = 0.1,
β = 0.5 and q = −0.5 (red), q = 0.0 (green), and q = 0.5 (blue). (b) Behavior of the Eq. (23) for
σ = 0.1, β = 0.5 and q = 1.5 (red), q = 2.0 (green), and q = 2.5 (blue).

4 Fourier Transform of 2D q-Gaussian

In this section we offer a sketch of the Fourier transform for the two-dimensional q-Gaussian,
defined by Eq. (17)–(18), for a diagonal matrix Σ = diag

(
σ2

1, σ
2
2

)
, which can be computed as

F (G2,q (z,Σ, β) , ω1, ω2) = C2,q (Σ, β)
√
|Σ|×

×
∫ +∞

−∞

∫ +∞

−∞
exp [−2πj (ω1z1 + ω2z2)]

[
1 + (1− q)

(
−β
(
z2

1 + z2
2

))] 1
1−q

dz1dz2,
(27)
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where z1 = x/σ1, z2 = y/σ2 and z = (z1, z2). Considering just the double integral of Eq. (27) we
can write∫ +∞

−∞
exp [−2πjω2z2]

{∫ +∞

−∞
exp [−2πjω1z1]

[
1 + (q − 1)βz2

2 + (q − 1)βz2
1

] 1
1−q

dz1

}
dz2 (28)

=

∫ +∞

−∞
exp [−2πjω2z2]×

×


∫ +∞

−∞
exp [−2πjω1z1]

[
1 + (q − 1)βz2

2

] 1
1−q

[
1 +

(
q − 1

1 + (q − 1)βz2
2

)
βz2

1

] 1
1−q

dz1

dz2

(29)

=

∫ +∞

−∞
exp [−2πjω2z2]

[
1 + (q − 1)βz2

2

] 1
1−q ×

×

{∫ +∞

−∞
exp [−2πjω1z1]

[
1 + (q − 1) ζz2

1

] 1
1−q

dz1

}
dz2,

(30)

where

ζ =

(
β

1 + (q − 1)βz2
2

)
. (31)

Let

F1 (ω1, ζ (z2, q) , q) =

∫ +∞

−∞
exp [−2πjω1z1]

[
1 + (q − 1) ζz2

1

] 1
1−q

dz1. (32)

Therefore, we can return to Eq. (27) and write

F (G2,q (z,Σ, β) , ω1, ω2) = C2,q (Σ, β)
√
|Σ|×

×
∫ +∞

−∞
exp [−2πjω2z2]

[
1 + (q − 1)βz2

2

] 1
1−q F1 (ω1, ζ (z2, q) , q) dz2.

(33)

By using the property that the Fourier transform of the product of two functions can be
computed by the convolution in the Fourier transform domain, we can re-write Eq. (33) as

F (G2,q (z, β) , ω1, ω2)

= C2,q (Σ, β)
√
|Σ|
(∫ +∞

−∞
exp [−2πjω2z2]

[
1 + (q − 1)βz2

2

] 1
1−q dz2

)
∗

∗
(∫ +∞

−∞
exp [−2πjω2z2]F1 (ω1, ζ (z2, q) , q) dz2

)
,

(34)

where ∗ denotes the usual convolution operation. Unfortunately, this expression can not be
analytically resolved to get the explicit representation of Eq. (27), like in the one-dimensional
case. Therefore, we should apply numerical methods to calculate Eq. (27), as done in [22] using
the isotropic setup (σ1 = σ2 = σ) and applying usual discretization methods to approximate
Eq. (27) by the double summations.
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5 Computational Experiments

Before proceeding, we shall notice that Eq. (22)–(26) need some considerations before their com-
putations. Eq. (22) involves the modified Bessel functions (Eq. (8.407), reference [17]), which
is not defined for µ ∈ Z−. Also, the Gamma function is not valid for z ∈ Z−, which imposes
constraints for the Bessel functions also [16,22]. We must notice that the Gamma function occurs
also in the normalization factor C1,q given in Eq. (14)–(15). Therefore, if we put all the constraints
together, we conclude that these expression can be computed only if:

1. Case 1 < q < 3 {
1

q − 1
+

1

2

}
/∈ Z and

{
1

q − 1

}
6∈ Z−. (35)

2. Case q < 1{
1

1− q
+ 1

}
6∈ Z− and

{
1

1− q
+

1

2

}
6∈ Z− and

{
1

1− q
+

3

2

}
6∈ Z−. (36)

The 2-norm ‖ψ‖2, center x∗, and radius (width) ∆ψ of a function ψ = ψ (x) are defined to
be

‖ψ‖2 =

{∫ +∞

−∞
|ψ (x)|2 dx

}1/2

, (37)

x∗ =
1

‖ψ‖22

∫ +∞

−∞
x |ψ (x)|2 dx, (38)

∆ψ =
1

‖ψ‖2
‖(x− x∗)ψ‖2 =

1

‖ψ‖2

{∫ +∞

−∞
(x− x∗)2 |ψ (x)|2 dx

}1/2

. (39)

If x∗ < ∞ and ∆ψ < ∞, we say that the signal ψ is localized about the point t∗ with the
space window [x∗ −∆ψ, x

