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On the existence of optimal consensus control
for the fractional Cucker–Smale model

R. ALMEIDA, R. KAMOCKI, A.B. MALINOWSKA and T. ODZIJEWICZ

This paper addresses the nonlinear Cucker–Smale optimal control problem under the inter-
play of memory effect. The aforementioned effect is included by employing the Caputo fractional
derivative in the equation representing the velocity of agents. Sufficient conditions for the ex-
istence of solutions to the considered problem are proved and the analysis of some particular
problems is illustrated by two numerical examples.

Key words: fractional calculus, fractional differential systems, flocking model, consensus,
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1. Introduction

Flocking behavior is a well-established concept in biology, robotics and con-
trol theory, as well as economics and sociology. In the biological context, we can
mention fish schools, insect colonies, bird flocks [7]. Distribution of wealth in a
modern society [9] or the formation of choices and opinions [18,36] are examples
of collective behavior in the socio-economic context. Likewise, increasing efforts
are devoted to the investigation of the coordination and cooperation among mul-
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tiple mobile agents [24,30,31]. Thirteen years ago, Cucker and Smale proposed a
dynamics model of collective behavior that was motivated by Vicek’s model [38].
Namely, in their seminal papers [10,11], they postulated the model that describes
the emergence of consensus in a group of moving agents (e.g., flocking in a swarm
of birds). In the proposed model, the state of each agent is characterized by a pair
(xi, vi), representing variables which we refer to as position and velocity, respec-
tively. Then, the birds influence each other according to a decreasing function
of their mutual space distance. More precisely, the system evolves following the
second-order dynamic

ẋi (t) = vi (t),

v̇i (t) =
1
N

N∑
j=1
η

(x j (t) − xi (t)
2

l3
2

) (
v j (t) − vi (t)

)
, i = 1, . . . , N, (1)

where η(r) is a communication rate that decays as the distance between agents
increases. The asymptotic behavior of the model, called flocking or consensus,
consists in the fact that for t → ∞, all agent velocities become equal, with
fixed relative positions. The emergence of consensus either by a sufficiently
cohesive initial condition (x0, v0) or a strong interaction η(r) was studied in
[10, 11, 21, 23]. Afterward, many modifications of the classical Cucker–Smale
model were proposed. The original setting of the model was extended to a collision
avoiding flocking control protocol [12] and to the scenario of guiding agents
with a preferred velocity direction [13]. Shen [33] considered a non-symmetric
structure of interactions. The Cucker–Smale model with the presence of noise was
analyzed in [14]. In [16,17] was addressed the situation in which each interaction
between agent is subject to random failure. Fractional Cucker–Smale models
which were obtained by replacing the usual time derivative by a fractional time
derivative were studied in [19, 20, 22]. Since the formation of consensus in the
Cucker–Smale model strongly depends on the communication rate function and
the initial configuration of the system, it is relevant to consider external control
strategies that will facilitate the consensus. Taking account of existing works,
in [4, 8] were designed optimal control protocols for the Cucker–Smale system
under the prespecified cost functional. In the mentioned papers, a finite time
optimal control was considered with the minimization criteria that is a sum of
a norm of control and a distance from consensus. The obtained control either
induces consensus on an initial configuration of the system that would otherwise
diverge or accelerates the rate of convergence for initial data that would naturally
converge to consensus.

In this paper, we follow the approaches previously described. Namely, we
study the consensus control of the Cucker–Smale type system with optimization
performance. However, differently from the previous papers, we study the Cucker–
Smale flocking dynamics under the interplay of memory effect. As a mathematical
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model incorporating the memory effect, we use the fractional Cucker–Smale
model proposed in [19]. To be specific, a modification of the Cucker–Smale model
was obtained by replacing the usual time derivative by the Caputo fractional time
derivative only in the second equation of system (1). In this way, the first equation
of the system could be still treated as a position of an agent and simultaneously we
incorporate the memory factor into the consensus process. We prove the existence
of an optimal controller for a problem with the fractional Cucker–Smale model
and the cost functional that minimizes the distance to consensus and control.

There have been much research that shows that fractional-order models own
better description memory and hereditary properties of various processes than
classical models with integer order derivatives [2, 6, 15, 25, 28, 35, 37]. Since
fractional derivatives are non-local operators, the long-range interactions in time
(memory) could be modeled [1, 34].

The reminder of the paper is organized as follows. Section 2 shows some
preliminaries from fractional calculus. Section 3 presents the fractional Cucker–
Smale model. Then, Section 4 is devoted to the study of the existence and
uniqueness of solution to controlled fractional Cucker–Smale system. Our main
result, that is the existence of optimal consensus control for controlled fractional
Cucker–Smale model, is proved in Section 5. Numerical examples are given in
Section 6. Finally, some conclusions are drawn in the last section.

2. Preliminaries

In this section, we present necessary definitions and properties concerning
fractional derivatives and integrals (cf. [27,32]). We shall assume that [a, b] ⊂ R
is any bounded interval.

Let α > 0 and f ∈ L1([a, b],Rn). By the left- and the right-sided Riemann–
Liouville integral of the function f of order α we mean functions

(
Iαa+ f

)
(t) :=

1
Γ(α)

t∫
a

f (τ)
(t − τ)1−α dτ, t ∈ [a, b] a.e.

and (
Iαb− f

)
(t) :=

1
Γ(α)

b∫
t

f (τ)
(τ − t)1−α dτ, t ∈ [a, b] a.e.,

respectively. In view of convergence (cf. [32, Theorem 2.7])

lim
α→0+

(
Iαa+ f

)
(t) = f (t), t ∈ [a, b] a.e.
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it is natural to put (
I0
a+ f

)
(t) = f (t), t ∈ [a, b] a.e.

