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Fuzzy goal programming technique for multi-objective
indefinite quadratic bilevel programming problem

R. ARORA and K. GUPTA

Bilevel programming problem is a non-convex two stage decision making process in which
the constraint region of upper level is determined by the lower level problem. In this paper, a
multi-objective indefinite quadratic bilevel programming problem (MOIQBP) is presented. The
defined problem (MOIQBP) has multi-objective functions at both the levels. The followers are
independent at the lower level. A fuzzy goal programming methodology is employed which
minimizes the sum of the negative deviational variables of both the levels to obtain highest
membership value of each of the fuzzy goal. The membership function for the objective functions
at each level is defined. As these membership functions are quadratic they are linearized by
Taylor series approximation. The membership function for the decision variables at both levels
is also determined. The individual optimal solution of objective functions at each level is used
for formulating an integrated pay-off matrix. The aspiration levels for the decision makers are
ascertained from this matrix. An algorithm is developed to obtain a compromise optimal solution
for (MOIQBP). A numerical example is exhibited to evince the algorithm. The computing
software LINGO 17.0 has been used for solving this problem.

Key words: bilevel programming, indefinite quadratic programming, multi-objective pro-
gramming, pay-off matrix, Taylor series approximation, LINGO 17.0

1. Introduction

Fuzzy programming is a tool to find compromise optimal solution for multi-
objective mathematical problem. Fuzzy mathematical programming was devel-
oped by Tanaka et al. [9]. Thereafter, Zimmermann in 1978 [8] elaborated the
method of fuzzy programming for linear programming problem with several ob-
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jectives. Mohanty and Vijayaraghavan [2] in 1995 converted a multi-objective
programming problem into its corresponding goal programming problem by
fuzzy approach. In 2006, Waiel et al. [4] presented fuzzy goal programming
approach to multi-objective transportation problems. In 2007, Pramanik and
Roy [17] suggested a solution methodology for a hierarchical consortium. They
solved multilevel programming problem by applying linear fuzzy goal program-
ming. Zhang and Lu [7] contemplated the fuzzy programming strategies for
bilevel programming problems.

In this paper, a bilevel programming problem is considered which has multi-
objective indefinite quadratic functions at both the levels. The compromise op-
timal solution for the problem (MOIQBP) is obtained by Fuzzy programming
method. The membership functions are defined for the decision makers as well
as for the decision variables at both levels. The approach in this paper is novel
to the extent that it proposes method which linearizes the quadratic membership
functions using Taylor series approximation. The paper has been organized into
the following sections: Literature review of the paper is presented in section 2,
section 3 exhibits the mathematical formulation of the problem (MOIQBP). In
section 4, membership functions for the objective functions and decision vari-
ables have been defined. Section 5 describes the method of solving the problem
by fuzzy goal programming approach. The algorithm is presented in section 6
followed by an example elaborating its viable usage.

2. Literature review

A bilevel programming problem (BLPP) is a hierarchical optimization prob-
lem. This problem has two levels namely, the upper level called the leader and
the lower level, called the follower. BLPP is mathematically defined as,

(BLPP) : Max
X

Z1(X,Y )

where Y solves
Max

Y
Z2(X,Y ), for a given X

subject to (X,Y ) ∈ S0 ,

where S0 = {(X,Y ) : AX + BY ¬ b; X,Y ­ 0}.
Here, S0 is the feasible region for the problem (BLPP). It is assumed to

be non-empty and bounded. The leader and the follower controls the vector of
decision variables X ∈ Rn1 and Y ∈ Rn2 respectively. Z1(X,Y ) and Z2(X,Y )
are the objective functions of the leader and the follower respectively. They
can be linear or non-linear. There are various significant techniques for solving
BLPP such as cutting plane method [5], branch and bound method [14] and the
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ranking method [1, 12], to name a few. BLPP has been extensively utilized by
researchers in distinctive fields like economics, transportation engineering etc. In
1992, Ben-Ayed et al. [15] contemplated the highway network design problem.
In 2003, Cote et al. [10] came out with a bilevel modelling approach in the airline
industry. This procedure provided the solution for various problems confronted
by North American airline.

