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Abstract: Mathematical models of electric an arc with disturbed geometric sizes were
created based on initial assumptions adopted from theMayr andCassiemodels. Two cases of
approximation of arc characteristics were considered separately. The Mayr–Voronin model
was created in the low-current range with an exponential dependence of conductance on
plasma enthalpy. However, the Cassie–Voronin model created is valid in the high-current
range with a linear dependence of conductance on plasma enthalpy. In addition, the effect of
two different assumptions about the method of energy dissipation, proportional to the lateral
surface of the column or proportional to the volume of the column, on the parameters of both
mathematical models was compared. It has been shown that under constant geometrical
parameter values, created models can be reduced to classic Mayr and Cassie models. Then,
thesemodels weremodified by taking into account the additional increase in heat dissipation
as the current increases. Increasing voltage and current characteristics correspond to such
an arc. Using the computer simulations, the effectiveness of using developed mathematical
models in mapping the dynamic characteristics of the electric arc has been shown.
Key words: electric arc, Mayr model, Cassie model, Voronin model

1. Introduction

In most electrotechnical devices, special measures are taken to stabilize arcing. These include
maintaining a constant distance between the electrodes and undisturbed external factors of the
column cross-sectional area [1, 2]. But even in these devices, the processes of starting and stop-
ping plasma-controlled parameters are associated with distortions introduced into the geometric
dimensions of the arc. These occur most intensively in special devices (e.g. gliding arc plasma
generators, Cold Metal Transfer CMT welding machines) and in electric devices [3–7]. To adapt
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the known simple fixed length mathematical models to map such a disturbed arc column, various
modifications have been introduced [8–10]. Sometimes they violate the input assumptions of the
created model, e.g. regarding the energy balance equation. In addition to assuming a cylindrical
shape of the column, the Mayr model assumes a constant cross-sectional area and the Cassie
model assumes a constant plasma temperature. In addition, various methods of electricity dissi-
pation are adopted. According to some authors, the dissipated energy is proportional to the lateral
surface area of the cylindrical column Ss [10,11], and according to others it is proportional to the
volume of such a column V [1,12]. However, there is an unambiguous relationship between these
assumptions (V = 0.5rSs), which affects only the form of auxiliary functions, but not that of dif-
ferential or integral equations. It does not matter in the classic Mayr and Cassie models, because
there these functions are taken as fixed quantities. The mathematical models of extension arcs
developed by P.A. Kulakov [10], O.Y. Novikov – M. Schellhase [8], S. Berger [13], A.A. Voronin
use various additional simplifications and therefore have limited use. The mathematical model
of I.V. Pentegov – V.N. Sidorec [14] and its modifications [15] have a much greater universal-
ity in considering the effects of external disturbances on the arc column. However, it requires
complicated analytical solving of derivatives and integrals of analytical expressions.

The structure of the electric arc column is heterogeneous [16]. In addition to very thin
electrode layers with non-equilibrium plasma, the long arc consists of a conical part located at the
cathode and a quasi-cylindrical part towards the anode. In the short arc, where the conical part
is significantly longer than the cylindrical part, there is a significant share of convection power,
and in a long arc, where the cylindrical part is significantly longer than the conical part, there
is an advantage of radiation power. The arc column length is always greater than the distance
between the electrodes. In simplified mathematical models, a cylindrical shape of the arc column
is assumed. It follows that the plasma in such an arc is stationary with reduced convective heat
dissipation. In fact, depending on the relative lengths of the arc components, there is a different
proportion of individual components of dissipated energy [16]. Simplified AC arc models assume
an energetically equivalent cylindrical shape of the column and a simplified structure of the
energy dissipation channels [2, 11, 17]. The introduction of an additional component in the form
of additional dissipated power at the initial stage extends the possibilities of approximating the
characteristics of high-current arcs (e.g. in high-pressure gas, between sharpened electrodes) [18].

2. The Mayr–Voronin arc column model with variable
geometric dimensions

The following simplifying assumptions are adopted in the Voronin model [10]: the arc column
has a cylindrical shape; the plasma is homogeneous with respect to the cross-sectional area and
arc axis; heat dissipation occurs only from the side surface of the arc; the length of the arc column
may change over time.