Let 1 ¬ p < ∞. By Iαa+(Lp([a, b],Rn)) (briefly Iαa+(Lp)) we denote the space

Iαa+(Lp) :=
{

f : [a, b]→ Rn; f = Iαa+g a.e. on [a, b], g ∈ Lp([a, b],Rn)
}
.

Then, we identify functions belonging to the space Iαa+(Lp) and equal almost
everywhere on [a, b]. Let α ∈ (0, 1] and f ∈ L1([a, b],Rn). The left-sided
Riemann–Liouville derivative Dαa+ f of order α of f is defined by

(
Dαa+ f

)
(t) :=

d
dt

(
I1−α
a+ f

)
(t), t ∈ [a, b] a.e.,

provided that the function I1−α
a+ f is absolutely continuous on [a, b].

Remark 1 If α = 1, then Dαa+ f =
d
dt

f .

The following composition properties hold.

Proposition 1 [27, Lemmas 2.4, 2.5 (a)] Let 0 < α ¬ 1.

(a) If f ∈ L1([a, b],Rn), then(
Dαa+Iαa+ f

)
(t) = f (t), t ∈ [a, b] a.e.

(b) If f ∈ Iαa+(L1), then(
Iαa+Dαa+ f

)
(t) = f (t), t ∈ [a, b] a.e.

Let f ∈ C([a, b],Rn). By the left-sided Caputo derivative of order α of the
function f on the interval [a, b] we mean a function C Dαa+ f given by(

C Dαa+ f
)

(t) := Dαa+( f (·) − f (a))(t), t ∈ [a, b] a.e.,

provided that the derivative in the Riemann–Liouville sense on the right side
exists.

Remark 2 If α = 1, then C Dαa+ f =
d
dt

f . Moreover, if both derivatives Dαa+ f and
C Dαa+ f exist and f (a) = 0, then they coincide.

Remark 3 If f (t) = const, then C Dαa+ f = 0.
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Let us denote by C ACα,pa+ ([a, b],Rn) (briefly C ACα,pa+ ), where p >
1
α

, the set
of all functions f : [a, b]→ Rn that have the representation

f (t) = ca +
(
Iαa+φ

)
(t), t ∈ [a, b] a.e.,

with some ca ∈ Rn and φ ∈ Lp([a, b],Rn). From [5, Property 4] it follows that if
f ∈ C ACα,pa+ , then it is continuous on [a, b] and f (a) = ca. Consequently, there
exists the Caputo derivative C Dαa+ f and (cf. Proposition 1)(

C Dαa+ f
)

(t) = Dαa+( f − f (a))(t) = (Dαa+Iαa+φ)(t) = φ(t), t ∈ [a, b] a.e.

Remark 4 If α = 1, then C ACα,pa+ = ACp, where

ACp = ACp([a, b],Rn) =
{

f ∈ AC([a, b],Rn) :
d
dt

f ∈ Lp([a, b],Rn)
}
.

From Proposition 1 and [5, Property 4] we immediately obtain the following
result.

Proposition 2 Let 0 < α ¬ 1 and p >
1
α

.

(a) If f ∈ Lp([a, b],Rn), then(
C Dαa+Iαa+ f

)
(t) = f (t), t ∈ [a, b] a.e.

(b) If f ∈ C ACα,pa+ , then(
Iαa+

C Dαa+ f
)

(t) = f (t) − f (a), t ∈ [a, b] a.e.

Let ∥ · ∥ln2 denote an Euclidean norm in Rn. In the space C ACα,pa+ , we introduce
the norm given by

∥ f ∥
C ACα,p

a+
:=

(
∥ f (a)∥p

ln2
+
C Dαa+ f p

Lp

) 1
p

. (2)

It is easy to check that the space C ACα,pa+ with norm (2) is complete. In particular,
C ACα,2a+ with the inner product

⟨ f , g⟩
C ACα,2

a+
:= ⟨ f (a), g(a)⟩Rn +

b∫
a

⟨(
C Dαa+ f

)
(t),

(
C Dαa+g

)
(t)

⟩
Rn

dt

is a Hilbert space.
The following preliminary result will be useful in the sequel.
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Lemma 1 Let α ∈ (0, 1] and p >
1
α

. If ( f l )l∈N ⊂ C ACα,pa+ is a sequence such

that f l ⇀ f 0 weakly in C ACα,pa+ , then f l → f 0 strongly in Lp([a, b],Rn) and
C Dαa+ f l ⇀ C Dαa+ f 0 weakly in Lp([a, b],Rn).

Proof. Let f l ⇀ f 0 weakly in C ACα,pa+ . It is clear that linear mappings

C ACα,pa+ ∋ f −→ C Dαa+ f ∈ Lp([a, b],Rn),

C ACα,pa+ ∋ f −→ f (a) ∈ Rn

are continuous. Consequently, C Dαa+ f l ⇀ C Dαa+ f 0 weakly in Lp([a, b],Rn) and
f l (a) ⇀ f 0(a) weakly (so also strongly) in Rn. Moreover, since the operator Iαa+
is completely continuous (cf. [29, Lemma 1.1]), we have

Iαa+
C Dαa+ f l −→ Iαa+

C Dαa+ f 0 strongly in Lp([a, b],Rn).

