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are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when 
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test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for 
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1. Introduction

Specific emitter identification refers to the process of identi-
fying individual emitters by analyzing radio frequency (RF)
emissions, which contain specific characteristics of electronic
circuits and radio frequency components [1]. As the hardware
imperfections are determined by the production and manufac-
turing processes, the characteristics of individual emitters are
unique and difficult to counterfeit [2]. Therefore, SEI is widely
applied in both battlefield spectrum management [3] and civil-
ian wireless network security [4, 5].

A crucial task of SEI is to obtain features discriminat-
ing different individual emitters, which are also known as
radio frequency fingerprints (RFFs). According to ways of
obtaining RFFs, SEI approaches can be classified into two
main categories: hand-crafted features based and deep learning
based. Approaches based on hand-crafted features utilize expert
knowledge to extract RFFs, and train classifiers based on the
RFFs. RFFs can be obtained by comparing received signals to
the ideal ones in the modulation domain [6–8]. Time-frequency
analysis methods, such as short-time Fourier transform (STFT)
[9], wavelet transform [10], Wigner and Choi-Williams distri-
bution [11,12] and Hilbert-Huang transform (HHT) [13–15] are
also applied to extract RFFs. Besides, some research extracts
RFFs using nonlinear dynamics and complexity theory [16–18].
There are also methods extracting features from graphical rep-
resentations [19] or using geometric features [20,21]. Different
from approaches based on hand-crafted features, deep learn-
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ing based approaches train deep neural networks to learn RFFs
and identify individual emitters end-to-end, with raw data or
images transformed from raw data as input. Wu [22] used a re-
current neural network (RNN) based on long short-term mem-
ory for RF fingerprinting and achieved high detection accuracy
even in the presence of strong noise. Ding [23] adopted a con-
volutional neural network (CNN) trained on compressed bis-
pectrum, presenting higher accuracy than conventional meth-
ods. Merchant [24] proposed a CNN method with baseband
error signal as input for ZigBee devices. Pan [25] constructed
a deep residual network operating on Hilbert spectrum image,
and the simulation results demonstrated superior performance
of the proposed method under various channel conditions. Ma-
tuszewski [26] implemented an electromagnetic source recog-
nition system based on deep neural networks. Wong [8, 27]
proposed a method combining CNN and clustering algorithms
and a method based on IQ imbalance estimation using CNN.
Baldini [28] compared various approaches to turn signals into
images as CNN input, including recurrence plots, continuous
wavelet transform and short-time Fourier transform, with ex-
periments showing that the wavelet-based approach outper-
formed other approaches.

While the majority of previous research focuses on the dis-
criminativeness of RFFs, the reliability of RFFs is rarely con-
sidered. Most research assumes that training data and test data
are independently identically distributed. In practice, however,
the conditions under which the RF observables are collected
for identification or testing may be different from the ones the
SEI system is trained on. Changes in conditions such as chan-
nel, temperature, bandwidth, carrier frequency and modulation
type lead to variations of signals, which causes current RFFs to
fail [29,30]. Unfortunately, condition changing is ubiquitous for
wireless communications, especially with applications of cog-
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nitive radios, which are enabled to adjust their transmitting pa-
rameters for spectrum efficiency and protection of communica-
tions [31]. Therefore, reliability of SEI approaches plays a vital
role for real-world applications.

Transfer learning, which aims to extract knowledge from one
or more source tasks and applies the knowledge to a target
task [32], is considered as a solution for reliable SEI [30, 33].
A transfer learning method for SEI is proposed in [33]. The
method transfers knowledge from past time frames to current
time frame, assuming RFFs gradually change over time. Hence,
the method is not suitable for abrupt variations of features, e.g.
changes of carrier frequencies. In [30] a method to identify
emitters with changing bandwidth is proposed. However, the
method requires labeled data of a set of fixed reference emit-
ters at each bandwidth, which is not always available in prac-
tice. Unsupervised domain adaptation (UDA), a subcategory of
transfer learning, transfers knowledge between labeled source
domain data and unlabeled target domain data to improve accu-
racy on target domain data. As UDA requires no labels for target
domain data, it is more practical in reality. Recently, methods
based on deep learning have produced state-of-the-art results on
UDA tasks [34], with DANN [35, 36] as one of the fundamen-
tal works.

In this paper, we propose a more reliable SEI approach,
namely CWT-DANN, to identify emitters under varying fre-
quencies. The proposed approach first turn signals to time-
frequency distributions by CWT for more stable convergence.
Then DANN is utilized to learn representations that are both
discriminative for individual emitters and invariant for varying
frequencies by aligning distributions of training data and test
data. Based on the learned representations, the proposed ap-
proach performs preferably against approach without transfer
learning. Furthermore, due to the unsupervised setting of the
DANN, only labeled data of source domain and unlabeled data
of target domain are required, which is more practical than other
transfer learning approaches because the labels of the test data
are commonly unknown.

The contributions of this paper are as follows:
• To the best of our knowledge, this is the first attempt to

utilize unsupervised domain adaptation for SEI.
• We aim to improve performance of SEI under the condition

that the carrier frequencies of test data differ from training
data, which has not been adequately studied.

• We propose an approach, namely CWT-DANN, which per-
forms unsupervised domain adaptation through DANN with
CWT of signals as input, for SEI under varying frequencies.