There are varying scenarios among decision makers that are suitably repre-
sented by Multi-objective Programming Problem (MOPP). MOPP is mathemat-
ically defined as,

(MOPP) : Max { f1(X ) = Z1}
Max { f2(X ) = Z2}
. . . . . . . . . . . . . . . . .

Max { f k (X ) = Zk }
subject to X ∈ SM ,

where SM is a feasible set and f j (X ); { j = 1, 2, . . . , k} be linear/non-linear.
Emam [16] in 2013 presented a solution procedure for bilevel integer multi-

objective fractional programming problem. Abo Sinna and Baky [13] in 2007,
proposed an algorithm for solving three-level multi-objective decision making
model.

MOPP has a range of applications in real life situations. In 2007, Abdelaziz
et al. [6] undertook the approach of multi-objective optimization for portfolio
selection. Wari and Zhu [3] applied the mode of metaheuristics in food manu-
facturing industry. In 2017, Cui et al. [18] applied multi-objective optimization
in the field of environment protection such as energy saving. Wang et al. [11]
proposed a multi-objective optimization model which speculated the exactness
of wind speed.

The research work of the authors referred herein has significant contribution
in their respective research fields. The methodologies defined above have distinct
applications in practical life. In this paper, a multi-objective bilevel programming
problem is formulated where each objective function is indefinite quadratic.
Mathematically, the indefinite quadratic programming problem (IQPP) is,

(IQPP) : Max Z (X ) = Z1(X ). Z2(X ) = (CT X + α)(DT X + β)
subject to AX ¬ b

X ­ 0

where X ∈ Rn, b ∈ Rm, C, D ∈ Rn, α, β ∈ R and A ∈ Rm×n.
The feasible region SI = {X : AX ¬ b; X ­ 0} is both non-empty and

compact. The objective function Z (X ) is a product of two linear functions. It is
assumed that both Z1(X ) and Z2(X ) are positive for all X ∈ SI . Thus, the function
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Z (X ) is quasi-concave and quasi-convex on SI . Therefore, the optimal solution
to the problem (IQPP) occurs at an extreme point of SI . Many applications of
quadratic programming have important implications on decision making prob-
lems in practical aspects of life. These can be segregated in various categories
such as marketing, economics, finance, agriculture, to name a few.

3. Mathematical formulation

The multi-objective indefinite quadratic bilevel programming problem
(MOIQBP) is defined as

(MOIQBP) : Max
X,X1,X2,...,Xn

(
Z1(X, X1, X2, . . . , Xn), Z2(X, X1, X2, . . . , Xn), . . . ,

Zk (X, X1, X2, . . . , Xn)
)

subject to AX +
n∑
ℓ=1

DℓXℓ ¬ b

where Xℓ (ℓ = 1, 2, . . . , n) solves
Max

Xℓ

zℓw (X, Xℓ) (w = 1, 2, . . . , tℓ)

subject to BℓX + CℓXℓ ¬ bℓ
X ­ 0, Xℓ ­ 0 (ℓ = 1, 2, . . . , n).

Denote (X, X1, . . . , Xn) as X̄ and (X1, X2, . . . , Xn) as ¯̄X .
Here, Z j (X̄ ) = Z j1(X̄ ).Z j2(X̄ ); j = 1, 2, . . . , k
where Z j1(X̄ ) =

(
a j1X + b j1X1 + . . . + p j1Xn + γ j

)
; j = 1, 2, . . . , k

Z j2(X̄ ) =
(
a j2X + b j2X1 + . . . + p j2Xn + δ j

)
; j = 1, 2, . . . , k.