Thus

f l = f l (a) + Iαa+
C Dαa+ f l −→ f 0(a) + Iαa+

C Dαa+ f 0 = f 0

strongly in Lp([a, b],Rn).

The proof is completed. □
Let Eα,pa+ ([a, b],Rn × Rn) (briefly Eα,pa+ ) denote the space

E
α,p
a+ := ACp (

[a, b],Rn) × C ACα,pa+
(
[a, b],Rn) .

It is a Banach space with the norm

∥z∥Eα,pa+
:=

(
∥z1∥p

ACp + ∥z2∥p

C ACα,p
a+

) 1
p

, z = (z1, z2) ∈ Eα,pa+ ,

as a Cartesian product of the Banach spaces ACp and C ACα,pa+ . InEα,pa+ we introduce
a Bielecki type norm in the following way:

∥z∥Eα,pa+ ,k
:=

(
∥z1∥p

ACp,k + ∥z2∥p

C ACα,p
a+ ,k

) 1
p

=
*..,∥z1(a)∥p

ln2
+

b∫
a

e−kpt ∥ ż1(t)∥p
ln2

dt + ∥z2(a)∥p
ln2

+

b∫
a

e−kpt ∥
(
C Dαa+z2

)
(t)∥p

ln2
dt
+//-

1
p

, (3)
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where k > 0 is an arbitrary fixed constant. It is clear that

min
{
1, e−kb

}
∥z∥Eα,pa+

¬ ∥z∥Eα,pa+ ,k
¬ max

{
1, e−ka

}
∥z∥Eα,pa+

,

so, the space Eα,pa+ with norm (3) is complete.

3. The fractional Cucker–Smale model

Let us consider the following system of N interacting agents



ẋi (t) = vi (t),

C Dα0+vi (t) =
1
N

N∑
j=1
η
(
∥x j (t) − xi (t)∥2ld2

)
(v j (t) − vi (t)), t ∈ [0,T] a.e.,

(xi (0), vi (0)) = (xi0, vi0), i = 1, . . . , N

(4)

where α ∈ (0, 1]. The state (x, v) ∈ RNd × RNd consists of the main state
x = (x1, . . . , xN ) and a consensus parameter v = (v1, . . . , vN ), where xi ∈ Rd

represents the main state of the agent i, i = 1, . . . , N , while vi ∈ Rd denotes
its consensus parameter. Note that we propose a modification of the Cucker–
Smale model employing fractional operators but only to the second equation of
system (4). In this way, the first equation of the system could be still treated as
a position of an agent and simultaneously we include the memory factor to the
consensus process. The coefficient

η
(
∥x j − xi∥2ld2

)
,

where η ∈ C1([0,+∞), (0,+∞)), is non-increasing function, called a rate of
communication or an interaction potential, describes the influence of j-th agent
on the dynamics of the i-th agent. It means that the interaction between agents is a
function of the distance between them. Observe that, similarly to the integer-order
Cucker–Smale model [8], the mean consensus parameter

v̄ =
1
N

N∑
j=1

v j (t)

is an invariant of dynamics (4) and therefore, by Remark 3, it is constant in time.

Definition 1 Consensus is a state in which all agents have the same consensus
parameter equals v̄.
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Remark 5 If every agent moves with the same consensus parameter equal v̄, then
the dynamics originating from (x0, v0) is given by rigid translation x(t) = x0+ t v̄
that is called a rigid flock.

Let us introduce matrices A, D : RNd → RN×N given by:

A(x) =



1
N
η(0)

1
N
η

(
∥x2 − x1∥2ld2

)
. . .

1
N
η

(
∥xN − x1∥2ld2

)
1
N
η

(
∥x1 − x2∥2ld2

) 1
N
η(0) . . .

1
N
η

(
∥xN − x2∥2ld2

)
...

...
. . .

...

1
N
η

(
∥x1 − xN ∥2ld2

) 1
N
η

(
∥x2 − xN ∥2ld2

)
. . .

1
N
η(0)

N×N

,

D(x) =



1
N

N∑
j=1
η
(
∥x j−x1∥2ld2

)
0 . . . 0

0
1
N

N∑
j=1
η
(
∥x j−x2∥2ld2

)
. . . 0

...
...

. . .
...

0 0 . . .
1
N

N∑
j=1
η
(
∥x j−xN ∥2ld2

)

N×N

,

and define a matrix L : RNd → RNd×Nd in the following way:

L(x) := (D(x) − A(x)) ⊗ Id, x ∈ RNd,

where ⊗ denotes the Kronecker product of matrices and Id is a d-dimensional
identity matrix. Then, we can write system (4) in the following matrix form:

ẋ(t) = v(t),
C Dα0+v(t) = −L(x(t))v(t), t ∈ [0,T] a.e.,

(x(0), v(0)) = (x0, v0).