As the basis for creating a mathematical model of the arc, a simplified equation of the plasma
column heat balance is introduced:

dQ
dt
= Pel − Pdis = ucoli − Pdis , (1)
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where: Q is the plasma enthalpy, J; Pel is the electric power supplied to the column, W; Pdis is the
thermal power dissipated from an arc column, W; ucol is the voltage on the column, V; i is the arc
current, A. In addition, the following markings are introduced:

Q = qVV = qV lS, (2)

g =
σS
l
, (3)

Pdis = Pds (Ss) = Pds (l, S) = pSSs = pS l
√

4πS, (4)

where: qV is the enthalpy volume density, J/m3; g is the conductance, S; σ is the specific
conductivity of the arc column, S/m; l is the arc column length, m; pS is the power density
dissipated by the side surface of the column, W/m2; Pds is the power dissipated by the side
surface of the column, W; S is the cross-sectional area of the arc, m2; Ss is the lateral surface area
of the arc, m2; Ss = l

√
4πS.

Arc conductance is a function of arc enthalpy g = F (Q). If one of the assumptions of the
Mayr model is adopted [10]:

σ = σ0M · exp
(

qV
q0M

)
, (5)

whereσ0M and q0M represent the approximation coefficients of the plasma conductivity function.
The equation of the dynamic arc model with changing length l (t), based on (1)–(5), has the form:

1
g

dg
dt
=

1
q0M Sl

(ucoli − Pds (l, S)) −
1
l

d l
dt

(
1 + ln

gl
σ0M S

)
+

1
S

dS
dt

(
1 − ln

gl
σ0M S

)
. (6)

After further transformations, we get the equation:

1
g

dg
dt
=

pS
q0M

√
4π
S

*
,

ucoli

pS l
√

4πS
− 1+

-
−

1
l

d l
dt

(
1 + ln

gl
σ0M S

)
+

1
S

dS
dt

(
1 − ln

gl
σ0M S

)
. (7)

The final form of the Mayr–Voronin equation is as follows:

1
g

dg
dt
=

1
θMs(S)

(
ucoli

PMs(l, S)
− 1

)
−

1
l

d l
dt

(
1 + ln

gl
σ0M S

)
+

1
S

dS
dt

(
1 − ln

gl
σ0M S

)
, (8)

where:
– damping function in S:

θMs(S) =
q0M
pS

√
S

4π
, (9)

– power dissipation function in W:

PMs(l, S) = pS l
√

4πS. (10)

Due to the adopted assumption, (5), this model approximates well the characteristics of
low-current arcs.

In the special case of parameter stability (d l/dt = 0, dS/dt = 0) Equation (8) boils down to
the Mayr model (P′Ms = PMs (l0, S0) = const, θ ′Ms = θMs (S0) = const). This means that both the
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length and diameter of the column do not change temporarily. Then the relationships between the
Mayr model parameters and the Mayr–Voronin (8) model coefficients are as follows:

pS =
P′Ms

l0
√

4πS0
, (11)

q0M =
θ ′MsP

′
Ms

l0S0
. (12)

If instead of condition (4) we assume that the dissipated power is proportional to the volume
of the column:

Pdis = Pdv (V ) = Pdv (l, S) = pVV = pV lS, (13)

we will get other dependencies on auxiliary functions:
– damping constant in S:

θMv =
q0M
pV
= const, (14)

– power dissipation function in W:

PMv(l, S) = pV lS, (15)

where pV is the dissipated power volume density, W/m3. In Equation (8) only the auxiliary
functions are changed. If we assume constancy of size (d l/dt = 0, dS/dt = 0), also in this case
Equation (8) boils down to the Mayr model (P′′Mv = PMv (l0, S0) = const, θ ′′Mv = θMv = const).
Then the relations between the Mayr model parameters and the Mayr–Voronin model coefficients
are as follows:

pV =
P′′Mv
l0S0

, (16)

q0M =
θ ′′MvP′′Mv

l0S0
. (17)