∗ + ∆ψ] . The space window corresponding to the one-dimensional q-
Gaussian, given by Eq. (13), can be computed by noticing that x∗ = 0 due to the fact that
G1,q (x, σ, β) = G1,q (−x, σ, β). Besides, we can use a methodology that is analogous to the one
applied in Appendix B to show that, for q > 1 we get

‖G1,q (x, σ, β)‖2 =
C1,q (σ, β)[

(q − 1) β
σ2

]1/4

√
B

(
1

2
,

2

q − 1
− 1

2

)
, 1 < q < 3 (40)

and

‖xG1,q (x, σ, β)‖2 =
C1,q (σ, β)[

(q − 1) β
σ2

]3/4

√
B

(
3

2
,

2

q − 1
− 3

2

)
, 1 < q <

7

3
, (41)

∆σ,β
G1,q

=

√
B
(

3
2 ,

2
q−1 −

3
2

)
√[(

(q − 1) β
σ2

)]
B
(

1
2 ,

2
q−1 −

1
2

) , 1 < q <
7

3
, (42)
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where C1,q (σ, β) is given by Eq. (14), and B is the Beta function [16]. In the Sec. B.3 we show
that for β = 1/2 the q-Gaussian generates the traditional Gaussian kernel in the limit q → 1.
Therefore, to allow further comparisons, we set β = 1/2, and arbitrarily set σ = 0.1 in Eq. (13).
The Fig. (3).(a) shows the behaviour of Eq. (42) in the corresponding q range.
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Figure 3 (a) Size of space window for q-Gaussian with parameters β = 1/2, σ = 0.1. (b) Behavior
of Eq. (45) for q-Gaussian with β = 1/2, σ = 0.1.

We notice that the size of the space window of G1,q (x, 0.1, 0.5) about x∗ = 0 is a monotone
increasing function respect to q. Consequently, we expect the behavior shown in Fig. (4).(a).
Also, due to the Heisenberg inequality

4π ‖xG1,q (x, σ, β)‖2 · ‖yF (G1,q (x, σ, β) , y)‖2 ≥ ‖G1,q (x, σ, β)‖22 (43)

we get that
‖yF (G1,q (x, σ, β) , y)‖2 ≥ ∆Fσ,β,q, (44)

where

∆Fσ,β1,q =
C1,q

[
(q − 1) β

σ2

]1/4

4π

B
(

1
2 ,

2
q−1 −

1
2

)
√
B
(

3
2 ,

2
q−1 −

3
2

) , 1 < q <
7

3
, (45)

C1,q is given by Eq. (14), and B is the Beta function. The Fig. (3).(b) indicates that the window
size in the frequency domain is a monotone decreasing function respect to q. We can check this
fact through Fig. (4).(b) which pictures the profile of the absolute value of the Fourier transform
of a q-Gaussian for three values of the entropic index q. We can notice that when increasing q
the q-Gaussian becomes more localized about y = 0, which agrees with the decreasing behavior
pictured in Fig. (3).(b) for Eq. (45).

An analogous analysis can be performed for q < 1. In this case, we get also x∗ = 0 from
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Figure 4 (a) Plot for q-Gaussian in the space domain with parameters β = 1/2, σ = 0.1 and
q = 1.41 (red), q = 2.0 (green) and q = 2.3 (blue). (b) Absolute value of the Fourier transform of
q-Gaussian (Eq. (23)) with parameters β = 1/2, σ = 0.1 and q = 1.41 (red), q = 2.0 (green) and
q = 2.3 (blue).

Eq. (38) and we can use a the same methodology applied in the Appendix B to get that

‖G1,q (x, σ, β)‖2 =
C1,q[

(1− q) β
σ2

]1/4

√
B

(
1

2
,

2

1− q
+ 1

)
, q < 1, (46)

‖xG1,q (x, σ, β)‖2 =
C1,q[

(1− q) β
σ2

]3/4

√
B

(
3

2
,

2

1− q
+ 1

)
, q < 1, (47)

∆σ,β
G1,q

=

√
B
(

3
2 ,

2
1−q + 1

)
√[(

(1− q) β
σ2

)]
B
(

1
2 ,

2
1−q + 1

) , q < 1, (48)

where |x| ≤
(

(1− q) β
σ2

)−1/2
, C1,q is given by Eq. (15), and B is the Beta function [16]. By using

Heisenberg inequality, given by Eq. (43), we can obtain

‖yF (G1,q (x, σ, β) , y)‖2 ≥ ∆Fσ,β,q (49)

with

∆Fσ,β1,q =
C1,q

4π

[
(1− q) β

σ2

]1/4 B
(

1
2 ,

2
1−q + 1

)
√
B
(

3
2 ,

2
1−q + 1

) , q < 1. (50)

The Fig. (5).(a) shows the behaviour of Eq. (48) in the range −2.0 < q < 0.99 and the
Fig. (5).(b) pictures the behavior of Eq. (50) in the same range. Likewise in the q > 1 case, we
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observe that ∆0.5,0.1
G1,q

and ∆F0.5,0.1
1,q are monotone increasing and monotone decreasing functions,

respectively, in the considered q range.
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Figure 5 (a) Size of space window for q-Gaussian with parameters β = 1/2, σ = 0.1 for q < 1.
(b) Behavior of Eq. (50)) for q-Gaussian with β = 1/2, σ = 0.1 and q < 1.