(5)

Lemma 2 Assume that

(A) the function (·)η̇(·) is bounded on [0,∞) provided that the limit lim
r→∞

(r η̇(r))
does not exist.
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Then the function L satisfies a globally Lipschitz condition, it means there
exists C > 0 such that1

∥L(x) − L(y)∥Nd×Nd ¬ C∥x − y∥lNd
2
, x, y ∈ RNd . (6)

Proof. First, we shall prove that the function L̃ : RNd → RN×N given by
L̃ = D − A satisfies a globally Lipschitz condition. In order to prove this fact
it is sufficient to show that each component of matrix functions A and D satis-
fies a globally Lipschitz condition. To that end, we shall show that derivatives
∂Ail (x)
∂x

,
∂Dil (x)
∂x

: RNd → RNd are continuous and bounded on RNd . Indeed,
we have

∂Ail (x)
∂x

=

(
∂Ail (x)
∂x1

, . . . ,
∂Ail (x)
∂xN

)
,

whereby

∂Ail (x)
∂xk

=



− 2
N
η̇

(
∥xl − xi∥2ld2

)
(xl − xi), k = i,

2
N
η̇

(
∥xl − xi∥2ld2

)
(xl − xi), k = l,

0d k ∈ {1, . . . , N } \ {i, l}

i, l = 1, . . . , N,

(here 0d denotes the d-dimensional zero vector) and

∂Dil (x)
∂x

=

(
∂Dil (x)
∂x1

, . . . ,
∂Dil (x)
∂xN

)
,

whereby

∂Dil (x)
∂xk

= 0Nd, i , l, k = 1, . . . , N,

∂Dii (x)
∂xk

=


− 2

N

N∑
j=1
η̇

(
∥x j − xi∥2ld2

)
(x j − xi), k = i,

2
N
η̇

(
∥xk − xi∥2ld2

)
(xk − xi), k , i,

i = 1, . . . , N .

1The symbol ∥ · ∥n×n denotes the Frobenius norm of a square matrix A = [ai j ]i, j=1,...,n.
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Of course,
∂Ail (x)
∂x

,
∂Dil (x)
∂x

, i, l = 1, . . . , N , are continuous on RNd . Moreover,
let us note that

∥η̇
(
∥xl − xi∥2ld2

)
(xl − xi)∥ld2 ¬

����η̇ (
∥xl − xi∥2ld2

) ���� ∥(xl − xi)∥ld2

¬


����η̇ (
∥xl − xi∥2ld2

) ���� ∥(xl − xi)∥2ld2
if ∥(xl − xi)∥ld2 > 1����η̇ (

∥xl − xi∥2ld2

) ���� if ∥(xl − xi)∥ld2 ¬ 1

for i, l = 1, . . . , N . Consequently, from assumption (A) and [3, Corollary 10] it fol-

lows that the derivatives
∂Ail (x)
∂x

,
∂Dil (x)
∂x

, i, l = 1, . . . , N , are bounded on RNd .

Now, we show that condition (6) holds. Indeed, let C̃ > 0 be a Lipschitz
constant for the function L̃. Then we have

∥L(x) − L(y)∥Nd×Nd =
(L̃(x) − L̃(y)

)
⊗ Id

Nd×Nd

=
L̃(x) − L̃(y)N×N

∥Id ∥d×d

¬ C̃
√

d∥x − y∥lNd
2
, x, y ∈ RNd .

The proof is completed. □

4. A fractional controlled Cucker–Smale model

In this section, we introduce a control to the fractional Cucker–Smale
model (5). Namely, we study the existence and uniqueness of a solution to the
following system:

ẋ(t) = v(t),
C Dα0+v(t) = −L(x(t))v(t) + u(t), t ∈ [0,T] a.e.,

u(t) ∈ M ⊂ RNd, t ∈ [0,T],
(x(0), v(0)) = (x0, v0),

(7)

where u = (u1, . . . , uN ) : [0,T]→ RNd is a control function and

M :=
{

z ∈ RNd : ∥z∥lNd
2
¬ K

}
for a given K > 0. Define

U p
M :=

{
u ∈ Lp([0,T],Rm); u(t) ∈ M, t ∈ [0,T]

}
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for 1 ¬ p < ∞, and

E
α,p
0+,z0

:= {z = (x, v) ∈ Eα,p0+ ([0,T],RNd × RNd) : z(0) = z0}

for p >
1
α

and z0 = (x0, v0) ∈ RNd × RNd .

Definition 2 By a solution to control system (7), corresponding to any fixed
control u ∈ U p

M , we mean a function z = (x, v) ∈ Eα,p0+,z0
satisfying system (7) a.e.

on [0,T].

From Proposition 2 we immediately obtain the following result.

Proposition 3 The function z = (x, v) ∈ Eα,p0+,z0
is a solution to control system (7),

corresponding to any control u ∈ U p
M if and only if it satisfies the integral equation


x(t) = x0 + (I1

0+v)(t)

v(t) = v0 − Iα0+[L(x(t))v(t)] + (Iα0+u)(t)
t ∈ [0,T].

We are now in a position to prove the existence of a unique solution to system (7).

Theorem 1 Let α ∈ (0, 1] and p >
1
α

. If condition (A) from Lemma 2 is satisfied,
then control system (7) has a unique solution z = (x, v) ∈ Eα,p0+,z0

, corresponding
to any control u ∈ U p

M .