• Experiments are conducted on real data of 5 emitters and
3 carrier frequencies. The results demonstrate the superior
performance of the proposed approach. When the training
data and test data are of different carrier frequencies, CWT-
DANN shows superior performance against baseline meth-
ods.

The rest of the paper is organized as follows: In Section 2, we
introduce the background and the main ideas of unsupervised
domain adaptation methods. In Section 3, the problem to be
solved is formally defined. Then, in Section 4, we explicate the
details of CWT-DANN. In Section 5, experiments on data of

5 emitters with different carrier frequencies are conducted to
evaluate the performance of the proposed approach. Finally, we
conclude the paper and discuss the future work in Section 6.

2. Unsupervised domain adaptation

In supervised learning, it is typically assumed that the training
data comes from the same distribution as the test data. How-
ever, in practice, the distributions of training data and test data
are not guaranteed to be identical, which may produce shifts be-
tween the training domain and the test domain. If not properly
considered, the domain shifts can degrade the performance se-
riously. Domain adaptation, a subcategory of transfer learning,
aims to deal with domain shifts and improve performance in
the target domain utilizing data in one or more relevant source
domains, with the assumption that the domains are different but
similar. Particularly, unsupervised domain adaptation methods,
which only requires labeled source domain data and unlabeled
target domain data, are more practical when dealing with do-
main mismatch between training and test data.

The past few years have witnessed significant progress in
UDA methods, with a growing emphasis on deep learning based
methods [37]. A plethora of recent work aligns source and tar-
get domains by creating a domain-invariant feature represen-
tation. A feature representation is domain-invariant if the fea-
tures follow the same distribution regardless of whether the
input data is from the source or target domain. With domain-
invariant features, a classifier trained to perform accurately on
source domain data may also generalize well on target domain
data (Fig. 1).

Fig. 1. Domain-invariant feature learning methods

DANN is a typical deep learning based UDA method, which
learns domain-invariant features through adversarial training of
neural networks [35,36]. DANN consists of three sub-networks,
namely feature extractor, label classifier and domain discrimi-
nator. The output of feature extractor is fed into label classifier
and domain discriminator. Label classifier is a trivial network
which predicts the class label of the input. Domain discrimina-
tor is trained to discriminate the domain of the input feature.
Feature extractor is trained to assist the label classifier and fool
the domain discriminator at the same time. On one hand, by
assisting the label classifier, the feature extractor leans features
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discriminative for class labels. On the other hand, by fooling the
domain discriminator, the feature extractor learns features in-
variant across domains. Feature extractor and Domain discrim-
inator are trained adversarially analogous to generator and dis-
criminator in generative adversarial network (GAN) [38]. When
domain discriminator can not be trained to determine the do-
main of the input feature anymore, the feature from feature ex-
tractor is deemed to be domain-invariant.

3. Problem description

Most previous research of SEI assumes that training data and
test data are collected under the same condition. However, this
assumption does not always hold in practice. For example, for
wireless communications, the emitters may change carrier fre-
quencies, which leads to variations of received signals from the
same emitter. On one hand, the characteristics of hardware im-
perfections of one emitter are not constant at different carrier
frequencies, because of phase noises of the local oscillator and
frequency response of the amplifier. On the other hand, influ-
ences of wireless channels on signals vary with frequencies.
These two factors lead to shifts of RFFs when the carrier fre-
quencies of training data and test data differ and the perfor-
mance of SEI may deteriorate seriously.

We denote the data space as X and the label space as Y.
The training data, which contains received signals of emit-
ters with certain carrier frequency, is denoted as source do-
main data set Xs = {xxxs

1, . . . ,xxx
s
ns} of X, where xxxs

i indicates the
ith record of source domain data, with corresponding label set
Y s = {ys

1, . . . ,y
s
ns} of Y, where ys

i indicates the emitter iden-
tity of xxxs

i . The test data, which contains the received signals of
emitters with carrier frequency different from training data, is
denoted as the target domain data set Xt = {xxxt

1, . . . ,xxx
t
nt} of X,

with corresponding labels unknown. The task is to find an ob-
jective predictive function f (·), which can also be viewed as a
conditional distribution Pt(y|xxx), by utilizing Xs, Y s and Xt .

The conventional assumption that the training data and test
data are collected under the same condition indicates that the

training data and the test data follow the same distribution, i.e.
Ps(y|xxx) = Pt(y|xxx). In this case, a classifier built to learn Ps(y|xxx)
using only Xs and Y s also approximates Pt(y|xxx) and hence per-
forms well on the test data. However, when the training data and
the test data are collected under different conditions, the domain
shifts lead to Pt(y|xxx) �= Ps(y|xxx). Therefore, the classifier trained
using only Xs and Y s to learn Ps(y|xxx) does not approximate
Pt(y|xxx) and generalize poorly on the test data. To learn Pt(y|xxx),
additional information of test data has to be introduced. UDA
aims to alleviate the domain shifts and to transfer knowledge
between training data and test data by exploiting Xt besides Xs

and Y s.

4. CWT-DANN

In this section, we introduce the details of CWT-DANN
for SEI under varying carrier frequencies. The proposed ap-
proach is summarized in Fig. 2. We first turn the raw I/Q sig-
nals into time-frequency energy distributions by continuous
wavelet transform (CWT) as suggested by [28]. Then the time-
frequency distributions are used to train a network framework
analogous to DANN, which consists of a feature extractor, a
label classifier and a domain discriminator. After training, the
feature extractor and the label classifier are deployed to predict
the labels of test data.

