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Abstract

In this paper, we propose a robust estimation of the conditional variance
of the GARCH(1,1) model with respect to the non-negativity constraint
against parameter sign. Conditions of second order stationary as well as
the existence of moments are given for the new relaxed GARCH(1,1) model
whose conditional variance is estimated deriving firstly the unconstrained
estimation of the conditional variance from the GARCH(1,1) state space
model, then, the robustification is implemented by the Kalman filter outcomes
via density function truncation method. The GARCH(1,1) parameters
are subsequently estimated by the quasi-maximum likelihood, using the
simultaneous perturbation stochastic approximation, based, first, on the
Gaussian distribution and, second, on the Student-t distribution. The proposed
approach seems to be efficient in improving the accuracy of the quasi-maximum
likelihood estimation of GARCH model parameters, in particular, with a prior
boundedness information on volatility.
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1 Introduction
Since Bollerslev (1986) enlarged the Engel’s ARCH model (1982), by the introduction
of GARCH model, it has proven to be very useful in empirical works and financial
surveys. GARCH model maintains the same time varying parametrization for the
conditional variance with a more parsimonious form which allows the description of
the data with less parameters.
However, to be well defined, GARCH process has been faced with the problem of non-
negativity of its conditional variance. For this purpose, Bollerslev (1986) imposed the
positivity on GARCH parameters as sufficient conditions but not necessary ensuring
the non-negativity of the conditional variance. Based on the ARCH(∞) representation
of the GARCH process, Nelson and Cao (1992) derived some necessary and sufficient
conditions for a such non-negativity for GARCH(p, q) models with p ≤ 2 and sufficient
for p > 2. Tsai and Chan (2008) showed that for p ≥ 2, the sufficient condition of
Nelson and Cao (1992) is also necessary. Such approach requires an infinite number
of inequality constraints on parameters, which can only be reduced in partial cases of
the GARCH model orders, requiring further, a selection of start-up values that keep
the conditional variance non-negative.
At the stage of estimation, especially for the quasi-maximum likelihood estimation,
the non-negativity issue gives rise to additional difficulties related to the definedness
of the likelihood function as well as the optimization procedure. Indeed, non-
negativity constraints on parameters may be violated without using specified penalty
function whose choice is much delicate in view of problems of slow convergence and
non-smoothness that it creates. In fact, the common basis on which all previous
investigations rely is to obtain the non-negativity of the conditional variance from a set
of constraints on parameters. Thus, because of such a dependency, the GARCH model
becomes very restrictive so that features like the random oscillatory in the conditional
variance and the persistence of shocks on the volatility are not accurately captured.
Moreover, the drawbacks of such approach appear clearly beyond the positivity of
the conditional variance. Indeed, any additional information that can be available a
priori on volatility, remains dependent on parameter constraints so that they should
be modified a priori whenever the information changes.
Allal and Benmoumen (2011) together with Ossandón and Bahamonde (2013) are
among others who have focused on the pre-estimation of the GARCH(1,1) conditional
variance using the Kalman filter. All these contributions are based on the standard
specification of GARCH model, whereby, the parameters are assumed to be non-
negative in order to ensure the non-negativity of the conditional variance. Neverthless,
no attention was given to the pre-estimation of this last regardless of the parameter
sign.
In the present work, we propose a double step pre-estimation of the conditional
variance generated by the GARCH model so that it would remains non-negative
without positivity constraints on the model parameters. Primarily, following the
relaxation of the GARCH in terms of positivity of the parameters, new sufficient
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conditions of second order stationarity and existence of moments were established.
Following these conditions, the first step consists of estimating the conditional
variance by the standard Kalman filter through a state-space representation. As for
the second step, the conditional variance estimates are robustified to be independent
from the positivity restrictions on GARCH parameters. A constrained Kalman filter is
implemented to this aim, avoiding to use any penalty method in the stage of parameter
estimation. The robsutified estimate of the conditional variance allows to evaluate the
likelihood function that we maximize using the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm to obtain a maximum likelihood estimates of the
GARCH parameters. The proposed estimation involves two innovation distributions,
namely, Gaussian and Student-t. Also, we advocate the usefulness of our approach
in exploiting a priori available information on volatility, including boundedness
information to make a statistical benchmark of the parameter estimates.
The results of our evaluation indicated that the constrained Kalman filter is
advantageous for estimating the conditional variance with respect to the non-
negativity constraint. Simulations demonstrated the effectiveness of the proposed
approach in improving the accuracy of the quasi-maximum likelihood estimation,
notably, for taking account other boundedness information on volatility beyond non-
negativity.
The structure of the paper is as follows: In Section 2, we extend the condition of
second order stationary as well as the sufficient condition of existence of moments
for the GARCH(1,1) model without non-negativity constraints on parameters. In
Section 3, GARCH state space representation is derived from which the conditional
variance is robustified through a constrained Kalman filter. In Section 4, the
estimated conditional variance is used to estimate the quasi-likelihood function that is
optimized via the Simultaneous Perturbation Stochastic Approximation (SPSA). The
performance of the proposed approach is evaluated through estimation simulations
of GARCH(1,1) parameters in finite samples in Section 5. A conclusion is given in
Section 6.