Proof. Let us fix u ∈ U p
M . In view of Proposition 3 it is sufficient to prove that

the mapping Tu : Eα,p0+,z0
→ Eα,p0+,z0

given by

Tu(z) = Tu(x, v) =
(
x0 + I1

0+v, v0 − Iα0+[L(x)v] + Iα0+u
)

has a unique fixed point (the fact that Tu is well defined is obvious).
Indeed, let us consider a metric space

(
E
α,p
0+ , ρp,k (·, ·)

)
, where ρp,k is a Bielecki

type metric induced by the norm ∥ · ∥Eα,p0+,k
. Since Eα,p0+,z0

is a closed subset of Eα,p0+ ,

it follows that
(
E
α,p
0+,z0
, ρp,k,z0 (·, ·)

)
, where

ρp,k,z0 (z, z̃) :=ρp,k (z, z̃)| Eα,p0+,z0

=
*..,

T∫
0

e−kpt *,
 d

dt
(z1(t) − z̃1(t))


p

ln2

+
C Dα0+(z2(t) − z̃2(t))p

ln2
+- dt

+//-
1
p
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for
(
z, z̃

)
=

(
(z1, z2),

(
z̃1, z̃2

)) ∈ Eα,p0+,z0
, is a complete metric space. We shall

show that Tu is a contraction. Let
(
z, z̃

)
=

(
(x, v),

(
x̃, ṽ

)) ∈ Eα,p0+,z0
. Then, using

Lemma 2, Proposition 2 and [26, Lemma 1], we obtain(
ρp,k,z0

(
Tu(z) − Tu

(
z̃
))) p

=

T∫
0

e−kpt
(
∥v(t) − ṽ(t)∥p

lNd
2
+ ∥L(x(t))v(t) − L( x̃(t))ṽ(t)∥p

lNd
2

)
dt

¬

T∫
0

e−kpt Iα0+
C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

+ 2p−1
T∫

0

e−kpt
((L(x(t)) − L( x̃(t)))v(t)p

lNd
2
+ L( x̃(t))(v(t) − ṽ(t))p

lNd
2

)
dt

¬
(

Tα

Γ(α+1)

) p−1 T∫
0

e−kpt Iα0+
C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

+ 2p−1
(
C max

t∈[0,T]
∥v(t)∥lNd

2

) p T∫
0

e−kpt
I1

0+
d
dt

(x(t) − x̃(t))


p

lNd
2

dt

+ 2p−1
(

max
r∈[0,+∞)

∥L(r)∥Nd×Nd

) p T∫
0

e−kpt ∥Iα0+
C Dα0+(v(t) − ṽ(t))∥p

lNd
2

dt

¬
(

Tα

Γ(α+1)

) p−1 T∫
0

e−kpt Iα0+
C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

+ (2T )p−1
(
C max

t∈[0,T]
∥v(t)∥lNd

2

) p T∫
0

e−kpt I1
0+

 d
dt

(x(t) − x̃(t))


p

lNd
2

dt

+

(
2Tα

Γ(α+1)

) p−1(
max

r∈[0,+∞)
∥L(r)∥Nd×Nd

) p T∫
0

e−kpt Iα0+
C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

= J1 + J2 ,
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where

J1 =

(
Tα

Γ(α + 1)

) p−1 [
1

+ 2p−1
(

max
r∈[0,+∞)

∥L(r)∥Nd×Nd

) p ] T∫
0

e−kpt Iα0+
C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

and

J2 = (2T )p−1
(
C max

t∈[0,T]
∥v(t)∥lNd

2

) p T∫
0

e−kpt I1
0+

 d
dt

(x(t) − x̃(t))


p

lNd
2

dt.

Let us note that since (cf. [26, proof of Theorem 4])

(IαT−e−kp·)(t) ¬
1

(kp)α
e−kpt, t ∈ [0,T] a.e.,

it follows, by [27, Lemma 2.7] that

T∫
0

e−kpt Iα0+
C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

=

T∫
0

(IαT−e−kp·)(t) C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

¬
1

(kp)α

T∫
0

e−kpt C Dα0+(v(t) − ṽ(t))p

lNd
2

dt

and

T∫
0

e−kpt I1
0+

 d
dt

(x(t) − x̃(t))


p

lNd
2

dt ¬

T∫
0

(I1
T−e−kp·)(t)

 d
dt

(x(t) − x̃(t))


p

lNd
2

dt

¬
1

kp

T∫
0

e−kpt
 d

dt
(x(t) − x̃(t))


p

lNd
2

dt.
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Consequently,(
ρp,k,z0

(
Tu(z) − Tu( z̃)

) ) p ¬ ck,p
(
∥ ẋ − ˙̃x∥p

Lp,k + ∥
C Dαa+(v − ṽ)∥p

Lp,k

)
,

where

ck,p =
1

(kp)α
max


(

Tα

Γ(α + 1)

) p−1 [
1 + 2p−1

(
max

r∈[0,+∞)
∥L(r)∥Nd×Nd

) p]
,

(2T )p−1
(
C max

t∈[0,T]
∥v(t)∥lNd

2

) p}
.

Hence

ρp,k,z0

(
Tu(z) − Tu( z̃)

)
¬ (ck,p)

1
p

(
∥ ẋ − ˙̃x∥p

Lp,k + ∥
C Dαa+(v − ṽ)∥p

Lp,k

) 1
p

= (ck,p)
1
p ρp,k,z0

(
z − z̃

)
.

Since (ck,p)
1
p ∈ (0, 1) for sufficiently large k, we conclude, by the Banach con-

traction principle, that the operator Tu has a unique fixed point. The proof is
completed. □

The following lemma will be used in the next section.