4.1. Signal preprocessing. DANN employs CNN to extract
features from the input samples. As CNNs are more suitable to
extract features from images, the samples of signals are trans-
formed into image-like representations [25]. Among several 2D
representations of signals, the time-frequency energy distribu-
tion has shown better performance than other forms such as re-
currence plots and bispectrums [28]. Short-time Fourier trans-
form (STFT) is a simple way to get time-frequency distribution
but has a fixed resolution. Hilbert-Huang transform (HHT) is
another time-frequency distribution method, the performance
of which is satisfying on simulated data [15, 25], but the ob-
tained time-frequency distribution is sparse and hence not suit-

Raw I/Q Data

Feature Extractor Domain Classifier

Label Classifier

ŷ

d̂

CWT

Fig. 2. DANN based SEI
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able for CNN training. CWT is a classical method generating
time-frequency distributions with adaptive resolution. There-
fore, in this paper we adopt CWT to generate time-frequency
distributions.

The samples of raw I/Q signals are preprocessed in the fol-
lowing procedure: First, each sample is normalized to miti-
gate the influence of transmitting power. Next, CWT of each
normalized signal produces the scaleogram. The magnitude of
the scaleogram representing time-frequency energy distribution
is used for CNN training. Before being fed into a CNN, the
magnitude of scaleogram is normalized for more stable con-
vergence. Each sample contains 8192 sampling points and the
number of scales in CWT is set as 101, therefore each input of
DANN is of size 8192×101.

4.2. Loss functions. The basic idea of DANN is that pre-
dictions must be made based on domain-invariant features to
achieve effective domain adaptation. In DANN, features are
deemed to be domain-invariant if we cannot train a classifier
to discriminate the domains of the features. Therefore, DANN
introduces a domain discriminator network in addition to a fea-
ture extractore network and a label classifier network. The out-
put of the feature extractor is guaranteed to be discriminative for
emitter identities by co-operative training with the label classi-
fier using labeled source domain data. At the same time, the
features are supposed to be domain-invariant across carrier fre-
quencies by adversarial training against the domain discrimina-
tor using both source domain data and target domain data with-
out class labels. As the RFFs that the feature extractor outputs
are both discriminative and domain-invariant after training, the
label classifier that performs well on source domain data also
generalizes effectively on target domain data.

More formally, the feature extractor can be regarded as a
function mapping the input xxx to a feature vector fff , i.e. fff =
G f (xxx;θ f ), where θ f indicates the parameters of the feature ex-
tractor. The label classifier with parameters θy takes the feature
vector fff as input and outputs a vector ŷyy of dimension K, where
K indicates the number of emitter identities and ŷi represents
the estimated probability that the sample belongs to class i, i.e.
ŷyy = Gy( fff ;θy). Similarly, the feature vector fff is mapped by the
domain discriminator with parameters θd to a number d̂, which
represents the predicted probability of the input belonging to
the source domain, i.e. d̂ = Gd( fff ;θd).

The objective of the label classifier is to predict emitter iden-
tities of the inputs, therefore the loss is defined as the cross
entropy between the predicted probabilities and the true emitter
identity labels:

Lcls(Xs,Y s,θ f ,θy) =−E(xxx,y)∼(Xs,Y s)

K

∑
k=1

�[k=y] ln ŷk ,

ŷyy = Gy(G f (xxx;θ f );θy),

(1)

ln is natural logarithm function. Since the domain discrimina-
tor tries to discriminate the domains of inputs, the loss of the
domain discriminator is defined as the binary cross entropy be-

tween the predicted probability and the true domain labels:

Ldsc(Xs,Xt ,θ f ,θd) =−1
2

(
Exxx∼Xs

[
ln d̂

]

+Exxx∼Xt [ln(1− d̂)]
)
,

d̂ = Gd(G f (xxx;θ f );θd).

(2)

The loss of the feature extractor consists two parts. One re-
quired property of the outputs of the feature extractor is to be
discriminative for emitter identities. This property can be guar-
anteed by updating the feature extractor to minimize Lcls. The
other demanded property of the features is domain-invariance,
i.e. the distributions S( fff ) = { fff = G f (xxxs;θ f )|xxxs ∼ Xs} and
T ( fff ) = { fff = G f (xxxt ;θ f )|xxxt ∼ Xt} should be similar. In DANN
this is achieved by training the feature extractor adversarially
with the domain discriminator. If the domain discriminator can
not be trained to distinguish which domain xxx comes from based
on fff , then it is assumed that S( fff ) and T ( fff ) are similar. In [35],
the adversarial loss of the feature extractor is defined to max-
imize the loss of the domain discriminator, i.e. Ladv = −Ldsc.
However, this objective may cause the problem of gradient
vanishing because the domain discriminator converges quickly
early on during training. In this paper, we define Ladv as the
cross entropy between the predicted probability and the uni-
form distribution as suggested by [40]:

Ladv(Xs,Xt ,θ f ,θd) =− ∑
c∈{s,t}

Exxx∼Xc

[
1
2

ln d̂

+
1
2

ln(1− d̂)
]
. (3)

The total loss of the feature extractor is Lcls + λLadv, with λ
as a hyperparameter weighting the relative importance of Lcls
and Ladv.