2 Model framework
Notations: For a matrix M , M ′ is the transpose of M . Abs(M) is the matrix of
same size asM , whose elements are the absolute values of the corresponding elements
of M . The norm of a matrix M is defined by the sum of the absolute values of its
elements. For any sequence of identically distributed random matrices (Mt)t and for
any integerm, letM (m) = E[{Abs(M1)}⊗m], where ⊗ denotes the Kronecker product.
For a random variable X, the m-norm of X is defined by ‖X‖m = {E‖X‖m}1/m.
L stands for the backshift operator (LXk = Xk−1).

Definition 1. Let ηt be a sequence of independent and identically distributed (i.i.d)
random variables with mean zero and variance one. εt is called the generalized

57 A. Settar et al.
CEJEME 13: 55-74 (2021)



Abdeljalil Settar, Nadia Idrissi Fatmi, Mohammed Badaoui

autoregressive conditionally heteroscedastic process or GARCH(p, q) model if

εt = σtηt (t ∈ Z), (1)

where σ2
t is a non-negative process under the non-negativity assumptions of ω,

(αi)1≤i≤p and (βj)1≤j≤q such that

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j (t ∈ Z). (2)

It is worth noting that the main properties of GARCH model focus on the non-
negativity assumptions on its parameters. Hence, at a first stage, we will be interested
in providing the stationary property as well as the condition of existence of moments
for the GARCH(1, 1) model as given in (3) without any positivity restrictions on
conditional variance coefficients, namely α1 := α and β1 := β. The non-negativity of
σ2
t will be studied independently in section (3.3).{

εt = σtηt , ηt ∼ iid (0, 1)
σ2
t = ω + αε2

t−1 + βσ2
t−1 with ω > 0

(t ∈ Z). (3)

2.1 Stationarity
We shall focus on the second-order stationary of GARCH process. The corresponding
condition has been established by Bollerslev (1986) depending on the positivity
condition of the parameters. The following lemma aims at deriving a sufficient second-
order stationary condition associated with the GARCH model (3).

Lemma 1. Let a1, a2, . . . , as be a real numbers with as 6= 0. Then, all roots of
A(z) = 1−

∑s
i=1 aiz

i lie out of the unit circle if and only if
∑s
i=1 |ai| < 1.