We can check these facts through Fig. (6) which pictures the q-Gaussian and its Fourier
transform for q = 0.1, 0.5, 0.99. We can notice by Fig. (6).(a) that when increasing q the q-
Gaussian becomes less localized about y = 0, which agrees with the increasing behavior of the
window size pictured in Fig. (5).(a) . On the other hand, the tendency for the Fourier transform
localization given by Eq. (50), and represented in the Fig. (5).(b) is confirmed by the Fig. (6).(b).
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Figure 6 (a) Plot for q-Gaussian in the space domain with parameters β = 1/2,σ = 0.1 and
q = 0.1 (red), q = 0.5 (green) and q = 0.99 (blue). (b) Fourier Transform of q-Gaussian (denoted
by F (G1,q (x, a) , y)) with parameters β = 1/2,σ = 0.1 and q = 0.1 (red), q = 0.5 (green) and
q = 0.99 (blue).

The Fig. (4).(b) and (6).(b) shows that F (G1,q (x, σ, β) , 0) = 1 for the considered q values.
In fact, from Eq. (23)–(26) we can prove this property for any q ∈ R−{1} and make comparisons
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with the (normalized) Gaussian given by

G1,1 (x, σ) =
1

σ
√

2π
exp

(
− x2

2σ2

)
, (51)

according to Eq. (12) for d = 1. The Fourier transform of the Gaussian distribution from Eq. (51)
is the function

F (G1,1 (x, σ) , y) = exp
(
−σy2

)
. (52)

So, it is clear that F (G1,1 (x, σ) , 0) = 1 also. Besides, Fig. (4) and (6) show that, if we fix the
parameters β and σ in Eq. (13), we can change the localization and the profile of the q-Gaussian
by changing the q value. Therefore, in terms of low-pass filtering properties, the main point is
how close G1,q (x, σ, β) (and F (G1,q (x, σ, β) , y)) is from G1,1 (x, σ) (and F (G1,1 (x, σ) , y)) when
changing the q value in Eq. (13)? We must perform further developments in order to answer this
question.

On the other hand, Fig. (7) shows the cut-off frequency ȳ = ȳ (q), such that

abs [F (G1,q (x, 0.1, 0.5) , ȳ)] < 0.1. (53)
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Figure 7 (a) Cut-off frequency ȳ such that abs [F (G1,q (x, 0.1, 0.5) , ȳ)] < 0.1 for 1 < q < 3. (b)
Cut-off frequency ȳ such that abs [F (G1,q (x, 0.1, 0.5) , ȳ)] < 0.1 for −2 ≤ q < 1.

We notice that ȳ is a decreasing function which is in accordance with the behaviour reported
by Fig. (4).(a) and 6.(a).

Now, we consider the Fourier Transform of the q-Gaussian 2D defined by the parameters
β = 1, σ =

√
8 ≈ 2.8284, q = 0.5. We apply the discretization approach presented in [22] to

approximate the Eq. (27) as

F (G2,q (x, β) , ω1, ω2) ≈
M∑

m=−M

M∑
n=−M

exp [−2πj (ω1xm + ω2yn)]G2,q (xm, yn, β)T 2, (54)

where −T−1 < ω1, ω2 < T−1, xm = mT , yn = nT , with −M ≤ m,n ≤ M . In this case, we set
T = 0.25, M = 21. The Fig. (8) pictures the obtained surface.
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8, 1
)
, ω1, ω2

)]
for −2 ≤ ω1, ω2 < 2.

6 Discussion

While applying the q-Gaussian function for signal processing, a fundamental issue is the choice
of the q-index. Since it is not an intuitive idea, the general methodology to set this parameter is
by trial and error. For instance, the work [12] presents an experimental study about the effect of
q-Gaussian filtering of noise images for both edge detection and segmentation. The results are gen-
erated for q ∈ {0.1, 0.5, 0.99, 1.01, 1.5, 2.0, 2.5, 2.99} and compared with the traditional Gaussian
smoothing. Authors pointed out that the results obtained by q-Gaussian smoothing outperforms
the Gaussian ones, particularly for q = 0.1. Also, the paper [11] introduces a method of ex-
tracting edges using convolutions between the input image and difference-of-q-Gaussian kernels
instead of the traditional difference-of-Gaussian functions [23, 24]. Suitable results are obtained
using q ∈ {−1.0, 2.5} and σ ∈ {0.1, 0.2}, also obtained by computational experimentations.

The effect of the q value in the low-pass filtering characteristics of the q-Gaussian kernel can
be visualized by considering the step function

f (x) =

{
A, 0 ≤ x < L/2,

0, otherwise.
(55)

The Fig. (9) shows the result for the convolution between the q-Gaussian, for q = 0.1, q = 1.0
(Gaussian kernel), and q = 2.5, with the step function defined by A = 1 and L = 2.