Regardless of the adoptedmethod of energy dissipation from the arc (proportional to the lateral
surface or proportional to the volume of the plasma column) there is a relationship between the
functions of the Mayr–Voronin model:

θMs(S) · PMs(l, S) = θMv · PMv(l, S) = q0M lS = q0MV . (18)

In contrast, there are relationships between the auxiliary functions of the model with various
heat dissipation assumptions:

θMs(S)
θMv

=
pv
ps

√
S

4π
, (19)

PMs(l, S)
PMv(l, S)

=
ps
pv

√
4π
S
. (20)
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Hence the inverse proportionality between the auxiliary functions of these models, equivalent
to the relationship (18):

θMs(S)
θMv

=
PMv(l, S)
PMs(l, S)

. (21)

Integral forms of mathematical models are used in modeling arcs of selected electrotechno-
logical devices (e.g. gliding-arc plasma generators). In the general case, the equivalent integer
form of the equation in relation to the equation of model (8) is as follows:

g = g0M exp



t∫
0

[
1

θMs(S)

(
ucoli

PMs(l, S)
− 1

)
−

1
l

d l
dt

(
1 + ln

gl
σ0M S

)
+

1
S

dS
dt

(
1 − ln

gl
σ0M S

)]
dτ



. (22)

3. A modified Mayr–Voronin arc column model with variable geometric
dimensions and with additional energy dissipation

A simplified equation for the arc column heat balance is introduced as the basis for the new
model:

dQ
dt
= Pel − (Pdis + PdM (iθ )) , (23)

where: PdM is the additional thermal power dissipated from the arc column,W, iθ is the state current
related to plasma temperature, A [14]. In order to simplify the analysis, further considerations
omitted determinations related to heat dissipation methods. After assuming (2)–(5), a modified
form of Formula (8) is obtained:

1
g

dg
dt
=

1
θM (S)

(
ucoli

PM (l, S)
− 1 −

PdM (iθ )
PM (l, S)

)
−

−
1
l

d l
dt

(
1 + ln

gl
σ0M S

)
+

1
S

dS
dt

(
1 − ln

gl
σ0M S

)
. (24)

Let’s consider the steady state (iθ = I = const) arc with assumptions (dg/dt = 0, d l/dt = 0,
dS/dt = 0). Then we will get the dependence:

UcolI = PM (l, S) + PdM(I), (25)

where Ucol is the voltage on the arc column. If we assume that the additional dissipated power is
determined by the formula:

PdM(I) = UdM(I) · I, (26)

with voltage–current static characteristics UdM(I), we will get a generalized dependence on static
characteristics in the form:

U (l, S, I) =
PM (l, S) + PdM(I)

I
=

PM (l, S)
I

+UdM(I) . (27)

If approximation of additional voltage drop was used with a polynomial:

UdM(I) = aM1I + aM2I2, (28)
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(where constant coefficients are expressed in units: aM1 inΩ, aM2 inVA−2), then the characteristics
of additional dissipated power will be described by the dependence

PdM(I) = I
(
aM1I + aM2I2

)
. (29)

After substituting (29) to (24), the final form of the newMayr–Voronin model with additional
energy dissipation is as follows:

1
g

dg
dt
=

1
θM (S)

(
ucoli

PM (l, S)
− 1 −

UdM (iθ ) iθ
PM (l, S)

)
−

−
1
l

d l
dt

(
1 + ln

gl
σ0M S

)
+

1
S

dS
dt

(
1 − ln

gl
σ0M S

)
. (30)

Due to the assumption adopted, (5), this model approximates well the characteristics of
low-current arcs. In this case, the equivalent integer to model (30) will be as follows:

g = g0M exp




t∫
0



1
θM (S)

(
ucoli

PM (l, S)
− 1 −

UM (iθ ) iθ
PM (l, S)

)
+

−
1
l

d l
d t

(
1 + ln

gl
σ0M S

)
+

1
S

dS
d t

(
1 − ln

gl
σ0M S

)


dτ




. (31)