Also, we have,

Max
Xℓ

zℓw (X, Xℓ) = Max
Xℓ

(
hℓw (X, Xℓ)

)
, ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ

h1w (X, X1) =
(
cw1 X + cw2 X1 + αw1

) (
dw1 X + dw2 X1 + αw2

)
; w = 1, 2, . . . , t1

h2w (X, X2) =
(
ew1 X + ew2 X2 + βw1

) (
fw1 X + fw2 X2 + βw2

)
; w = 1, 2, . . . , t2

. . . . . . . . . . . . . . . . . . . . . . . .

hnw (X, Xn) =
(
uw1 X + uw2 Xn + ϕwn

) (
vw1 X + vw2 Xn + ψwn

)
; w = 1, 2, . . . , tn

cw1, dw1, X ∈ Rn0; w = 1, 2, . . . , t1
ew1, fw1, X ∈ Rn0; w = 1, 2, . . . , t2

. . . . . . . . . . . . . . . . . . . . . . . .

uw1, vw1, X ∈ Rn0; w = 1, 2, . . . , tn

cw2, dw2, X1 ∈ Rn1; w = 1, 2, . . . , t1
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ew2, fw2, X2 ∈ Rn2 ; w = 1, 2, . . . , t2
. . . . . . . . . . . .

uw2, vw2, Xn ∈ Rnn ; w = 1, 2, . . . , tn

αw1, αw2 ∈ R; w = 1, 2, . . . , t1
. . . . . . . . . . . .

ϕwn, ψwn ∈ R; w = 1, 2, . . . , tn

a j1, a j2, X ∈ Rn0 ; j = 1, 2, . . . , k
b j1, b j2, X1 ∈ Rn1; j = 1, 2, . . . , k
. . . . . . . . . . . .

p j1, p j2, Xn ∈ Rnn ; j = 1, 2, . . . , k
γ j, δ j ∈ R; j = 1, 2, . . . , k
A ∈ Rm×n0; Dℓ ∈ Rm×nℓ ; ℓ = 1, 2, . . . , n
Bℓ ∈ Rmℓ×n0 ; Cℓ ∈ Rmℓ×nℓ ; b ∈ Rm×1, bℓ ∈ Rmℓ×1.

The objective functions defined at each level in the problem (MOIQBP) are
indefinite quadratic. These functions are the product of two positive valued affine
functions, hence they are quasi-concave. Thus, the optimal solution for each
objective function (Z j ; j = 1, 2, . . . , k; zℓw; ℓ = 1, 2 . . . , n, w = 1, 2, . . . , tℓ)
exists. The feasible region of the problem (MOIQBP) is defined as

S(X̄ ) =
{

(X, X1, . . . , Xn) : AX +
n∑
ℓ=1

DℓXℓ ¬ b; BℓX + CℓXℓ ¬ bℓ;

(ℓ = 1, 2, . . . , n), X, Xℓ ­ 0
}
.

The feasible region S is assumed to be non-empty and compact.
For each value of X , the feasible set for the ℓ-th follower is defined as

Sℓ (X ) =
{
Xℓ : CℓXℓ ¬ bℓ − BℓX

}
; ℓ = 1, . . . , n.

The constraints AX +
n∑
ℓ=1

DℓXℓ ¬ b are not included in the set Sℓ (X ), since these

constraints influence the decision makers at the upper level. Projection of S onto
the decision space of upper level problem is defined as

S∗ =
{

X ∈ Rn0 : ∃(X1, X2, . . . , Xn), AX +
n∑
ℓ=1

DℓXℓ ¬ b, BℓX + CℓXℓ ¬ bℓ;

ℓ = 1, . . . , n
}
.
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The inducible region for the upper level problem is defined as
IR =

{
(X, X1, . . . , Xn) ∈ S(X̄ ); X ­ 0; Xℓ solves Max(zℓw (X, Xℓ)), for a given

X such that BℓX + CℓXℓ ¬ bℓ; Xℓ ­ 0, ℓ = 1, . . . , n
}
.

It is assumed that the inducible region IR of the problem (MOIQBP) is non-
empty.

It establishes the fact that the solution of the problem (MOIQBP) exists.