We can visually check the fact that the results for q = 0.1 and q = 1.0 are very close one
to each other although the former preserves the input signal more than the other two outputs.
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Figure 9 Convolution of step function, Eq. (55), and the q-Gaussian (Eq. (13)), for β = 0.5,
σ = 0.1, q = 0.1 (green), q = 1.0 (magenta), and q = 2.5 (blue).

However, in the case of noisy images, we may need a lower cut-off frequency. Hence, according to
the Fig. (7), we need to increase the q value. The result for q = 2.5 in Fig. (9) shows the effect of
increasing the q value for the step function: the lost of the localization of the edges of the step,
which is an undesirable effect.

In the case of thresholding techniques for image segmentation, we postulate in [25] that the
optimum q value for a given database is the one that minimizes Tsallis entropy computed by
Eq. (1). However, to the best of our knowledge, there is no automatic method already proposed
to seek for a suitable q value for signal processing tasks represented by convolution kernels. Such
linear filtering techniques are represented in the frequency domain by the product of the Fourier
transform of the kernel of the filter and the Fourier transform of the input signal [26]

F (G1,q (x, σ, β) ∗ f (x) , y) = F (G1,q (x, σ, β) , y)F (f (x) , y) , (56)

a result known as the convolution theorem [26]. Eq. (22), (25) and (26) summarizes the one-
dimensional Fourier transform of the q-Gaussian function while for the specific case of the Gaus-
sian kernel, given by Eq. (51), we get Eq. (52) as its Fourier transform.

The simplicity of the Gaussian expression, in both the space and Fourier domains, makes the
analysis and implementation of filtering methods using Gaussian kernel easier if compared with
the q-Gaussian function. We also pointed out in Sec. 5 the constraints that must be satisfied to
allow the numerical computation of Eq. (22), (25) and (26). Besides, differently from Eq. (52), the
shape of the q-Gaussian kernel in the frequency domain is far from of obvious. So, the application
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of the convolution theorem (Eq. (56)) makes the low-pass filtering properties of the q-Gaussian
not so evident as we notice in the Gaussian case.

In order to address these issues, we shall consider the q-Fourier analysis. If q > 1, then the
q-Fourier transform of a non-negative integrable function f : R→ R+ is defined as [27]

Fq (f (x) , y) =

∫ +∞

−∞
f (x) expq

(
jxy [f (x)]q−1

)
dx, 1 ≤ q < 3. (57)

With such definition it can be demonstrate that the q-Fourier transform of the q-Gaussian
function (Eq. (13)) has a q-exponential shape given by expression [21]

Fq (G1,q (x, σ, β) , y) =

[
expq

(
− Ĉ (q)

4β2−q
y2

σ2

)] 3−q
2

, (58)

where Ĉ (q) is a normalization factor. Besides, for 1 ≤ q < 2 the inversion of the q-Fourier
transform is well defined (see [27] for details). All these equations reduce to the usual ones as
q → 1.

The Eq. (57)–(58), together with the inverse q-Fourier transform and the q-convolution defined
in [28], open the possibility of using q-Fourier analysis for signal processing. Specifically, we could
characterize linear filtering (low-pass, high-pass and band-pass) in the space domain using q-
convolutions between the input signal f (x) and an appropriate kernel filter. In the frequency
domain, we could analyse these processes through the q-Fourier transform and its inverse. Such
approach should be considered in further works.

The kernel of Fourier transform in Eq. (21), given by

ky(x) = exp (−2jπxy) (59)

is an infinitely extended kernel in the space domain. However, all physical signals are spatially
limited. As a consequence, the Fourier transform is unable to satisfactorily represent analog
signals in nature [26]. Besides, the Fourier transform kernel does not involve smoothing or scale-
space operations. The first alternative to overcome these limitations of Fourier analysis is the
Gabor transform [26, 29] that uses a modulation (window) function in order to achieved time-
frequency localization. Also, the q-deformation of known functions, introduced in the q-calculus,
allows considering some modifications in known functional transforms in order to discuss the
performance of frequency domain analysis on noisy and blurred objects [13]. Inspired in these
facts and in the Gabor transform theory, we propose here the q-Gabor transform, defined by

Gσq,b (f (x) , y) =

∫ +∞

−∞
f (x)Gσq,b (x) exp (−2jπxy) dx, (60)

where

Gσq,b (x) = G1,q (x− b, σ, 0.5) = C1,q (0.5) expq

(
− 1

2σ2
(x− b)2

)
, (61)
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with expq(z) defined in Eq. (7). We shall observe that∫ +∞

−∞
Gσq,b (f (x) , y) db =

∫ +∞

−∞

[∫ +∞

−∞
f (x)G1,q (x− b, σ, 0.5) exp (−2jπxy) dx

]
db

=

∫ +∞

−∞

[∫ +∞

−∞
G1,q (x− b, σ, 0.5) db

]
f (x) exp (−2jπxy) dx.