Overall, the loss functions of CWT-DANN are summarized
as Eqs. (4) and (5). In each training iteration, we first sample
a mini-batch of labeled source domain data and a mini-batch
of unlabeled target domain data. Then, θ f and θy are updated
through backpropagation of the loss function defined as Eq. (4),
with parameters of the domain discriminator fixed as θ̂d . At
last, we update θd by the loss in Eq. (5), with parameters of the
feature extractor fixed as θ̂ f .

θ ∗
f ,θ

∗
y = argmin

θ f ,θy

Lcls
(
Xs,Y s,θ f ,θy

)

+λLadv
(
Xs,Xt ,θ f , θ̂d

)
, (4)

θ ∗
d = argmin

θd

Ldsc
(
Xs,Xt , θ̂ f ,θd

)
. (5)

4.3. Network architecture. As the feature extractor is sup-
posed to be deep enough to learn features that are both dis-
criminative and domain-invariant, we adopt a simplified ver-
sion of ResNet-18 [41] as the feature extractor, which con-
tains ten convolution layers (Table 1). For each sample, the
feature extractor takes the time-frequency distribution of size
1 × 8192 × 101 as input and outputs a feature vector of 512
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dimensions. For the label classifier, we simply use one fully
connected layer (512 → K → Softmax). The domain discrim-
inator is specified as a network of two fully connected layers
(512 → Batchnorm → ReLU → 256 → 1 → Sigmoid), which
is more complex than the label classifier, for the reason that it
is theoretically proved that the hypothesis class generated by
domain discriminator should include the hypothesis class gen-
erated by label classifier for effective domain adaptation [36].

Table 1
Architecture of the feature extractor

Layer Name Filter Size Output Size

conv1 7×7, 32, stride 2 32×4096×51

average pool stride 2 32×2048×26

conv2_x

[
3×3, 64

3×3, 64

]
, stride 1 64×2048×26

conv3_x

[
3×3, 128

3×3, 128

]
, stride 2 128×1024×13

conv4_x

[
3×3, 256

3×3, 256

]
, stride 2 256×512×7

conv5_x

[
3×3, 512

3×3, 512

]
, stride 2 512×256×4

global average pool 512

5. Experimental evaluation

5.1. Data collection. Signals are collected from 5 emitters
with carrier frequencies of 380 MHz, 450 MHz and 512 MHz
respectively. The emitters transmit signals with 8 phase shift
keying modulation. The sampling frequency of the receiver is
4 MHz. A signal and spectrum analyzer connected to an an-
tenna receives the signals, converting the RF signals to the
baseband. The baseband signals include in-phase signals and
quadrature signals.

The signals are segmented by 8192 sampling points for each
sample and then turned into matrices of size 8192 × 101 by
CWT. After preprocessing, we obtain 600 samples for each
emitter at each carrier frequency. For the evaluation of training
data and test data from the same carrier frequency, 500 samples
of each emitter are randomly selected as training data and the
rest 100 samples as test data. For evaluation of training data and
test data from different carrier frequencies, 500 samples of each
emitter from one frequency are randomly selected as training
data and 500 samples of each emitter from another frequency
as test data.

To investigate the influence of carrier frequency on emis-
sions, we compare power spectrums of signals of the same
emitter at different carrier frequencies. We denote the mean
power spectrum of 300 samples of emitter 1 at 380 MHz as
Ŝ1( f ), the mean power spectrum of the other 300 samples as

Ŝ′1( f ), and the mean power spectrum of 300 samples of emit-
ter 1 at 450 MHz as Ŝ2( f ). We calculate the relative differ-
ence of mean power spectrum at the same carrier frequency
and different carrier frequencies as (Ŝ1( f )− Ŝ′1( f ))/Ŝ1( f ) and
(Ŝ1( f )− Ŝ2( f ))/Ŝ1( f ) respectively. Figure 3 demonstrates that
the spectrum difference at the same carrier frequency is roughly
0, while the difference at different carrier frequencies is not cen-
tered around 0 and shows patterns relative to frequency. The
same phenomena also appears for emitter 2–5 and other fre-
quency pairs. As only carrier frequency is changed in Fig. 3(b),
this phenomena indicates that hardware characteristics vary
with carrier frequency, which may cause shifts of RFFs and de-
grade the performance of SEI approaches.
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Fig. 3. Relative difference of mean power spectrum at (a) the same
carrier frequency and (b) different carrier frequencies

5.2. Baselines. We utilize four methods to extract hand-
crafted features for comparison. VMD-EM2 and VMD-SF uti-
lize variational mode decomposition (VMD) to decompose the
received signal, then extract entropy, first and second order
moments (EM2) of Hilbert transforms and spectral features
(SF) of each mode [39]. We also replace VMD by empiri-
cal mode decomposition (EMD), obtaining feature extraction
methods EMD-EM2 [15], and EMD-SF. For each feature ex-
traction method, we train a multi-class support vector machine
(SVM) classifier for evaluation.

As for deep learning based methods for comparison, we sim-
ply use the source-only model of our approach, noted as CWT-
CNN [28], meaning that only the feature extractor and the label
classifier are trained using the training data, without domain
discriminator in the network. The trained feature extractor and
label classifier are then evaluated on test data without domain
adaptation.