4. A modified Cassie–Voronin arc column model with variable
geometric dimensions

In order to create this model, simplifying assumptions should be made, as in the Voronin
model [10]. Here, as the basis of the model, a simplified equation of the energy balance of the arc
column (1) is introduced, followed by the following conditions marked as (2)–(4). Dependence of
arc conductance on plasma enthalpy g = F (Q) is now in line with the assumption of the Cassie
model [11]:

σ = σ0C ·
qV
q0C

, (32)

where σ0C and q0C are the approximation coefficients of the plasma conductivity function.
Equation of dynamic arc model with changing geometric sizes S(t) and l (t) has the form:

1
g

dg
dt
=

σ0C

q0Cgl2 (ucoli − Pdis(l, S)) −
2
l

d l
dt
. (33)

After taking into account Formula (4) and transformations, it follows that:

1
g

dg
dt
=
σ0CpS

√
4πS

q0Cgl
*
,

ucoli

pS l
√

4πS
− 1+

-
−

2
l

d l
dt
, (34)

where Pdis = Pds (l, S) = pS l
√

4πS. After transformations, the final form of the new Cassie–
Voronin model is as follows:

1
g

dg
dt
=

1
θCs(S)

*
,

u2
col

U2
Cs(l, S)

− 1+
-
−

2
l

d l
dt
, (35)
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where on the basis of (32) the relationship can be used as:

g =
σ0C
q0C

qV S
l

, (36)

and yields:
– damping function in s:

θCs(S) =
q0Cgl

σ0CpS
√

4πS
=

qV
pS

√
S

4π
, (37)

– voltage function on the arc column in V2:

U2
Cs(l, S) =

pS l
√

4πS
g

=
q0CpS
σ0CqV

√
4π
S

l2 =
q0CpS
σ0CqV

l2

θCs(S)
= E2

Cs(S) · l2, (38)

where ECs is the electric field strength in the arc column, V/m. Due to the adopted assumption
(32), this model well approximates the characteristics of high current arcs. This model is very
similar to the Kulakov model [10].

In special cases, the stability of the geometric parameter (d l/dt = 0) Equation (35) can be
reduced to the Cassie model (U ′Cs = U2

Cs (l0, S0) = const, θ ′Cs = θCs (S0) = const). Then the
relationships between the Cassie model parameters and the Cassie–Voronin model coefficients
are as follows:

pS
qV
=

1
θ ′Cs

√
S0
4π

, (39)

q0C
σ0C

= U
′2
Cs

qV
ps

√
S

4π
1
l2
0
= U

′2
Csθ
′
Cs

1
l2
0
= E

′2
Cs, (40)

where E ′Cs is the electric field strength in the arc column, V/m.
If instead of condition (4) we accept condition (13) that the dissipated power is proportional

to the volume of the column Pdis = Pdv (V ) = Pdv (l, S) = pV lS, instead of (37) we get the S
damping function:

θCv =
q0Cgl
σ0CpV S

=
qV
pV
= const. (41)

However, the auxiliary function of voltage on the arc column takes the form:

U2
Cv (l) =

Pdv (l, S)
g

=
pV lS
g
=

q0C
σ0C

pV
qV

l2 =
q0C
σ0C

l2

θCv
= E2

Cvl2, (42)

where ECv is the electric field strength in the arc column, V/m.
After adopting condition (13) (instead of condition (4)) in Equation (35), the functions θCs

and UCs should be replaced by the functions θCv and UCv . If we assume parameter stability
(d l/dt = 0, dS/dt = 0), then also in this case Equation (35) boils down to the Cassie model
with parameters (U ′′Cv = U2

Cv (l0) = const, θ ′′Cv = θCv = const). Then the relations between the
Cassie model parameters and the Cassie–Voronin model coefficients are as follows:

qV
pV
= θ ′′Cv, (43)
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q0C
σ0C

=
U
′′2
Cv

l2
0

qV
pV
=

U
′′2
Cvθ

′′2
cv

l2
0
= E

′′2
Cvθ

′′
cv, (44)

where E ′′Cv is the electric field strength in the arc column, V/m.
Regardless of the adoptedmethod of energy dissipation from the arc (proportional to the lateral

surface or proportional to the volume of the cylindrical plasma column) there is a relationship
between the auxiliary functions of the Cassie–Voronin model:

θCs(S) ·U2
Cs(l, S) = θCv ·U2

Cv (l) =
q0C
σ0C

l2. (45)

In contrast, there are relationships between the auxiliary functions of models with different
assumptions about heat dissipation:

θCs(S)
θCv

=
pv
ps

√
S

4π
, (46)

U2
Cs(l, S)

U2
Cv

(l)
=

ps
pv

√
4π
S
. (47)

Hence the inverse proportionality between the auxiliary functions of these models equivalent
to relationship (45):

θCs(S)
θCv

=
U2
Cv (l)

U2
Cs(l, S)

. (48)

In the general case, the equivalent overall form, (35), of the model will be as follows:

g = g0M exp



t∫
0



1
θC (S)

*
,

u2
col

U2
C

(l, S)
− 1+

-
−

2
l

d l
dt


dτ



. (49)

5. A modified Cassie–Voronin arc column model with variable geometric
dimensions and with additional energy dissipation

A simplified equation for the arc column heat balance is introduced as the basis for the new
model:

dQ
dt
= Pel − (Pdis + PdC (iθ )) , (50)

where: PdC is the additional thermal power dissipated from the arc column,W, iθ is the state current
related to plasma temperature, A [14]. In order to simplify the analysis, further considerations
omitted the markings associated with heat dissipation methods.

After taking into account assumptions (2)–(4) and (32) and after transforming Formula (50)
we get:

1
g

dg
dt
=

1
θCs(S)

*
,

u2
col

U2
Cs(l, S)

− 1 −
PdC (iθ )
Pdis(l, S)

+
-
−

2
l

d l
dt
. (51)
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Let us now consider the steady state (iθ = I = const) arc with assumptions (dg/dt = 0,
d l/dt = 0). Then from (51) we will obtain:

UcolI = Pdis(l, S) + PdC(I). (52)

The additional dissipated power is determined by the formula:

PdC(I) =
I2 − G2U2

C (l, S)
G

, (53)

with static conductivity characteristics saved in a given form:

G =
I

Ucol
=

I
UC (l, S) +UdC(I)

. (54)

In this characteristic, theUcol component related to the PdC power was separated from theUcol
voltage. After substituting (54) to (53), we obtain the expression for additional dissipated power:

PdC(I) =
2UC (l, s) +UdC(I)
UC (l, s) +UdC(I)

UdC(I)I . (55)

Here, the additional voltage drop can be approximated by a polynomial:

UdC(I) = aC1I + aC2I2, (56)

where constant coefficients are expressed in units: aC1 in Ω, aC2 in VA−2. The modified form of
the new Cassie–Voronin model is as follows:

1
g

dg
dt
=

1
θC (S)

*
,

u2
col

U2
C

(l, S)
− 1 −

UdC (iθ ) iθ
Pdis(l, S)

·
2UC (l, S) +UdC (iθ )
UC (l, S) +UdC (iθ )

+
-
−

2
l

d l
dt
, (57)

where iθ is the state current [14]. Due to the adopted assumption (32), this model approximates
well the characteristics of high current arcs. In this case, the equivalent overall form, (57), of the
mathematical model is as follows:

g = g0C exp



t∫
0



1
θC (S)

*
,

u2
col

U2
C

(l, S)
− 1 −

UdC (iθ ) iθ
Pdis(l, S)

·
2UC (l, s) +UdC (iθ )
UC (l, s) +UdC (iθ )

+
-
−

2
l

d l
dt


dτ



. (58)

6. Results of simulation tests of dynamic states in the circuit with models
of an electric arc of disturbed geometric dimensions

The cross-sectional area of the arc column depends onmany factors: current, gas composition,
gas pressure, gas temperature, column cooling intensity (gas flow, walls of the constructor or
plasma generator nozzle, flux), etc. The literature [5–7] presents the findings of theoretical
considerations and experimental studies of direct current arcs. Depending on the arc conditions,
the current density varies from units to hundreds of amps per mm2. The radius of the arc
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is primarily a function of current rc = f
(
I2/3

)
. This function is very close to the empirical

formula [6]:
rc � kIn, cm, (59)

(where: n = 0.6 ÷ 0.7) obtained in the case of an arc longitudinally washed by a gas stream. If
the arc is in the air, then k = 0.135 cm·A−n.