(62)

However, from Eq. (61) it is straightforward to show that∫ +∞

−∞
G1,q (x− b, σ, 0.5) db = 1. (63)

Therefore, by substituting this result in Eq. (62) we obtain∫ +∞

−∞
Gσq,b (f (x) , y) db =

∫ +∞

−∞
f (x) exp (−2jπxy) dx = F (f (x) , y) . (64)

That is, likewise for the traditional Gabor transform (obtained in the limit q → 1), Eq. (64) can
be interpreted by saying that the q-Gabor transform of f allows to decompose the Fourier trans-
form F (f (x) , y) to obtain its local spectral information inside the space window [−∆Gσq,b

,∆Gσq,b
],

computed through Eq. (39). Besides, we can compare q-Gabor and the Fourier transforms re-
spect to the sensitivity to noise. To perform this task we add to the step function (Fig. (10).(a))
an uniform noise in the range [−0.1, 0.1] to get the function f̃ , represented in Fig. (10).(b). The
Fig. (10).(c)–(d) picture the absolute value of the Fourier transform of the step functions shown in
Fig. (10).(a)–(b), respectively. Also, we set σ = 0.1, q = 2.5 and compute the q-Gabor transform
of f and f̃ for b = 0.5, which are shown (in absolute value) in Fig. (10).(e)–(f), respectively. By
comparing Fig. (10).(d) and (10).(f), it becomes clear that the Fourier transform is more sensitive
respect to the noise of the input signal than the q-Gabor defined in expression Eq. (60). This fact
represents an advantage of q-Gabor against the Fourier counterpart because it points forward to
a more robust signal analysis framework based on the q-Gabor transform.

However, a problem still remains due to the use of a fixed scale window in q-Gabor: signal
details much smaller than the window width ∆Gσq,b

, computed through Eq. (39), are detected
but not localized. Wavelet analysis was developed to solve this problem. The wavelet transform
allows using small windows to identify high-frequency components of a signal, and large windows
for low-frequency components. Although such development is far from our goal in this paper, it
is worthwhile to point out that recent works have extended the application of q-deformed func-
tions (q-mexican hat and q-trigonometric functions, for instance) into wavelet analysis presenting
significant different behaviours, when compared with the original q = 1.0 cases.

7 Conclusions

In this paper we collect theoretical elements to analyze the q-Gaussian kernel for signal processing.
We review some theoretical elements behind the q-Gaussian and its Fourier transform. We analyze
the q-Gaussian kernel in the space and Fourier domains using the concepts of space window,
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Figure 10 (a) Step function, computed by Eq. (55). (b) Noisy step function. (c) Fourier
transform of step function. (d) Fourier transform of noisy step function. (e) q-Gabor transform
of step function. (f) q-Gabor transform of noisy step function with q = 2.5, b = 0.5, β = 0.5.

cut-off frequency, and the Heisenberg inequality. We postulate that the comparison between the
q-Gaussian and Gaussian kernels in the Fourier/space domains may allow explaining the observed
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smoothing capabilities of the q-Gaussian kernel for q < 1.
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Appendix A q-Gaussian in Rd

The d-dimensional q-Gaussian is defined by

Gd,q (x,Σ, β) = Cd,q (Σ, β) expq
(
−βxTΣ−1x

)
, (65)

where Cd,q (Σ, β) is a normalization factor. In the following development we are supposing β > 0.
Once the covariance matrix Σ is symmetric and positive definite, there exists an orthogonal

matrix U and a diagonal matrix D such that Σ = UTDU , and, consequently, D−1 = UΣ−1UT .
If

y = Ux, (66)

then, x = UTy and, using these results we can write the factor Cd,q in Eq. (65) as

Cd,q (Σ, β) =

(∫
Rd

expq
(
−βyTD−1y

)
dy

)−1

. (67)

If D−1 is a diagonal matrix

D−1 = diag
(
σ−2

1 , σ−2
2 , . . . , σ−2

d

)
, (68)

and, if we define √
D−1 = diag

(
σ−1

1 , σ−1
2 , . . . , σ−1

d

)
, (69)

then it is straightforward that D−1 =
√
D−1
√
D−1 and, consequently

det
(√

D−1
)

=
1√

det (UΣUT )
=

1√
|Σ|

, (70)

once UTU = UUT = I. Therefore, by performing the variable change

z =
√
D−1y, (71)

and using the result from Eq. (70) we find

dy =
√
|Σ|dz. (72)

Consequently, Eq. (67) becomes

Cd,q (Σ, β) =
1√

|Σ|
∫
Rd expq

(
−β|z|2

)
dz
. (73)
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Appendix B One-Dimensional q-Gaussian

If d = 1 in Eq. (73) we get

C1,q (σ, β) =

(∫ ∞
−∞

expq
(
−βyσ−2y

)
dy

)−1

=
1∫∞

−∞ expq

(
− β
σ2 y2

)
dy
. (74)

Therefore, by using the q-exponential definition from Eq. (7), we can write Eq. (74) as

C1,q (σ, β) =
1∫∞

−∞

[
1 + (q − 1)

(
β
σ2 y2

)] 1
1−q

dy

. (75)