Definition 1 Efficient Solution
A solution (X∗, X∗1, . . . , X∗n ) ∈ S is said to be an efficient solution for the

problem (MOIQBP) if there is no (X, X1, . . . , Xn) ∈ S, such that for the upper
level problem Z j (X∗, X∗1, . . . , X∗n ) ¬ Z j (X, X1, . . . , Xn) for j = 1, 2, . . . , k and
Z j (X∗, X∗1, . . . , X∗n ) < Z j (X, X1, . . . , Xn) for some j ∈ {1, 2, . . . , k}.
Also, for the lower level problem, zℓw (X∗, X∗

ℓ
) ¬ zℓw (X, Xℓ) for ℓ = 1, 2, . . . , n;

w = 1, 2, . . .. tℓ and zℓw (X∗, X∗
ℓ
) < zℓw (X, Xℓ) for some ℓ ∈ {1, 2, . . . , n};

w ∈ {1, 2, . . . , tℓ}.

Definition 2 Compromise optimal solution
The best efficient solution mutually chosen by the decision makers at both the

levels for the problem (MOIQBP) is the compromise optimal solution.

4. Methodology for solving (MOIQBP): fuzzy goal programming approach

In this paper, fuzzy programming approach is adopted to solve (MOIQBP)
problem. Each objective function at both the levels is converted into fuzzy goals.
The objective functions Z j (X̄ ); ( j = 1, 2, . . . , k) and zℓw (X, Xℓ); (ℓ = 1, . . . , n,
w = 1, 2, . . . , tℓ) at each level is solved discretely and its optimal solution is
calculated. The aspiration level of each objective function both at upper and
lower level is defined by allocating their respective maximum optimal values to
them. This is because the objective functions when evaluated exclusively yield
the best solution.

4.1. Membership function for the objective functions of the problem (MOIQBP)

The initial step for constructing membership functions would be to
ascertain fuzzy goals and their respective aspiration levels. For this,
calculate each objective function separately at both the levels. Let
(x1, x1

1, x1
2, . . . , x1

n), . . . , (xk, xk
1, . . . , xk

n) be the optimal solution of each objec-
tive at upper level. Let (x1∗, x1∗

1 ), . . . , (x1∗, xt1∗
1 ), . . . , (x1∗, x1∗

n ), . . . , (x1∗, xtn∗
n ) be

the optimal solution of each objective at lower level. These independent best
solutions pave the formulation of an integrated pay-off matrix. This is defined as
follows:
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Each column of the pay-off matrix provides maximum and minimum value
for each objective function. These values allocate their corresponding aspiration
level of achievement. Let ZU

j and Z L
j ( j = 1, 2, . . . , k) be the maximum and

minimum values in the pay-off matrix for objective functions at the upper level.
Similarly, zU

ℓw
and zL

ℓw
(ℓ = 1, . . . , n, w = 1, 2, . . . , tℓ) be the maximum and

minimum values for objective functions at the lower level. These maximum and
minimum values yield the bounds of the objective functions Z j ;( j = 1, 2, . . . , k)
and zℓw; (ℓ = 1, . . . , n, w = 1, 2, . . . , tℓ).

For each j = 1, 2, . . . , k, define the membership function for the objective
functions at the upper level as:

µ j (Z j ) =



1 if Z j (X̄ ) ­ ZU
j

Z j − Z L
j

ZU
j − Z L

j

if Z L
j ¬ Z j ¬ ZU

j

0 if Z j (X̄ ) ¬ Z L
j

. (1)

Likewise, for each ℓ = 1, . . . , n, w = 1, 2, . . . , tℓ, define the membership function
for the objective functions at the lower level as:

νℓw (zℓw) =


1 if zℓw (X, Xℓ) ­ zU

ℓw

zℓw − zL
ℓw

zU
ℓw
− zL

ℓw

if zL
ℓw
¬ zℓw ¬ zU

ℓw

0 if zℓw ¬ zL
ℓw

. (2)

The membership function elucidated in equations (1) and (2) are quadratic. There-
fore, these are linearized by applying Taylor series approximation.