In the case of an AC arc, the formulas presented in the literature usually do not take into
account the physical processes that occur when the current passes through zero. It has been
experimentally shown [19] that a decrease in the initially high current is accompanied by a mild
decrease in the damping function θ ∝ i. For the specific construction of an electrode system
and an arc burning in a nitrogen atmosphere, the minimum was reached at the point (I = 20 A,
θ = 10 · 10−6 s). Further reduction of the current to zero was accompanied by a rapid and
significant increase in the value of the damping function θ ∝ 1/i.

In the cases of auxiliary functions (9) and (37), as the current decreases to zero, the column
diameter also decreases to zero, and then the damping functions also decrease instead of increas-
ing. The simulation effect of such a model results in excessively high arc ignition voltage and thus
in instability of the programs. In contrast, versions of models with the value of dissipated power
proportional to the volume of the arc column (Formulas (14) and (41)) maintain a constant value
of the damping function, which only partially meets the conditions roughly approximating data
from physical experiments. Therefore, it is proposed to approximate the column radius by means
of the dependence:

rcol = r0εri (i) + rc (i) · (1 − εri (i)) , (60)

where the weight function can have the form:

εri (i) = exp *
,
ln (kr )

i2

I2
r0

+
-
, (61)

where: r0 is the tasks fixed radius value (r0 > rc (Ir0 )), kr is the coefficient of participation
of individual components r0 and rc as a function of radius at the point with the abscissa Ir0 ,
(0 < kr < 1), Ir0 is the current value corresponding to theminimum value of the damping function
determined experimentally, e.g. 20 A [19]. The use of these dependencies avoids problems with
denominators zeroing in expressions on mathematical models of arcs and instability of simulation
programs.

The approximation possibilities of the proposed modified mathematical models of the electric
arc were examined in a simulation manner. To this end, macromodels of the arc were created in
equivalent differential and integral versions. The calculations took into account the set sum of
electrode voltage drops UAC = 18 V. A current source generating a 50 Hz sine wave was used
as forcing in the arc circuit. In the cases of the modified Mayr–Voronin model (without PdM and
with PdM) a current of 10 A amplitude was used, and in the cases of the modified Cassie–Voronin
model (without PdC and with PdC) a current of 200 Awas used. In contrast to static characteristics,
to present dynamic characteristics, currents with variable flow direction are most often used. If
in the formulas for mathematical models of the arc we use alternating current (and not the state
current iθ [14]), then its properties should be taken into account in the functions determining the
additional dissipated power (UdM(|i |) |i |, UdC (|i |) |i |).
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Figure 1 shows the dynamic characteristics of the Mayr–Voronin arc model with dissipation
power proportional to the side surface of the column. The change in the length of the column
followed a given relationship l (t) = 10−2 ·

(
1.4 + t − exp

(
− (t/0.5)40

))
. So, during a linear

increase in the length of the column after 0.5 s there was a quasi-jump increase. The total
stretching time reached 0.8 s. The column cross-sectional area was a function of current according
to Formulas (59)–(61). The coefficient values were as follows: n = 0.6, k = 0.135 cm·A−n,
r0 = 4 · 10−3 m, kr = 0.9, Ir0 = 8 A.

(a) (b)

Fig. 1. Dynamic characteristics of the extended arc described by the Mayr–Voronin model
(pS = 2.5 · 106 W/m2, q0M = 0.5 · 106 J/m3, σ0M = 800 S/m): a) without additional
dissipated power in the high-current range, Formulas (8)–(10); b) with additional dissipated
power in the high-current range, Formulas (9), (10), (30) (aM1 = 0.1 Ω, aM2 = 2 VA−2)

Figure 2 shows the dynamic characteristics of the Mayr–Voronin arc model with dissipation
power proportional to the column volume. Changes in the column length were carried out ac-
cording to the same dependence as in Figure 1. As a result of simulation of processes in the
electric circuit with the Mayr–Voronin mathematical model, different shapes of the dynamic
voltage-current characteristics of the arc were obtained. They demonstrate great approximation
potential for low-current arcs, stretched without and with increased dissipated power. In the cases
of long arcs, no influence of assumptions about the method of heat dissipation from the column
on the formation of clear differences in the model selection options was found.