B.1 Case d = 1 and q > 1

If we perform the variable change

ỹ = [(q − 1) a]1/2 y, (76)

with a = β
σ2 , then we can write the denominator of Eq. (75) as∫ ∞

−∞

[
1 + (q − 1)

(
β

σ2
y2

)] 1
1−q

dy =
2

[(q − 1) a]1/2

∫ +∞

0

[
1 + ỹ2

] 1
1−q dỹ. (77)

From Eq. (3.251-2) and (8.384) of reference [17], we obtain∫ +∞

0
xµ−1

[
1 + x2

]ν−1
dx =

1

2
B
(µ

2
, 1− ν − µ

2

)
, < (µ) > 0, <

(
ν +

1

2
µ

)
< 1, (78)

where B is the Beta function [16]. Therefore, we can cast Eq. (77) in the above form by setting

µ = 1, ν − 1 =
1

1− q
. (79)

By inserting these values in the conditions for Eq. (78) we get

1 < q < 3. (80)

So, we can insert the above results in Eq. (78) to obtain∫ +∞

0

[
1 + x2

] 1
1−q dx =

1

2
B

(
1

2
,

1

q − 1
− 1

2

)
. (81)

By inserting in Eq. (81) the Beta function representation in terms of the Gamma function Γ [16],
we can compute Eq. (75) as

C1,q (σ, β) =
1

2

[(q−1)a]1/2
1
2

Γ( 1
2)Γ

(
1
q−1
− 1

2

)
Γ
(

1
q−1

) =
Γ
(

1
q−1

)
[(q − 1) a]1/2

√
πΓ
(

1
q−1 −

1
2

) , q > 1, (82)

once Γ
(

1
2

)
=
√
π (see [30], page 37).
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B.2 Case d = 1 and q < 1

In this case, Eq. (75) is well defined only if

1 + (q − 1) ay2 ≥ 0, (83)

where a = β
σ2 , which implies

|y| ≤ 1√
(1− q) a

= ((1− q) a)−1/2 . (84)

Hence, the denominator of Eq. (75) becomes∫ ∞
−∞

[
1 + (q − 1)

(
ay2
)] 1

1−q dy =

∫ ((1−q)a)−1/2

−((1−q)a)−1/2

[
1 + (q − 1)

(
ay2
)] 1

1−q dy. (85)

By using the variable change
ỹ = ((1− q) a)1/2 y, (86)

we get ∫ ∞
−∞

[
1 + (q − 1)

(
ay2
)] 1

1−q dy =

∫ 1

−1

[
1− ỹ2

] 1
1−q dỹ

((1− q) a)1/2
. (87)

From Eq. (3.251-1) of reference [17], we see that∫ 1

0
xµ−1

(
1− xλ

)ν−1
dx =

1

λ
B
(µ
λ
, ν
)
, < (µ) > 0, < (ν) > 0, λ > 0, (88)

where B is the Beta function [16].
Therefore, by setting

µ = 1, λ = 2, ν =
1

1− q
+ 1, (89)

in Eq. (88) we obtain ∫ 1

0

(
1− x2

) 1
1−q dx =

1

2
B

(
1

2
,

1

1− q
+ 1

)
. (90)

By inserting this result in Eq. (75) and using the Beta function representation in terms of the
Gamma function [16], we obtain

C1,q (σ, β) =
Γ
(

1
1−q + 3

2

)
((1− q) a)1/2

Γ
(

1
2

)
Γ
(

1
1−q + 1

) , (91)

for q < 1.
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B.3 One-Dimensional q-Gaussian Expression

By inserting Eq. (82) and (91) into Eq. (65) with d = 1 we get

G1,q (x, σ, β) = C1,q (σ, β) expq

(
− β

σ2
x2

)
, (92)

where

C1,q (σ, β) =
Γ
(

1
q−1

) [
(q − 1) β

σ2

]1/2

√
πΓ
(

1
q−1 −

1
2

) , 1 < q < 3, (93)

C1,q (σ, β) =
Γ
(

1
1−q + 3

2

)(
(1− q) β

σ2

)1/2

√
πΓ
(

1
1−q + 1

) , q < 1, |x| ≤
(

(1− q) β
σ2

)−1/2

. (94)

Consequently, using Eq. (A7) of reference [31], which states that

lim
q→1+

Γ
(

1
q−1 − α

)
(q − 1)α Γ

(
1
q−1

) = 1, 1 < q < 1 +
1

α
(95)

and

lim
q→1−

Γ
(

1
1−q + 1

)
(1− q)α Γ

(
1

1−q + α+ 1
) = 1, q < 1 (96)

we can show that

lim
q→1

G1,q (x, σ, β) =

√
β

σ
√
π

exp

(
− β

σ2
x2

)
. (97)

If β = 0.5, we obtain

lim
q→1

G1,q (x, σ, 0.5) =
1

σ
√

2π
exp

(
− x2

2σ2

)
, (98)

which is the traditional Gaussian given by Eq. (12) for d = 1.