5.3. Pre-experiment. To verify the effectiveness of the base-
line methods, we first evaluate their performance under the con-
dition that the training data and test data are of the same carrier
frequency. The CWT-CNN model is trained for 100 epochs,
with batch size of 16, by RMSprop optimization method at a
learning rate of 10−4. The decomposition order of VMD and
EMD is set as 8. Each experiment is repeated 5 times for eval-
uation.
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dimensions. For the label classifier, we simply use one fully
connected layer (512 → K → Softmax). The domain discrim-
inator is specified as a network of two fully connected layers
(512 → Batchnorm → ReLU → 256 → 1 → Sigmoid), which
is more complex than the label classifier, for the reason that it
is theoretically proved that the hypothesis class generated by
domain discriminator should include the hypothesis class gen-
erated by label classifier for effective domain adaptation [36].

Table 1
Architecture of the feature extractor

Layer Name Filter Size Output Size

conv1 7×7, 32, stride 2 32×4096×51

average pool stride 2 32×2048×26

conv2_x

[
3×3, 64

3×3, 64

]
, stride 1 64×2048×26

conv3_x

[
3×3, 128

3×3, 128

]
, stride 2 128×1024×13

conv4_x

[
3×3, 256

3×3, 256

]
, stride 2 256×512×7

conv5_x

[
3×3, 512

3×3, 512

]
, stride 2 512×256×4

global average pool 512

5. Experimental evaluation

5.1. Data collection. Signals are collected from 5 emitters
with carrier frequencies of 380 MHz, 450 MHz and 512 MHz
respectively. The emitters transmit signals with 8 phase shift
keying modulation. The sampling frequency of the receiver is
4 MHz. A signal and spectrum analyzer connected to an an-
tenna receives the signals, converting the RF signals to the
baseband. The baseband signals include in-phase signals and
quadrature signals.

The signals are segmented by 8192 sampling points for each
sample and then turned into matrices of size 8192 × 101 by
CWT. After preprocessing, we obtain 600 samples for each
emitter at each carrier frequency. For the evaluation of training
data and test data from the same carrier frequency, 500 samples
of each emitter are randomly selected as training data and the
rest 100 samples as test data. For evaluation of training data and
test data from different carrier frequencies, 500 samples of each
emitter from one frequency are randomly selected as training
data and 500 samples of each emitter from another frequency
as test data.

To investigate the influence of carrier frequency on emis-
sions, we compare power spectrums of signals of the same
emitter at different carrier frequencies. We denote the mean
power spectrum of 300 samples of emitter 1 at 380 MHz as
Ŝ1( f ), the mean power spectrum of the other 300 samples as

Ŝ′1( f ), and the mean power spectrum of 300 samples of emit-
ter 1 at 450 MHz as Ŝ2( f ). We calculate the relative differ-
ence of mean power spectrum at the same carrier frequency
and different carrier frequencies as (Ŝ1( f )− Ŝ′1( f ))/Ŝ1( f ) and
(Ŝ1( f )− Ŝ2( f ))/Ŝ1( f ) respectively. Figure 3 demonstrates that
the spectrum difference at the same carrier frequency is roughly
0, while the difference at different carrier frequencies is not cen-
tered around 0 and shows patterns relative to frequency. The
same phenomena also appears for emitter 2–5 and other fre-
quency pairs. As only carrier frequency is changed in Fig. 3(b),
this phenomena indicates that hardware characteristics vary
with carrier frequency, which may cause shifts of RFFs and de-
grade the performance of SEI approaches.
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Fig. 3. Relative difference of mean power spectrum at (a) the same
carrier frequency and (b) different carrier frequencies

5.2. Baselines. We utilize four methods to extract hand-
crafted features for comparison. VMD-EM2 and VMD-SF uti-
lize variational mode decomposition (VMD) to decompose the
received signal, then extract entropy, first and second order
moments (EM2) of Hilbert transforms and spectral features
(SF) of each mode [39]. We also replace VMD by empiri-
cal mode decomposition (EMD), obtaining feature extraction
methods EMD-EM2 [15], and EMD-SF. For each feature ex-
traction method, we train a multi-class support vector machine
(SVM) classifier for evaluation.

As for deep learning based methods for comparison, we sim-
ply use the source-only model of our approach, noted as CWT-
CNN [28], meaning that only the feature extractor and the label
classifier are trained using the training data, without domain
discriminator in the network. The trained feature extractor and
label classifier are then evaluated on test data without domain
adaptation.

5.3. Pre-experiment. To verify the effectiveness of the base-
line methods, we first evaluate their performance under the con-
dition that the training data and test data are of the same carrier
frequency. The CWT-CNN model is trained for 100 epochs,
with batch size of 16, by RMSprop optimization method at a
learning rate of 10−4. The decomposition order of VMD and
EMD is set as 8. Each experiment is repeated 5 times for eval-
uation.
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Table 2 shows the test accuracy of different methods under
constant frequency. Data were reported as mean ± standard er-
ror of replicate mean values. CWT-CNN is superior to meth-
ods based on hand-crafted features, justifying the effectiveness
of training CNN to learn RFFs based on time-frequency dis-
tributions of signals transformed by CWT. For methods based
on hand-crafted features, spectral features are better than en-
tropy and moments, which agrees with the experimental results
of [39]. The results also show that the accuracy relates to car-
rier frequency. For all methods based on hand-crafted features,
the accuracy under carrier frequency of 450 MHz is obviously
higher than that of 512 MHz, implying that the data distribu-
tions vary with carrier frequency.