Proposition 2 (Second-order stationarity). A process εt satisfying the
GARCH(1,1) model given by (3) is second order stationary if

|α|+ |β| < 1. (4)

It must be stated that condition (4) coincides with the Bollerslev’s weak stationary
condition when parameters are assumed a priori non-negative. More generally, (4)
holds for all α and β. Furthermore, (4) is sufficient to ensure that B’s roots lie also
out the unit circle using the same Lemma (1) and that |β| < 1 − |α| < 1 (see the
Appendix). Thus, from (1) and (23), we achieve:

Eε2
t = Eσ2

t = ω

A(1) = ω

1− α− β .
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2.2 Moment structure

The necessary and sufficient condition for the existence of the even order moment
of the GARCH(1,1) model was provided by Bollerslev (1986), whereas the sufficient
condition for the existence of the higher order moments of the GARCH(p, q) model
was given by Ling (1999). Ling and McAlleer (2002) claim that Ling’s condition is
also necessary as given in the following Theorem.

Theorem 3 (Ling and McAlleer 2002, Theorem 2.1). Under positivity
assumptions of parameters and for any integer m, the necessary and sufficient
condition for existence of 2m− th moment of GARCH process is
ρ
(
EA⊗mt

)
= min

{∣∣eigen values of EA⊗mt
∣∣} < 1 where

At =


α1η

2
t · · · αpη

2
t β1η

2
t · · · βqη

2
t

Ip−1 0 0
α1 · · · αp β1 · · · βq

0 Iq−1 0

 .

However, we are dealing here with the non-negativity constraints on parameters on
which the theorem’s proof given by Ling and McAlleer (2002) relies. Thus, in order
to provide a sufficient condition ensuring the existence of 2m − th moment of the
GARCH model (3), we refer to the Proposition 2.2 in Francq et al. (2013) whose
proof was adapted to obtain the following Proposition.

Proposition 4. Let εt be a GARCH(p, q) process with relaxed positivity conditions
as in (3). A sufficient condition for Eε2m

t <∞ is ρ(A(m)) < 1.

In special case of m = 2, A(2)
t = E

{(
η2
t 1

)′⊗2
}

(|α| |β|)⊗2 has one non-zero
eigenvalue equals to its trace given by µ4α

2 + β2 + 2|αβ|. Hence, the fourth moment
of εt exists if

µ4α
2 + β2 + 2|αβ| < 1, (5)

where µ4 stands for the fourth moment of ηt. Again, condition (5) is identical with
Bollerslev’s moment condition when α and β are non-negative. Moreover, for α and
β verifying (4) and (5), a direct computations give

Eε4
t = µ4Eσ4

t = µ4E
(
ω + αε2

t−1 + βσ2
t−1
)2
.

This yields

Eε4
t = ω2(1 + α+ β)µ4

(1− α− β)(1− µ4α2 − β2 − 2αβ) . (6)
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3 Robust estimation of the conditional variance
3.1 State-Space representation of GARCH(1,1)
Under conditions (4) and (5), the GARCH(1,1) model given by (3) can be represented
in a state space form based on the innovation νt = ε2

t − σ2
t being a white noise of

variance Eν2
t = E(ε2

t − σ2
t )2 = (µ4 − 1)Eσ4

t , assumed to be Gaussian. Such class
of state space representations has been approached by Anderson and Moore (1979).
Then, we suggest the following state space model

σ2
t = ω + (α+ β)σ2

t−1 + ανt−1, (7)
ε2
t = σ2

t + νt, (8)

where (7) and (8) represent respectively the transition and the measurement equations
associated respectively with the state variable σ2

t , and the observations ε2
t . Moreover

σ2
0 is assumed Gaussian independent of (νt)t≥0. Such assumption provides the

Gaussian distribution of the process
{(
ε2
t σ2

t

)′
, t ≥ 0

}
.

Unlike other GARCH state space representations reported in the literature, the
innovation model (7)–(8) has some particular properties as compared with others.
First, it can be obtained from any other state space model. Indeed, Definition (3.2)
in Anderson and Moore (1979) shows how any such model can be transformed on an
innovation form. Furthermore, it is essentially unique. This can be checked through
Theorem (3.2) in Anderson and Moore (1979) which prove the uniqueness of such
representation. Thus, in regards to (7)-(8), the condition α 6= 0 is necessarily required.