Lemma 3 If all assumptions of Theorem 1 are satisfied, then there exist constants
C1,C2 > 0 such that

∥xu(t)∥lNd
2
¬ C1, t ∈ [0,T], u ∈ U p

M,

and

∥vu(t)∥lNd
2
¬ C2, t ∈ [0,T], u ∈ U p

M,

where (xu, vu) ∈ Eα,p0+,z0
is a solution of (7) corresponding to a control u ∈ U p

M .

Proof. From Proposition 3 we conclude that

∥vu(t)∥lNd
2
¬ ∥v0∥lNd

2
+ Iα0+∥L(xu(t))vu(t)∥lNd

2
+ Iα0+∥u(t)∥lNd

2

¬ C3 + C4Iα0+∥v
u(t)∥lNd

2

for all t ∈ [0,T] and u ∈ U p
M , where C3 = ∥v0∥lNd

2
+

KTα

Γ(α + 1)
, C4 =

max
r∈[0,+∞)

∥L(r)∥Nd×Nd . Using a fractional version of the Gronwall inequality
(cf. [39, Corollary 2]) we obtain

∥vu(t)∥lNd
2
¬ C2, t ∈ [0,T] a.e., u ∈ U p

M,
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where C2 := C3Eα (C4Tα) (here Eα is the Mittag-Leffler function defined by

Eα (w) =
∞∑

k=0

wk

Γ(kα + 1)
). Hence, by Proposition 3, we get

∥xu(t)∥lNd
2
¬ ∥x0∥lNd

2
+ I1

0+∥vu(t)∥lNd
2
¬ C1, t ∈ [0,T] a.e., u ∈ U p

M,

where C1 := ∥x0∥lNd
2
+ TC2. The proof is completed. □

5. Existence of optimal solutions

In this section, our main goal is to enforce consensus in system (7) using the
optimal control strategy. To do so we minimize the following cost functional

J (z, u) =

T∫
0

*..,
N∑

i=1

vi (t) −
1
N

N∑
j=1

v j (t)


2

ld2

+ γ

N∑
i=1
∥ui (t)∥ld2

+//- dt, (8)

where z = (x, v) and γ > 0, subject to system (7). The cost functional consists of
two parts: flocking and sparsity. Flocking part measures the distance to consensus,
while sparsity part measures the norm of control function. In other words, we
design an external control that enforces consensus in the system with a minimal
amount of intervention.

In order to get an existence result for the optimization problem raised above,

we assume that α ∈
(
1
2
, 1
]
.

Let us note that, due to uniqueness of a solution to (7) we can equivalently
consider the reduced cost functional J̃ : U2

M → R+ given by

J̃ (u) := J (zu, u).

Our aim is to find û ∈ U2
M satisfying condition

J̃ (û) ¬ J̃ (u), u ∈ U2
M .

Then û is called an optimal control for problem described by equations (7) and
(8), zû ∈ Eα,20+,z0

is called the optimal state associated with û, and the pair (zû, û)
is called an optimal solution to (7) and (8).

We start with two preparatory lemmas.
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Lemma 4 If all assumptions of Theorem 1 are satisfied, u0 ∈ U2
M and (ul )l∈N ⊂

U2
M is a sequence of controls such that

ul ⇀
l→∞

u0 weakly in L2([0,T],RNd),

then the sequence (zl )l∈N := (xl, vl )l∈N ⊂ Eα,20+,z0
of corresponding solutions

of (7) is convergent strongly in L2([0,T],RNd) × L2([0,T],RNd) to a solution
z0 := (x0, v0), corresponding to u0.

Proof. Let u0 ∈ U2
M and (ul )l∈N ⊂ U2

M be a sequence of controls such that

ul ⇀
l→∞

u0 weakly in L2([0,T],RNd).

Consider the sequence (zl )l∈N := (xl, vl )l∈N ⊂ Eα,20+,z0
of corresponding solutions

of (7). Then, using Lemma 3, we assert that

∥xl ∥AC2 =
*..,∥x0∥2lNd

2
+

T∫
0

∥ ẋl (t)∥2
lNd
2

dt
+//-

1
2

=
*..,∥x0∥2lNd

2
+

T∫
0

∥vl (t)∥2
lNd
2

dt
+//-

1
2

¬
√
∥x0∥2lNd

2
+ C2

2T, l ∈ N

and

∥vl ∥
C ACα,2

0+
=
*..,∥v0∥2lNd

2
+

T∫
0

∥(C Dα0+v
l )(t)∥2

lNd
2

dt
+//-

1
2

=
*..,∥v0∥2lNd

2
+

T∫
0

∥ul (t) − L(xl (t))vl (t)∥2
lNd
2

dt
+//-

1
2

¬

√√
∥v0∥2lNd

2
+ 2T *,K2 +

(
C2 max

r∈[0,+∞)
∥L(r)∥Nd×Nd

)2+-, l ∈ N.

This means that the sequence of norm
(
∥zl ∥Eα,20+

)
l∈N

is bounded on Eα,20+ . Conse-

quently, since Eα,20+ is reflexive (as a Hilbert space), we conclude that there exist a
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subsequence (zls )s∈N := (xls, vls )s∈N ⊂ Eα,20+,z0
and a function z0 = (x0, v0) ∈ Eα,20+

such that
zls ⇀

s→∞
z0 weakly in Eα,20+ .

Then,

xls ⇀
s→∞

x0 weakly in AC2 and vls ⇀
s→∞

v0 weakly in C ACα,20+ .