4.2. Taylor series Approximation for Quadratic Membership functions

Let x∗j = (x j, x j
1, . . . , x j

n) ( j = 1, 2, . . . , k) be the optimal solution obtained
from each objective function at the upper level when calculated separately. Then,
the Taylor series approximation for the upper level decision maker is repre-
sented as,

µ1(Z1) = µ1(x∗1) + (x − x1)
∂

∂x
µ1(x∗1) + (x1 − x1

1)
∂

∂x1
µ1(x∗1)

+ (x2 − x1
2)

∂

∂x2
µ1(x∗1) + . . . + (xn − x1

n)
∂

∂xn
µ1(x∗1),
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µ2(Z2) = µ2(x∗2) + (x − x2)
∂

∂x
µ2(x∗2) + (x1 − x2

1)
∂

∂x1
µ2(x∗2)

+ (x2 − x2
2)

∂

∂x2
µ2(x∗2) + . . . + (xn − x2

n)
∂

∂xn
µ2(x∗2)

. . . . . .

µk (Zk ) = µk (x∗k ) + (x − xk )
∂

∂x
µk (x∗k ) + (x1 − xk

1 )
∂

∂x1
µk (x∗k )

+ (x2 − xk
2 )

∂

∂x2
µk (x∗k ) + . . . + (xn − xk

n)
∂

∂xn
µk (x∗k ).

Let these Taylor series approximations be denoted by δ1(Z1), δ2(Z2), . . . , δk (Zk ).
In the same way, Taylor series approximation for the decision makers at the

lower level can be defined. Let these be denoted by η11(z11), η12(z12), . . . ,
η1t1 (z1t1 ), η21(z21), . . ., η2t2 (z2t2 ), . . . , ηn1 (zn1 ), . . . , ηntn (zntn ). The advantage
of defining Taylor series approximation for the objective functions at both the
levels is that it transforms the quadratic membership function to linear member-
ship functions. The concurrence between the decision makers at both the levels
is essential to obtain a compromise optimal solution. In order to define fuzzy
goal programming model, bounds need to be imposed on the decision variables
controlled by the upper and the lower level objective functions.

The optimal solution obtained from each objective function at both the lev-
els specifies the preference bounds on the decision variables controlled by the
respective decision makers.

4.3. Membership function for the decision variables of the problem (MOIQBP)

From section 3.1, Z L
j and ZU

j are the minimum and maximum objective
function values for Z j ; ( j = 1, 2, . . . , k) at the upper level. It accedes to the
bounds on those decision variables which are controlled by upper level. Let these
bounds be denoted by X L and XU . The membership function for the decision
variables at the upper level is defined as

µ(X ) =


1 if X ­ XU

X − X L

XU − X L if X L ¬ X ¬ XU

0 if X ¬ X L

. (3)

Similarly, membership function for the decision variables Xℓ; (ℓ = 1, 2, . . . , n) at
the lower level can be defined as

µ(Xℓ) =


1 if Xℓ ­ XU

ℓ
Xℓ − X L

ℓ

XU
ℓ
− X L

ℓ

if X L
ℓ
¬ Xℓ ¬ XU

ℓ

0 if Xℓ ¬ X L
ℓ

. (4)
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5. Technique for solving (MOIQBP) by fuzzy goal programming

The objective of fuzzy goal programing approach is to obtain the satisfactory
solution for the decision makers at both the levels. The membership functions for
the objective functions and the decision variables at both the upper level and lower
level are defined. The highest degree a membership function could attain is unity.
Thus, the negative deviational variables are to be minimized so that each decision
maker could maximize his membership function nearest to unity. Accordingly,
for the above defined linear membership functions, the flexile membership goals
with aspiration level unity are presented as,

δ j (Z j ) + d−j − d+j = 1, j = 1, 2, . . . , k
ηℓw (zℓw) + d−

ℓw
− d+

ℓw
= 1, ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ

µ(X ) + d−X − d+X = 1
µ(Xℓ) + d−Xℓ

− d+Xℓ
= 1, ℓ = 1, 2, . . . , n

. (5)

Here, d−j , d−
ℓw

, d+j , d+
ℓw

(­ 0); ( j = 1, 2, . . . , k; ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ)
are under and over deviational variables for the decision makers at the upper
level and lower level respectively. Similarly, d−X , d−Xℓ

(­ 0) and d+X , d+Xℓ
(­ 0);

(ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ) are under and over deviational variables for
the decision variables at the upper level and lower level respectively. Thus, the
problem (MOIQBP) develops into the following fuzzy goal programming model,
defined as
(MOIQFGP):