3.2 Kalman filtering
We consider the GARCH state space model (7)-(8) given under assumptions (4) and
(5). Let σ̂2

t− and σ̂2
t denote respectively the unconstrained filtered, and unconstrained

predicted estimates of σ2
t . Pt− and Pt are their respective error covariances. Starting

from initial conditions

σ̂2
0 = Eσ2

0 and P0 = E
(
σ2

0 − Eσ2
0
)2.

Let’s assume that ε1, ε2, . . . , εn have been observed. Then, for t = 1, . . . , n , the
recursive expressions (9)-(13) characterize the Kalman filter applied to the GARCH
state space model (7)-(8).

Prediction equations

σ̂2
t− = ω + (α+ β)σ̂2

t−1, (9)

Pt− = (α+ β)2Pt−1 + 2α2ω2(1 + α+ β)
(1− α− β)(1− µ4α2 − β2 − 2αβ) . (10)
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Kalman gain

Kt = Pt−

[
Pt− + 2ω2(1 + α+ β)

(1− α− β)(1− µ4α2 − β2 − 2αβ)

]−1

. (11)

Updating equations

σ̂2
t = σ̂2

t− +Kt

(
ε2
t − σ̂2

t−

)
, (12)

Pt = Pt− (1−Kt) . (13)

It is interesting to note that the Kalman filter applied to the innovation model (7)-(8)
provides estimates of state σ2

t with zero error, i.e. σ̂2
t− = σ2

t and the filter measurement
innovation process ε̃2

t = ε2
t − ε̂2

t− is identical with the innovation model νt, which
correspond to the definition of νt and can be seen using Theorem (3.3) in Anderson
and Moore (1979) as well in a general frame.

3.3 The robustification
We propose a correction of the conditional variance estimated in (3.2) aimed in
preventing it from being negative independently from the sign of parameter model
using the probability density function (pdf) truncation method (see Simon 2006)
as one of useful constrained Kalman filter for linear boundedness constraint on
the state variable. It consists precisely of taking the probability density function
computed by the Kalman filter (assumed to be Gaussian) and truncating it at the
constraint boundaries. The constrained conditional variance estimate is then obtained
as function of the expectation of the truncated probability density. As for the non-
negativity constraint of σ2

t , one can suppose that at each time t and for a constant
N , empirically set, we have

1
N
≤ σ2

t ≤ N. (14)

Note that (14) is not the unique shape of constraints. Indeed, the boundaries of (14)
can change according to the information available a priori on volatility. Moreover, the
pdf truncation method allows to take account all shapes of boundedness as described
in the following proceeding steps.

Proceeding steps
Let’s start by initializing the constrained conditional variance such that

σ̃2
t0 = σ̂2

t− and P̃t0 = P̂t− .

Now we generate a realization σ2
t ∼ N

(
σ̂2
t− , P̂t−

)
and let’s perform the following

transformation
Σt = σ2

t − σ̃2
t0√

P̃t0

. (15)
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Therefore, inequality (14) is transformed to lt ≤ Σt ≤ ut, with

lt = 1−Nσ̃2
t0

N

√
P̃t0

and ut = N − σ̃2
t0√

P̃t0

.

We define Σ∗t as the random variable having the pdf of Σt truncated and normalized
between the limits lt and ut. Let µΣ∗ be the truncated expectation of Σ∗t . We take
then the inverse of the transformation (15) to obtain the conditional variance estimate
after enforcement of positivity constraint (14). This yields

σ̃2
t− =

√
P̃t0 µΣ∗ + σ̃2

t0. (16)

It is interesting to note that the importance of the approach proposed above is in no
way lessened by the ease with which it can be seen. Indeed, it should not only be seen
as a way to avoid the non-negativity conditions on parameters as well as the limitations
that they impose as discussed previously, but also as a statistical benchmark of the
parameter estimation using the information on volatility. Simulation 2 in section (5)
provides evidence for the improvement of the parameter estimation quality obtained
in the presence of additional information on volatility.