Lemma 1 implies

xls s→∞−−−−→ x0 strongly in L2([0,T],RNd) and

vls s→∞−−−−→ v0 strongly in L2([0,T],RNd).

Supposing contrary and repeating the above argumentation we assert that

xl l→∞−−−−→ x0 strongly in L2([0,T],RNd) and

vl l→∞−−−−→ v0 strongly in L2([0,T],RNd).
(9)

Now, we shall prove that z0 = (x0, v0) is a solution to (7) corresponding to u0.
Indeed, first let us note that from Lemma 2 we obtain

∥L(x0(t))v0(t) − L(xl (t))vl (t)∥2
lNd
2

¬ 2
(L(xl (t))v0(t)−L(xl (t))vl (t)2

lNd
2
+
L(x0(t))v0(t)−L(xl (t))v0(t)2

lNd
2

)
¬ 2

((
max

r∈[0,+∞)
∥L(r)∥Nd×Nd

)2
∥v0(t) − vl (t)∥2

lNd
2

+

(
max

t∈[0,T]
∥v0(t)∥lNd

2

)2
∥L(x0(t)) − L(xl (t))∥2Nd×Nd

)
¬ 2

((
max

r∈[0,+∞)
∥L(r)∥Nd×Nd

)2
∥v0(t) − vl (t)∥2

lNd
2

+

(
C max
t∈[0,T]

∥v0(t)∥lNd
2

)2
∥x0(t) − xl (t)∥2

lNd
2

)
, t ∈ [0,T].

Consequently,

L(xl )vl −−−−→
l→∞

L(x0)v0 strongly in L2([0,T],RNd).



642 R. ALMEIDA, R. KAMOCKI, A.B. MALINOWSKA, T. ODZIJEWICZ

Moreover, Lemma 1 implies

ẋl ⇀
l→∞

ẋ0 weakly in L2([0,T],RNd) and
C Dα0+v

l ⇀
l→∞

C Dα0+v
0 weakly in L2([0,T],RNd).

Hence
ẋl − vl ⇀

l→∞
ẋ0 − v0 weakly in L2([0,T],RNd)

and
C Dα0+v

l + L(xl )vl − ul ⇀
l→∞

C Dα0+v
0 + L(x0)v0 − u0 weakly in L2([0,T],RNd).

On the other hand, since (xl, vl ) is a solution to (7), we have

ẋl (t) − vl (t) = 0 and C Dα0+v
l (t) + L(xl (t))vl (t) − ul (t) = 0, t ∈ [0,T] a.e.,

so uniqueness of a weak limit implies

ẋ0(t)−v0(t) = 0 and C Dα0+v
0(t)+L(x0(t))v0(t)−u0(t) = 0, t ∈ [0,T] a.e.

Furthermore, from (9) it follows that there exist subsequences (xls )s∈N and
(vls )s∈N such that

xls (t)
s→∞−−−−→ x0(t) and vls (t)

s→∞−−−−→ v0(t), t ∈ [0,T] a.e.

Since (xls )s∈N and (vls )s∈N are continuous on [0,T], if follows that the above
convergences hold for all t ∈ [0,T]. In particular,

xls (0)
s→∞−−−−→ x0(0) and vls (0)

s→∞−−−−→ v0(0).

On the other hand

xls (0) = x0 and vls (0) = v0,

so x0(0) = x0 and v0(0) = v0. This means that z0 = (x0, v0) is a solution to (7)
corresponding to u0. The proof is completed. □

Lemma 5 If all assumptions of Theorem 1 are satisfied, u0 ∈ U2
M and (ul )l∈N ⊂

U2
M is a sequence of controls such that

ul ⇀
l→∞

u0 weakly in L2([0,T],RNd),

then
J̃ (u0) ¬ lim inf

l→∞
J̃ (ul ).

In other words, the functional J̃ is weakly sequentially lower semicontinuous
onU2

M .
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Proof. We have

J̃ (u) =

T∫
0

N∑
i=1

vu
i (t) − 1

N

N∑
j=1

vu
j (t)


2

ld2

dt + γ

T∫
0

N∑
i=1
∥ui (t)∥ld2 dt = J̃1(u) + J̃2(u).

It is clear that J̃2(u) is weakly lower semicontinuous on U2
M as a convex and

continuous functional. Now, let u0 ∈ U2
M , (ul )l∈N ⊂ U2

M be a sequence of
controls such that

ul ⇀
l→∞

u0 weakly in L2([0,T],RNd)

and (zl )l∈N = (xl, vl )l∈N ⊂ Eα,20+,z0
– the sequence of corresponding solutions

to (7). In particular, Lemma 4 implies that there exists a solution z0 = (x0, v0) to
(7) corresponding to u0 such that

vl −→
l→∞

v0 strongly in L2([0,T],RNd).

Consequently, there exists a subsequence (vls )s∈N such that

vls (t) −→
s→∞

v0(t), t ∈ [0,T] a.e.

Since (vls )s∈N is continuous on [0,T], we conclude that the above convergence
holds for all t ∈ [0,T]. Using Fatou’s Lemma we assert that

J̃1(u0) ¬ lim inf
l→∞

J̃1(uls ).

Supposing contrary and repeating the above argumentation we assert that

J̃1(u0) ¬ lim inf
l→∞

J̃1(ul ).