Table 2
Test accuracy under constant frequency

Method 380 MHz 450 MHz 512 MHz

VMD-EM2 0.8116±0.0238 0.8596±0.0168 0.8004±0.0214
VMD-SF 0.9338±0.0106 0.9550±0.0077 0.9128±0.0141

EMD-EM2 0.5862±0.0255 0.6650±0.0173 0.5752±0.0185
EMD-SF 0.9454±0.0131 0.9424±0.0136 0.9046±0.0132

CWT-CNN 0.9924±0.0032 0.9988±0.0008 0.9996±0.0002

5.4. Results. In this section, we compare the results of CWT-
DANN and baseline methods under varying frequency. The
training data are 500 random samples for each emitter of one
carrier frequency and the test data are 500 random samples for
each emitter of another carrier frequency. The training proce-
dure of CNN-SEI and hand-crafted feature based methods is the
same as the way under constant frequency. For CWT-DANN,
the network is trained for 300 epochs by RMSprop. The learn-
ing rate is initially 10−4, and is reduced by half for every 100
epochs. Each experiment is repeated 5 times for evaluation.

Convergence evaluation. We first plot the learning curves
of CWT-DANN to demonstrate its convergence. The learn-
ing curves of CWT-DANN at 380 MHz→450 MHz (data of
380 MHz for training and data of 450 MHz for testing) are
shown in Fig. 4 with 5 replicates of the same experiment. Al-
though the test accuracy of each replicate oscillates seriously
at early stage, as training proceeds the accuracy converges to
around 0.95. The Lcls of each replicate converges to nearly zero,
which is trivial since both the feature extractor and the label
classifier are optimized to minimize Lcls. Based on the defini-

tion of Ldsc (Eq. (2)) and Ladv (Eq. (3)), we can deduce that
the maximum of Ladv is ln2, which is represented as dashed
lines in Fig. 4(c) and Fig. 4(d). During the first several epochs,
Ldsc drops heavily and Ladv increases sharply, indicating that
the domains can be easily discriminated by the domain dis-
criminator at early stage. As training proceeds, Ldsc increases
gradually and Ladv decreases gradually towards ln2, suggesting
that the domain discriminator can not be trained to discriminate
the domains and the feature extractor learns domain-invariant
features.
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Fig. 4. Learning curves of CWT-DANN at 380 MHz→450 MHz.
Each curve correspond to one replicate (shown in a separate color),

with dashed lines indicating the value of ln2.

Accuracy comparison. We successively select data of one
carrier frequency for training and data of another frequency for
testing, constructing 6 transfer tasks: 380 MHz→450 MHz,
450 MHz→380 MHz, 450 MHz→512 MHz, 512 MHz→
450 MHz, 380 MHz→512 MHz and 512 MHz→380 MHz.
The test accuracy of different methods are shown in Table 3.

Table 3
Test accuracy under varying frequencies

Method 380 MHz→450 MHz 450 MHz→380 MHz 450 MHz→512 MHz 512 MHz→450 MHz 380 MHz→512 MHz 512 MHz→38 0MHz

VMD-EM2 0.6456 ± 0.0109 0.5492 ± 0.0088 0.3130 ± 0.0054 0.4066 ± 0.0108 0.2656 ± 0.0088 0.2710 ± 0.0103
VMD-SF 0.7795 ± 0.0057 0.7830 ± 0.0077 0.5852 ± 0.0051 0.5325 ± 0.0131 0.5196 ± 0.0070 0.4477 ± 0.0062

EMD-EM2 0.4765 ± 0.0076 0.4104 ± 0.0104 0.2163 ± 0.0035 0.2436 ± 0.0111 0.1976 ± 0.0039 0.2615 ± 0.0069
EMD-SF 0.7258 ± 0.0082 0.7368 ± 0.0044 0.5696 ± 0.0077 0.5665 ± 0.0110 0.5393 ± 0.0084 0.5077 ± 0.0086

CWT-CNN 0.6827 ± 0.0185 0.7036 ± 0.0072 0.6826 ± 0.0068 0.7198 ± 0.0063 0.5069 ± 0.0146 0.6558 ± 0.0164
CWT-DANN 0.9568 ± 0.0056 0.9380 ± 0.0091 0.9996 ± 0.0004 0.9764 ± 0.0081 0.6612 ± 0.0098 0.7620 ± 0.1152

6 Bull. Pol. Ac.: Tech. 69(2) 2021

DANN for SEI under varying frequency

−20 0 20 40

−40

−20

0

20

40

source

target

−20 0 20 40

−40

−20

0

20

40

E1

E2

E3

E4

E5

(a) CWT-CNN (380 MHz→450 MHz)

−40 −20 0 20 40

−40

−20

0

20

40

source

target

−40 −20 0 20 40

−40

−20

0

20

40

E1

E2

E3

E4

E5

(b) CWT-CNN (380 MHz→512 MHz)

−40 −20 0 20 40

−40

−20

0

20

40

source

target

−40 −20 0 20 40

−40

−20

0

20

40

E1

E2

E3

E4

E5

(c) CWT-DANN (380 MHz→450 MHz)

−40 −20 0 20 40

−40

−20

0

20

40

source

target

−40 −20 0 20 40

−40

−20

0

20

40

E1

E2

E3

E4

E5

(d) CWT-DANN (380 MHz→512 MHz)

Fig. 5. Visualization of features extracted by the feature extractor. In
the left column, red points correspond to source domain data and blue
points correspond to target domain data. In the right column, different
colors correspond to different emitter identities, denoted as E1–E5.