Appendix C Two-Dimensional q-Gaussian

If d = 2 then z = (z1, z2) and, using polar coordinates

z1 = r cos (θ) , z2 = r sin (θ) , det (J) = r, (99)

we can write the integral in Eq. (73) as∫
R2

expq

(
−β|z|2

)
dz =

∫ 2π

0

∫ +∞

0
r expq

(
−βr2

)
drdθ. (100)
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C.1 Case q > 1

Then ∫ 2π

0

∫ +∞

0
r expq

(
−βr2

)
drdθ = 2π

∫ +∞

0
r
[
1− (1− q)βr2

] 1
1−q dr. (101)

Variable change
u = 1− (1− q)βr2, (102)

du = −2 (1− q)βrdr = 2 (q − 1)βrdr. (103)

Besides, once q > 1 and β > 0, we have

r → +∞ =⇒ u→ +∞, and u (0) = 1. (104)

Therefore, using the variable change defined by Eq. (102)–(103) we obtain

2π

∫ +∞

0
r
[
1− (1− q)βr2

] 1
1−q dr =

2π

2 (q − 1)β

[
u

2−q
1−q

2−q
1−q

]+∞

1

. (105)

The above integral converges only if

1

1− q
+ 1 =

2− q
1− q

< 0 =⇒ q < 2. (106)

Once we are considering q > 1, we get that, if 1 < q < 2 then Eq. (105) becomes

2π

∫ +∞

0
r
[
1− (1− q)βr2

] 1
1−q dr =

π

β (2− q)
. (107)

C.2 Case q < 1

In this case, in order to get a real value in the integral given by Eq. (101) we need

1− (1− q)βr2 > 0 =⇒ 0 < r <
1√

β (1− q)
. (108)

Then, with the constraints q < 1 and 0 < r < (β (1− q))−1/2, we can use the same variable
change given by Eq. (102)–(103) and insert it in the integral in Eq. (101) to obtain

2π

∫ + 1√
1−q

0
r
[
1− (1− q) r2

] 1
1−q dr =

(
2π

2 (q − 1)β

)[
u

2−q
1−q

2−q
1−q

]0

1

=
π

β (2− q)
. (109)
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C.3 q-Gaussian 2D: Putting All Together

If we set d = 2, in Eq. (73) then, for β > 0, Eq. (107) renders∫
R2

expq

(
−β|z|2

)
dz =

π

β (2− q)
, if 1 < q < 2, (110)

If q < 1, we have the restriction

Ω =

(
0,

1√
β (1− q)

)
, (111)

due to Eq. (108). Therefore, according to Eq. (109), the integral in Eq. (100) becomes∫
R2

expq

(
−β|z|2

)
dz =

π

β (2− q)
, q < 1. (112)

By assembling all the above results we obtain that, for d = 2, Eq. (65) gives

G2,q (x,Σ, β) =
β (2− q)
π
√
|Σ|

[
1 + (1− q)

(
−βxTΣ−1x

)] 1
1−q

, q < 1 or 1 < q < 2, (113)

subject to the constraint

0 <
(
xTΣ−1x

)1/2
<

1√
β (1− q)

, q < 1. (114)

Consequently

lim
q→1

G2,q (x,Σ, β) =
β

π
√
|Σ|

exp
(
−βxTΣ−1x

)
. (115)

So, by setting β = 1/2, we get

lim
q→1

G2,q

(
x,Σ,

1

2

)
=

1

2π
√
|Σ|

exp

(
−1

2
xTΣ−1x

)
, (116)

which is the traditional two-dimensional Gaussian G2,1 (x,Σ), obtained from Eq. (12) for d = 2.

Appendix D Fourier Transform of q-Exponential

Let

F
(
expq

(
−ax2

)
, y
)

=

∫ +∞

−∞
exp (−2jπxy)

[
1 + (q − 1) ax2

] 1
1−q dx. (117)

If we perform the variable change

x̃ = [(q − 1) a]1/2 x, ỹ = [(q − 1) a]−1/2 y. (118)
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Then, we can rewrite Eq. (117) as

F
(
expq

(
−ax2

)
, y
)

= [(q − 1) a]−1/2
∫ +∞

−∞
exp (−2jπx̃ỹ)

[
1 + x̃2

] 1
1−q dx̃. (119)

We are going to use the fact that∫ +∞

−∞
(β + jx)−2µ (γ − jx)−2ν e−jpxdx

=

−2π (β + γ)−µ−ν p
µ+ν−1

Γ(2ν) exp
(
γ−β

2 p
)
Wµ−ν, 1

2
−ν−µ (βp+ γp) , p > 0

2π (β + γ)−µ−ν (−p)µ+ν−1

Γ(2µ) exp
(
β−γ

2 p
)
Wµ−ν, 1

2
−ν−µ (−βp− γp) , p < 0,

(120)

if < (β) > 0, < (γ) > 0 and < (µ+ ν) > 1/2, where W denotes the Whittaker functions (see
Eq. (9)–(220) of reference [17]).

Therefore, if β = γ = 1 and µ = ν in the above expressions we obtain

∫ +∞

−∞

(
1 + x2

)−2µ
e−jpxdx =

−2π2−2µ p2µ−1

Γ(2µ)W0, 1
2
−2µ (2p) , p > 0,

2π2−2µ (−p)2µ−1

Γ(2µ) W0, 1
2
−2µ (−2p) , p < 0,

(121)

where the Whittaker function W0, 1
2
−2µ is defined in the Appendix F of reference [22].