Min ξ = *.,
k∑

j=1
d−j +

k∑
j=1

d+j
+/- + *,

tℓ∑
w=1

n∑
ℓ=1

d−ℓw +
tℓ∑

w=1

n∑
ℓ=1

d+ℓw+- +
(
d−X + d+X

)
+ *,

n∑
ℓ=1

d−Xℓ
+

n∑
ℓ=1

d+Xℓ
+-

subject to AX +
n∑
ℓ=1

DℓXℓ ¬ b

BℓX + CℓXℓ ¬ bℓ , ℓ = 1, 2, . . . , n

δ j (Z j ) + d−j − d+j = 1; j = 1, 2, . . . , k

ηℓw (zℓw) + d−ℓw − d+ℓw = 1; ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ
µ(X ) + d−X − d+X = 1
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µ(Xℓ) + d−Xℓ
− d+Xℓ

= 1, ℓ = 1, 2, . . . , n,

0 ¬ d−j ¬ 1; 0 ¬ d+j ¬ 1, j = 1, 2, . . . , k; 0 ¬ d−X ¬ 1; 0 ¬ d+X ¬ 1,

0 ¬ d−ℓw ¬ 1; 0 ¬ d+ℓw ¬ 1, ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ ,

0 ¬ d−Xℓ
¬ 1; 0 ¬ d+Xℓ

¬ 1, ℓ = 1, 2, . . . , n.
It is pertinent to the note that negative deviational variable becomes zero as
the membership goal is achieved absolutely whereas; the negative deviational
variable takes the value 1 in the solution if the membership goal is not achieved.
Thus, the above model can be rewritten as,
(MOIQFGP1):

Min ξ =
k∑

j=1
d−j +

tℓ∑
w=1

n∑
ℓ=1

d−ℓw + d−X +
n∑
ℓ=1

d−Xℓ

subject to AX +
n∑
ℓ=1

DℓXℓ ¬ b,

BℓX + CℓXℓ ¬ bℓ , ℓ = 1, 2, . . . , n,

δ j (Z j ) + d−j = 1; j = 1, 2, . . . , k, (6)

ηℓw (zℓw) + d−ℓw = 1; ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ ,

µ(X ) + d−X − d+X = 1,

µ(Xℓ) + d−Xℓ
− d+Xℓ

= 1, ℓ = 1, 2, . . . , n,

0 ¬ d−j ¬ 1; j = 1, 2, . . . , k,

0 ¬ d−X ¬ 1; 0 ¬ d−Xℓ
¬ 1; ℓ = 1, 2, . . . , n,

0 ¬ d−ℓw ¬ 1; ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ .

6. Algorithm for solving multi-objective indefinite quadratic bilevel
programming problem (MOIQBP)

Step 1. Consider a multi-objective indefinite quadratic bilevel programming
problem (MOIQBP).

Step 2. Determine the optimal solution of each objective function at the upper
level and at the lower level individually, subject to the given set of
constraints.
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Step 3. The optimal solutions of the decision makers at both the levels formulate
the integrated pay-off matrix. The maximum and minimum values in
each column provide the aspiration levels of achievement for the decision
makers.

Step 4. Enumerate the quadratic membership goals µ j (Z j ); ( j = 1, 2, . . . , k)
for the upper level decision makers and νℓw (zℓw) (ℓ = 1, 2, . . . , n; w =
1, 2, . . . , tℓ) for the lower level decision makers.

Step 5. The quadratic membership functions are transformed into linear mem-
bership functions by applying Taylor series approximation to them. These
are defined as δ j (Z j ); ( j = 1, 2, . . . , n) for the objective functions at the
upper level and ηℓw (zℓw); (ℓ = 1, 2, . . . , n; w = 1, 2, . . . , tℓ)) for the
objective functions at the lower level respectively.

Step 6. Specify the lower and upper bounds on the decision variables at both
the levels. Determine the membership function of the decision makers
at two levels as µ(X ) and µ(Xℓ).

Step 7. Convert the problem (MOIQBP) into fuzzy goal programming model
(MOIQFGP1).