Best viewed in color.

Data were reported as mean ± standard error of replicate mean
values. The performances of all baseline methods degrade
significantly compared with the results in the pre-experiment.
This degradation is caused by the domain shifts between
training and test data. CWT-DANN performs considerably by
utilizing unlabeled target domain data, with improvement of at
least 10% over all baseline methods at all conditions, proving
the superiority of CWT-DANN. For all methods, the accuracy
when transferring between 380 MHz and 512 MHz is evidently
lower than other conditions, which may suggest that hardware
characteristics of the same emitter are more diverse when the
difference between carrier frequencies is larger so that the data
distributions are more dissimilar.

Feature visualization. We use t-SNE [42] to reduce the
dimension of features extracted by the feature extractor to
2 and visualize the transformed features of CWT-CNN and
CWT-DANN respectively in Fig. 5. As shown in Fig. 5(a) and
Fig. 5(b), CWT-CNN learns features that are discriminative for
source domain data. However, due to lack of consideration to
the shifts between the source domain and the target domain,
features of target domain data extracted by CWT-CNN are dis-
tributed away from source domain features. Therefore, CWT-
CNN generalizes poorly on target domain data. Unlike CWT-
CNN, CWT-DANN aligns the features of source domain data
and target domain data by exploiting unlabeled target domain
data (Fig. 5(c), Fig. 5(d)). Based on the domain-invariant fea-
tures, the label classifier trained by the source domain labeled
data generalizes preferably on target domain data. However,
for 380 MHz→512 MHz, the features of emitter1 and emitter5
across different domains are misaligned in Fig. 5(d). A possible
reason of misalignment is that the source domain data and target
domain data are too dissimilar because of the large frequency
gap, which violates the assumption of domain similarity.

6. Conclusions

In this paper, we propose an approach, namely CWT-DANN,
for SEI under varying frequency. Under the assumption that the
distributions of training data and test data are different but sim-
ilar, the approach exploits the unlabeled test data to align the
source domain and target domain features, in order to perform
effectively on test data by alleviating domain shifts. The results
of experiments on real signals verify the effectiveness of the
proposed approach, with an improvement of over 10% against
baseline approaches under varying frequencies. As we only as-
sume that the training data and test data are different, with no
further assumptions of the cause of differences, the proposed
approach is promising for other conditions that introduce do-
main shifts, such as modulation type, bandwidth and channel.
The approach provides a novel paradigm for SEI when the train-
ing data and test data are not identically distributed, only with
additional requirement of test data with no labels, which is prac-
tical in reality.

False alignment, a common issue of UDA, which arises when
source domain data and target domain data are too dissimilar,
may degrade the performance of CWT-DANN. Recently, meth-
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Fig. 5. Visualization of features extracted by the feature extractor. In
the left column, red points correspond to source domain data and blue
points correspond to target domain data. In the right column, different
colors correspond to different emitter identities, denoted as E1–E5.

Best viewed in color.

Data were reported as mean ± standard error of replicate mean
values. The performances of all baseline methods degrade
significantly compared with the results in the pre-experiment.
This degradation is caused by the domain shifts between
training and test data. CWT-DANN performs considerably by
utilizing unlabeled target domain data, with improvement of at
least 10% over all baseline methods at all conditions, proving
the superiority of CWT-DANN. For all methods, the accuracy
when transferring between 380 MHz and 512 MHz is evidently
lower than other conditions, which may suggest that hardware
characteristics of the same emitter are more diverse when the
difference between carrier frequencies is larger so that the data
distributions are more dissimilar.

Feature visualization. We use t-SNE [42] to reduce the
dimension of features extracted by the feature extractor to
2 and visualize the transformed features of CWT-CNN and
CWT-DANN respectively in Fig. 5. As shown in Fig. 5(a) and
Fig. 5(b), CWT-CNN learns features that are discriminative for
source domain data. However, due to lack of consideration to
the shifts between the source domain and the target domain,
features of target domain data extracted by CWT-CNN are dis-
tributed away from source domain features. Therefore, CWT-
CNN generalizes poorly on target domain data. Unlike CWT-
CNN, CWT-DANN aligns the features of source domain data
and target domain data by exploiting unlabeled target domain
data (Fig. 5(c), Fig. 5(d)). Based on the domain-invariant fea-
tures, the label classifier trained by the source domain labeled
data generalizes preferably on target domain data. However,
for 380 MHz→512 MHz, the features of emitter1 and emitter5
across different domains are misaligned in Fig. 5(d). A possible
reason of misalignment is that the source domain data and target
domain data are too dissimilar because of the large frequency
gap, which violates the assumption of domain similarity.