So, we can put Eq. (121) to obtain∫ +∞

−∞

(
1 + x2

)−2µ
e−jpxdx = − sign (p)π

1

Γ (2µ)

(
|p|
2

)2µ−1

W0, 1
2
−2µ (2|p|) , (122)

if < (2µ) > 1/2.
By setting: p = 2πỹ and 2µ = (q − 1)−1, with the constraint

< (2µ) > 1/2 =⇒ (q − 1)−1 >
1

2
, (123)

we get the following cases to compute Eq. (119).

D.1 Case q > 1

Due to the restriction from Eq. (123), we have 1 < q < 3. By inserting Eq. (122) into Eq. (119)
and returning to the original variable y through Eq. (118), we obtain

F
(
expq

(
−ax2

)
, y
)

= [(q − 1) a]−1/2
(
− sign

(
2π [(q − 1) a]−1/2 y

))
×

×2π
(

2
1

1−q
) |2π [(q − 1) a]−1/2 y|

1
q−1
−1

Γ
(

1
q−1

) W0, 1
2
− 1
q−1

(
2|2π [(q − 1) a]−1/2 y|

)
,

(124)

where the Whittaker function W0, 1
2
− 1
q−1

is defined in [22].
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D.2 Case q < 1

In this case, Eq. (117) is well defined only if

1 + (q − 1) ax2 ≥ 0, (125)

which implies

|x| ≤ 1√
(1− q) a

= ((1− q) a)−1/2 . (126)

Hence, Eq. (117) becomes

F
(
expq

(
−ax2

)
, y
)

=

∫ ((1−q)a)−1/2

−((1−q)a)−1/2
exp (−2jπxy)

[
1 + (q − 1) ax2

] 1
1−q dx. (127)

By using the variable change

x̃ = ((1− q) a)1/2 x,

ỹ = ((1− q) a)−1/2 y,
(128)

we can rewrite Eq. (127) as

F
(
expq

(
−ax2

)
, y
)

=

∫ 1

−1
exp (−2jπx̃ỹ)

[
1− x̃2

] 1
1−q dx̃

((1− q) a)1/2
. (129)

However, it is known that (Eq. (3.387-2) of [17])∫ 1

−1

(
1− x2

)ν−1
exp (jµx) dx =

√
π

(
2

µ

)ν− 1
2

Γ (ν) Jν− 1
2

(µ) , (130)

if < (ν) > 0.
Therefore, if we set

ν =
1

1− q
+ 1, µ = −2πỹ, x = x̃, (131)

in Eq. (130), we obtain < (ν) > 0, and∫ 1

−1

(
1− x̃2

) 1
1−q exp (−2jπx̃ỹ) dx̃ (132)

=
√
π

(
− 1

πỹ

) 1
1−q+ 1

2

Γ

(
1

1− q
+ 1

)
J 1

1−q+ 1
2

(−2πỹ) , y 6= 0, (133)

where J denotes the Bessel functions [16]. Consequently, we can use the result from Eq. (133) to
rewrite Eq. (127) as

F
(
expq

(
−ax2

)
, y
)

= (134)

=

√
π

((1− q) a)1/2
Γ

(
2− q
1− q

)(
−((1− q) a)1/2

πy

) 1
1−q+ 1

2

J 1
1−q+ 1

2

(
− 2πy

((1− q) a)1/2

)
, (135)
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if q < 1 and y 6= 0.
If y = 0 in Eq. (127) we get

F
(
expq

(
−ax2

)
, 0
)

=

∫ ((1−q)a)−1/2

−((1−q)a)−1/2

[
1 + (q − 1) ax2

] 1
1−q dx

=

∫ 1

−1

[
1− x̃2

] 1
1−q dx̃

((1− q) a)1/2
.

(136)

However, from Eq. (3.214), reference [17], we have∫ 1

0

[
(1 + x)µ−1 (1− x)ν−1 + (1 + x)ν−1 (1− x)µ−1

]
dx = 2µ+ν−1B (µ, ν) , (137)

if < (µ) > 0 and < (ν) > 0. Therefore, if

µ = ν =
1

(1− q)
+ 1, (138)

we satisfy < (µ) > 0,< (ν) > 0 and

2

∫ 1

0

[
(1 + x)

1
(1−q) (1− x)

1
(1−q)

]
dx = 2

∫ 1

0

(
1− x2

) 1
(1−q) dx

= 2
2

1−q+1
B

(
1

(1− q)
+ 1,

1

(1− q)
+ 1

)
.

(139)

So, using this result and the Bessel function definition through the Gamma function [16], we
can compute Eq. (136) by

F
(
expq

(
−ax2

)
, 0
)

=
2

2
1−q+1

((1− q) a)1/2

Γ
(

1
(1−q) + 1

)
Γ
(

1
(1−q) + 1

)
Γ
(

2
1−q + 2

) . (140)
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