Step 8. The procured solution is a compromise optimal solution for (MOIQBP).

7. Numerical illustration

Suppose there are two milk industries I and II producing four different types of
milk, namely, full cream milk, toned milk, double toned milk and cow milk. These
industries have processing units say g1(X ) and g2(X ), respectively. Industry I
serves areas h1(X ), h2(X ) and industry II serves areas p1(X ) and p2(X ). Let the
milk be supplied from two production units to different areas through trucks T1
and T2. Let x1 denote the quantity of full cream milk supplied together from I
and II. Similarly, x2, x3 and x4 denote the supplied quantity of toned milk, double
toned and cow milk respectively. It is observed that if the distribution of x3 and
x4 are enhanced in four areas, the industries can maximize their sales. Thus, the
objective at upper level is to maximize the production of milk. At lower level,
the objective is to maximize sales of x3 and x4 which in turn will maximize their
profits. The constraints at upper level are the capacity constraints. The constraints
at lower level are the number of households catered by I and II. The objective of
the problem is to find a compromise optimal solution which would satisfy both
the industries.
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The data for the above problem is given below:

g1(X ) = (2x1+x3+15)(x2+x4+11); g2(X ) = (2x1+10)(x2+x3+2x4+9),

h1(X ) = (3x1+x3+8)(x2+x3+3); h2(X ) = (2x1+x3+7)(2x2+6),

p1(X ) = (2x1+x4+2)(x2+4); p2(X ) = (3x1+11)(x2+2x4+5).

The constraints at the upper level are

x2 + x3 + x4 ¬ 8; −x1 + 3x2 + x3 + 2x4 ¬ 21;
2x3 + x4 ¬ 7; x1, x2, x3, x4 ­ 0.

The constraints at the lower level are

2x1 + x2 + x3 ¬ 12; 4x1 + x2 + x4 ¬ 14; x1, x2, x3, x4 ­ 0.

It is assumed that quantity of milk produced by two processing units is wholly
distributed in four areas. Moreover, there is no wastage of milk during supply.

Solution: The multi objective indefinite quadratic programming problem
(MOIQBP) is defined as follows,

Max
x1,x2,x3,x4

(g1(X ), g2(X ))

subject to x2 + x3 + x4 ¬ 8,
−x1 + 3x2 + x3 + 2x4 ¬ 21,

2x3 + x4 ¬ 7,
where (x3, x4) solves

Max
x3

(h1(X ), h2(X )) for a given (x1, x2)

Max
x4

(p1(X ), p2(X )) for a given (x1, x2)

subject to 2x1 + x2 + x3 ¬ 12,
4x1 + x2 + x4 ¬ 14
x1, x2, x3, x4 ­ 0.

Here, X = (x1, x2, x3, x4) are the set of decision variables.

g1(X ) = (2x1+x3+15)(x2+x4+11); g2(X ) = (2x1+10)(x2+x3+2x4+9),

h1(X ) = (3x1+x3+8)(x2+x3+3); h2(X ) = (2x1+x3+7)(2x2+6),

p1(X ) = (2x1+x4+2)(x2+4); p2(X ) = (3x1+11)(x2+2x4+5).
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Solving the objective functions individually at both levels, their optimal solutions
are given as follows,

ḡ1(X ) = 360.24 at (2.3, 4.2, 3.2, 0.6); ḡ2(X ) = 312 at (1.5, 1, 0, 7);

h̄1(X ) = 192.5 at (2, 4.5, 3.5, 0); h̄2(X ) = 234 at (2, 6, 2, 0);
p̄1(X ) = 72.25 at (1.5, 4.5, 0, 3.5); p̄2(X ) = 310 at (1.5, 1, 0, 7);

Formulating an integrated pay-off matrix,

360.24 256.96 188.24 213.12 59.04 186.16
342 312 50 80 60 310

348.75 238 192.5 217.5 51 161.5
357 238 176 234 60 187
342 266.5 93.75 150 72.25 255.75
342 312 50 80 60 310


.