6. Conclusions

In this paper, we propose an approach, namely CWT-DANN,
for SEI under varying frequency. Under the assumption that the
distributions of training data and test data are different but sim-
ilar, the approach exploits the unlabeled test data to align the
source domain and target domain features, in order to perform
effectively on test data by alleviating domain shifts. The results
of experiments on real signals verify the effectiveness of the
proposed approach, with an improvement of over 10% against
baseline approaches under varying frequencies. As we only as-
sume that the training data and test data are different, with no
further assumptions of the cause of differences, the proposed
approach is promising for other conditions that introduce do-
main shifts, such as modulation type, bandwidth and channel.
The approach provides a novel paradigm for SEI when the train-
ing data and test data are not identically distributed, only with
additional requirement of test data with no labels, which is prac-
tical in reality.

False alignment, a common issue of UDA, which arises when
source domain data and target domain data are too dissimilar,
may degrade the performance of CWT-DANN. Recently, meth-
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Fig. 5. Visualization of features extracted by the feature extractor. In
the left column, red points correspond to source domain data and blue
points correspond to target domain data. In the right column, different
colors correspond to different emitter identities, denoted as E1–E5.

Best viewed in color.

Data were reported as mean ± standard error of replicate mean
values. The performances of all baseline methods degrade
significantly compared with the results in the pre-experiment.
This degradation is caused by the domain shifts between
training and test data. CWT-DANN performs considerably by
utilizing unlabeled target domain data, with improvement of at
least 10% over all baseline methods at all conditions, proving
the superiority of CWT-DANN. For all methods, the accuracy
when transferring between 380 MHz and 512 MHz is evidently
lower than other conditions, which may suggest that hardware
characteristics of the same emitter are more diverse when the
difference between carrier frequencies is larger so that the data
distributions are more dissimilar.

Feature visualization. We use t-SNE [42] to reduce the
dimension of features extracted by the feature extractor to
2 and visualize the transformed features of CWT-CNN and
CWT-DANN respectively in Fig. 5. As shown in Fig. 5(a) and
Fig. 5(b), CWT-CNN learns features that are discriminative for
source domain data. However, due to lack of consideration to
the shifts between the source domain and the target domain,
features of target domain data extracted by CWT-CNN are dis-
tributed away from source domain features. Therefore, CWT-
CNN generalizes poorly on target domain data. Unlike CWT-
CNN, CWT-DANN aligns the features of source domain data
and target domain data by exploiting unlabeled target domain
data (Fig. 5(c), Fig. 5(d)). Based on the domain-invariant fea-
tures, the label classifier trained by the source domain labeled
data generalizes preferably on target domain data. However,
for 380 MHz→512 MHz, the features of emitter1 and emitter5
across different domains are misaligned in Fig. 5(d). A possible
reason of misalignment is that the source domain data and target
domain data are too dissimilar because of the large frequency
gap, which violates the assumption of domain similarity.

6. Conclusions

In this paper, we propose an approach, namely CWT-DANN,
for SEI under varying frequency. Under the assumption that the
distributions of training data and test data are different but sim-
ilar, the approach exploits the unlabeled test data to align the
source domain and target domain features, in order to perform
effectively on test data by alleviating domain shifts. The results
of experiments on real signals verify the effectiveness of the
proposed approach, with an improvement of over 10% against
baseline approaches under varying frequencies. As we only as-
sume that the training data and test data are different, with no
further assumptions of the cause of differences, the proposed
approach is promising for other conditions that introduce do-
main shifts, such as modulation type, bandwidth and channel.
The approach provides a novel paradigm for SEI when the train-
ing data and test data are not identically distributed, only with
additional requirement of test data with no labels, which is prac-
tical in reality.

False alignment, a common issue of UDA, which arises when
source domain data and target domain data are too dissimilar,
may degrade the performance of CWT-DANN. Recently, meth-
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across different domains are misaligned in Fig. 5(d). A possible
reason of misalignment is that the source domain data and target
domain data are too dissimilar because of the large frequency
gap, which violates the assumption of domain similarity.
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In this paper, we propose an approach, namely CWT-DANN,
for SEI under varying frequency. Under the assumption that the
distributions of training data and test data are different but sim-
ilar, the approach exploits the unlabeled test data to align the
source domain and target domain features, in order to perform
effectively on test data by alleviating domain shifts. The results
of experiments on real signals verify the effectiveness of the
proposed approach, with an improvement of over 10% against
baseline approaches under varying frequencies. As we only as-
sume that the training data and test data are different, with no
further assumptions of the cause of differences, the proposed
approach is promising for other conditions that introduce do-
main shifts, such as modulation type, bandwidth and channel.
The approach provides a novel paradigm for SEI when the train-
ing data and test data are not identically distributed, only with
additional requirement of test data with no labels, which is prac-
tical in reality.

False alignment, a common issue of UDA, which arises when
source domain data and target domain data are too dissimilar,
may degrade the performance of CWT-DANN. Recently, meth-
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ods using pseudo labels, i.e. the estimated labels of target do-
main data, have shown to be helpful [43]. An implicit assump-
tion in this paper and in conventional UDA is that the label
sets of the source domain and the target domain are identical.
When this assumption is not satisfied, the performance of CWT-
DANN is not guaranteed. A possible way of solving this issue is
to develop unsupervised deep domain adaptation methods with
relaxed assumption, such as open set domain adaptation [44],
partial domain adaptation [45] and universal domain adapta-
tion [46]. The application of these methods for more practical
SEI approaches will be our future work.
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