Figure 3 shows the dynamic characteristics of the Cassie–Voronin arc model with dissipation
power proportional to the side surface of the column. The column length was changed according
to a similar relationship l (t) = 10−3 ·

(
6 + 20t − 10 exp

(
−(t/0.5)40

))
. The column cross-sectional

area was a function of current according to Formulas (59)–(61). The coefficient values were as
follows: n = 0.6, k = 0.135 cm·A−n, r0 = 6 · 10−2 m, kr = 0.1, Ir0 = 15 A.

Figure 4 shows the dynamic characteristics of the Cassie–Voronin arc model with dissipation
power proportional to the column volume. The change in column length was the same as in
the previous case. Only in the case of Figure 4(a), the auxiliary functions, (41) and (42) of
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Equation (34), do not depend on the cross-sectional area of column S. As a result of simulations
of processes in the electric circuit with the Cassie–Voronin mathematical model, various shapes

(a) (b)

Fig. 2. Dynamic characteristics of the extended arc described by the Mayr–Voronin model
(pV = 1 ·109 W/m3, q0M = 0.5 ·106 J/m3, σ0M = 800 S/m): a) without additional dissipated
power in the high-current range, Formulas (8), (14) and (15); b) with additional dissipated
power in the high-current range, Formulas (30), (14) and (15) (aM1 = 0.1 Ω, aM2 = 1 VA−2)

(a) (b)

Fig. 3. Dynamic characteristics of the expanded arc described by the Cassie–Voronin
model (pS = 1 · 106 W/m2, q0C = 2 · 105 J/m3, σ0C = 800 S/m, qV = 1.7 · 104 J/m3):
a) without additional dissipated power in the high-current range, Formulas (35), (37) and
(38); b) with additional dissipated power in the high-current range, Formulas (57), (37)

and (38) (aC1 = 1 · 10−3 Ω, aC2 = 1 · 10−3 VA−2)
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of dynamic voltage-current characteristics of the arc were obtained. They indicate to some
approximation possibilities of high-current arc models stretched without and with increased
dissipated power ere, too, in the cases of long arcs, there was no impact of assumptions about the
method of heat dissipation from the column on the formation of clear differences in the model
selection options.

(a) (b)

Fig. 4. Dynamic characteristics of the extended arc described by the Mayr–Voronin model
(pV = 50 · 106 W/m3, q0C = 16 · 106 J/m3, σ0C = 800 S/m, qV = 1 · 104 J/m3):
a) without additional dissipated power in the high-current range, Formulas (35), (41) and
(42); b) with additional dissipated power in the high-current range, Formulas (57), (14)

and (42) (aC1 = 1 · 10−4 Ω, aC2 = 2 · 10−4 VA−2)

7. Conclusion

The article specifies the assumptions of the Voronin model by considering two variants of
heat dissipation from the plasma column (proportional to the lateral surface area, proportional
to volume). In addition, these models were modified so that it was possible to take into account
additional heat dissipation from the column in the high-current range.

Separation of the Voronin model into two cases of changes in conductivity relative to enthalpy
(approximation by exponential function, approximation by linear function) enabled the develop-
ment of mathematical models of expanded arc meeting the correct assumptions of low-current
and high-current arcs.

Repeatedly simulated processes by the author in circuits with macromodels of an electric arc
stretched at different speeds have shown the possibility of selecting model parameters to ensure
the needful shapes of dynamic voltage and current characteristics.

In the presented mathematical models of the extended electric arc, the plasma column was
treated as an element of the electric circuit with concentrated parameters. These models were



102 A. Sawicki Arch. Elect. Eng.

written in two forms of differential and integral. It gives the possibility of their computer imple-
mentations by building macromodels in simulation programs using controlled voltage or current
sources.
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