Procure maximum and minimum values for each objective function from inte-
grated pay-off matrix and define membership functions, as

µ1(Z1) =
g1(X ) − 342
360.24 − 342

, µ2(Z2) =
g2(X ) − 238
312 − 238

,

ν11(z11) =
h1(X ) − 50
192.5 − 50

, ν12(z12) =
h2(X ) − 80
234 − 80

,

ν21(z21) =
p1(X ) − 51
72.25 − 51

, ν22(z22) =
p2(X ) − 161.5
310 − 161.5

.

Linearizing these quadratic membership functions by Taylor series approximation
approach, we get,

δ1(Z1) = 1 +
31.6
18.24

x1 +
22.8
18.24

x2 +
15.8
18.24

x3 +
22.8
18.24

x4 −
232.68
18.24

, (7)

δ2(Z2) = 1 +
48
74

x1 +
13
74

x2 +
13
74

x3 +
26
74

x4 −
267
74

, (8)

η11(z11) = 1 +
33

142.5
x1 +

17.5
142.5

x2 +
28.5
142.5

x3 −
244.5
142.5

, (9)

η12(z12) = 1 +
36
154

x1 +
26
154

x2 +
18
154

x3 −
264
154

, (10)

η21(z21) = 1 +
17

21.25
x1 +

8.5
21.25

x2 +
8.5

21.25
x4 −

93.5
21.25

, (11)

η22(z22) = 1 +
60

148.5
x1 +

15.5
148.5

x2 +
31

148.5
x4 −

322.5
148.5

. (12)
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Using equations (7)–(12) and determining membership function for the decision
variables x1, x2 at the upper level and x3, x4 at the lower level, (MOIQFGP1)
model becomes

Minimize ξ = d−1 + d−2 + d−3 + d−4 + d−5 + d−6 + d−x1 + d−x2 + d−x3 + d−x4

subject to 31.6x1 + 22.8x2 + 15.8x3 + 22.8x4 + 18.24d−1 = 232.68,

48x1 + 13x2 + 13x3 + 26x4 + 74d−2 = 267,

33x1 + 17.5x2 + 28.5x3 + 142.5d−3 = 244.5,

36x1 + 26x2 + 18x3 + 154d−4 = 264,

17x1 + 2.5x2 + 8.5x4 + 21.25d−5 = 93.5,

60x1 + 15.5x2 + 31x4 + 148.5d−6 = 322.5,

x1 + 0.8d−x1 = 2.3,

x2 + 3.2d−x2 = 4.2,

x3 + 3.5d−x3 = 3.5,

x4 + 7d−x4 = 7,

x2 + x3 + x4 ¬ 8,
−x1 + 3x2 + x3 + 2x4 ¬ 21,

2x3 + x4 ¬ 7,
2x1 + x2 + x3 ¬ 12,
4x1 + x2 + x4 ¬ 14,

0 ¬ d−1 , d−2 , d−3 , d−4 , d−5 , d−6 , d−x1, d−x2, d−x3, d−x4 ¬ 1.

Using LINGO 17.0, solution obtained is d−1 = 0.00, d−2 = 0.605, d−3 = 0.02736,
d−4 = 0.0935, d−5 = 0.64, d−6 = 0.678, d−x1 = 0.00, d−x2 = 0.00, d−x3 = 0.0857,
d−x4 = 0.914, ξ = 3.04, x1 = 2.3, x2 = 4.2, x3 = 3.2, x4 = 0.6.

Thus, compromise optimal solution for the problem is obtained. It is observed
that if I increase its sales by 3.2 times and II by 0.6 times in their respective areas
then I and II would maximize their profits.

8. Conclusion

In this paper, a methodology has been proposed to attain compromise opti-
mal solution for the problem MOIQBP. Fuzzy programming is adopted to solve
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MOIQBP. The aspiration values of each objective function at both the levels are
ascertained by defining an integrated pay-off matrix. The membership functions
so defined under these aspiration levels are quadratic. The quadratic member-
ship functions are then linearized using Taylor series approximation. This step of
linearization simplifies the calculations. This makes the computational approach
more methodical. The significance of the method thus used has been elucidated
with the help of an example.
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