Finally, we obtain

lim inf
l→∞

J̃ (ul ) = lim inf
l→∞

(
J̃1(ul ) + J̃2(ul )

)
 lim inf

l→∞
J̃1(ul )+ lim inf

l→∞
J̃2(ul )  J̃ (u0).

The proof is completed. □
Now, we shall formulate and prove a theorem on the existence of optimal

solutions to problem described by equations (7) and (8).

Theorem 2 Let M ⊂ Rm be a bounded, closed and convex set. If all assumptions
of Theorem 1 are satisfied, then there exists an optimal solution (zû, û) ∈ Eα,20+,z0

×
U2

M to problem (7) and (8).
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Proof. Let (ul )l∈N ⊂ U2
M be a minimizing sequence of J̃. SinceU2

M is a weakly
sequentially compact set (as a convex, bounded and closed subset of a Hilbert
space L2([0,T],RNd)), we have that there exist u0 ∈ U2

M and a subsequence
(uls )s∈N such that

uls ⇀
s→∞

u0 weakly in L2([0,T],RNd).

From Lemma 5 it follows that

J̃ (u0) ¬ lim inf
s→∞

J̃ (uls ) = lim
s→∞

J̃ (uls ) = inf
u∈UM

J̃ (u),

so u0 is an optimal control for problem (7) and (8). Then, the pair (z0, u0), where
z0 is a solution to (7) corresponding to u0, is an optimal solution to (7) and (8).
The proof is completed. □

6. Illustrative examples

In this section, we present some numerical simulations that illustrate our
theoretical results in one dimensional case, i.e., d = 1. Let us consider a fractional
controlled Cucker–Smale system (7) with N = 4 agents and α = 0.6, i.e.,

ẋi (t) = vi (t),

C D0.6
0+ vi (t) =

1
4

4∑
j=1
η

(
(x j (t) − xi (t))2

)
(v j (t) − vi (t))

+ ui (t), t ∈ [0,T] a.e., i = 1, . . . , 4
(x1(0), v1(0)) = (1, 1), (x2(0), v2(0)) = (2, 2),

(x3(0), v3(0)) = (6, 3), (x4(0), v4(0)) = (10, 4),

u(t) ∈ M ⊂ R4, t ∈ [0,T],

(10)

where M =
{

z ∈ R4 : ∥z∥l4
2
¬ K

}
. Our goal is to enforce consensus in system

(10) using the optimal control approach with the following cost functional:

J (z, u) =

T∫
0

*..,
4∑

i=1

*.,vi (t) −
1
4

4∑
j=1

v j (t)
+/-

2

+

4∑
i=1
|ui (t) |

+//- dt, (11)

where z = (x, v). In what follows we consider problem (10)–(11) with two
different types of interaction potential η.
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Example Suppose that rate of communication η in system (10) is given by

η
(
(x j (t) − xi (t))2

)
=

1
1 + (x j (t) − xi (t))2 , i, j = 1, . . . , 4. (12)

Note that, in this case, assumption (A) from Lemma 2 is satisfied and, by The-
orem 1, controlled system (10) has a unique solution z = (x, v) ∈ E0.6,p

0+,z0
, corre-

sponding to any control u ∈ U p
M , where p >

5
3

and z0 = ((1, 2, 6, 10), (1, 2, 3, 4)).

Moreover, by Theorem 2, there exists an optimal solution (zû, û) ∈ E0.6,2
0+,z0
× U2

M
to problem (10)–(11). Figures 1–4 show the trajectories of the main state, the
consensus parameter and the control function with different values of the bound
K . Clearly, convergence of all agents to the consensus configuration depends on
the amount of additional energy ui.

Figure 1: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (12) and K = 0.01

Figure 2: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (12) and K = 0.1
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Figure 3: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (12) and K = 0.5

Figure 4: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (12) and K = 1

Example 2. Now, let us consider the following rate of communication:

η
(
(x j (t) − xi (t))2

)
= exp

(
−(x j (t) − xi (t))2

)
, i, j = 1, . . . , 4. (13)

Similarly as in Example 1, by Theorem 1, for p >
5
3

and z0 = ((1, 2, 6, 10),

(1, 2, 3, 4)), the control system (10) has a unique solution z = (x, v) ∈ E0.6,p
0+,z0

,
corresponding to any control u ∈ U p

M and, by Theorem 2, there exists an optimal
solution

(
zû, û

)
∈ E0.6,2

0+,z0
× U2

M to problem (10)–(11). In Figures 5–8, we can
observe that trajectories of the main state, the consensus parameter and the
control depend on the bound of the control K . It is visible that dependently on K
the resulting optimal control is able to steer the system to achieve consensus.
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Figure 5: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (13) and K = 0.01

Figure 6: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (13) and K = 0.1

Figure 7: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (13) and K = 0.5
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Figure 8: Trajectories of the main state x (left), the consensus prameter v (center) and
the control u (right) for η given by (13) and K = 1

7. Conclusions

In this paper, we studied the nonlinear Cucker–Smale optimal control problem,
where in the velocity equation the usual integer order derivative was replaced by
the Caputo fractional derivative. As a consequence, our model described a group
behavior phenomena taking into account the velocities of agents in all previous
times. We established sufficient conditions that guarantee the existence of optimal
solutions to the considered problem. In numerical examples, the aforementioned
criteria allowed us to choose appropriate communication rate functions for the
Cucker–Smale optimal control problem.
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