4 GARCH(1,1) parameter estimation

4.1 Quasi-likelihood estimate
Financial time series often exhibit excess kurtosis, so-called leptokurtic behavior which
can not be taken account with Gaussian innovation assumption (Bollerslev 1987). The
quasi-likelihood estimation methods for GARCH(1,1) has been proposed and well
studied in literatures (e.g. Ling and McAleer (2003), Francq and Zakoian (2007)).
We propose estimating the GARCH(1,1) parameters by quasi-maximum likelihood
estimation using SPSA algorithm for two distributions of ηt, namely, Gaussian and
Student-t.
Let εt be the GARCH(1,1) model defined by (3). Let’s denote by θ = (ω, α, β)′ the
parameter vector satisfying only conditions (4) and (5). Define Θ as the subset of R3

such that

Θ =
{
θ ∈ R3/ ω > 0 , |α|+ |β| < 1 , β2 + 2 |αβ|+ µ4α

2 < 1
}
,

where µ4 = 3 for the standard Gaussian distribution and µ4 = 3ν2

(ν − 2)(ν − 4) for the

student-t distribution with ν degrees of freedom.
From the observed data (ε1, ε2, . . . , εn), the quasi log-likelihood and the log-likelihood
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are estimated respectively for the Gaussian and Student-t distributions, for all θ ∈ Θ
by

L̂n(θ; ε1, ε2, . . . , εn) = −n2 log(2π)− n

2

(
1
n

n∑
t=1

ε2
t

σ̃2
t−(θ) + log σ̃2

t−(θ)
)

(17)

and

L̂n(θ; ε1, ε2, . . . , εn) = n log

[
Γ
(
ν + 1

2

)
Γ
(ν

2

)−1
]
− n

2×

×

[
1
n

n∑
t=1

log
(
(ν − 2) σ̃2

t−(θ)
)

+ (ν + 1) log
(

1 + ε2
t

(ν − 2) σ̃2
t−(θ)

)]
(18)

Thus, maximizing (17) and (18) is respectively equivalent to minimizing, with respect
to θ ∈ Θ

l̂n(θ; ε1, ε2, . . . , εn) = 1
n

n∑
t=1

ε2
t

σ̃2
t− (θ) + log(σ̃2

t− (θ)) (19)

and

l̂n(θ; ε1, ε2, . . . , εn) = 1
n

n∑
t=1

log
(
(ν − 2) σ̃2

t−(θ)
)

+ (ν + 1)×

× log
(

1 + ε2
t

(ν − 2) σ̃2
t−(θ)

)
. (20)

Thus, both likelihoods are completely defined since σ̃2
t− is robustified so that its

non-negativity is ensured without any positivity restrictions on the parameters α and
β.

Remark. A more general framework for estimating the GARCH model in the case
where the distribution of innovation is unknown is contained in the works of Francq,
Wintenberger, and Zakoïan (2013), Fan, Qi, and Xiu (2014), Zhu and Xie (2016).

4.2 SPSA maximization
At this stage, we are interested in using an iterative algorithm for the maximization
of ln based on measurements of l̂n only, not on the measurements of its derivatives
(gradient, hessian) as it is used in most gradient descent methods. Spall (1992,1998),
invented the simultaneous perturbation stochastic approximation (SPSA) which rely
on the approximation of the gradient using only two measurements of l̂n for a
parameter vector of any dimension and exhibits fast convergence. It should be noted
that the choice of constants and gain sequences are the same as those used in Spall
(1998). The step-by-step summary below shows how SPSA was applied to minimize
the l̂n.
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Step 1: Give initial θ0 ∈ Θ◦ and non-negative coefficient a = 0.16, c = 0.5,
λ = 0.602, γ = 0.101 and A = 10% of the iteration number. Θ◦ stands for
the interior of Θ.

Step 2: Compute gain sequences ak = a(A+ k + 1)−λ and ck = c(k + 1)γ .

Step 3: Generate a 3-dimensional random perturbation vector ∆k having Bernoulli
distribution, ±1-valued with probability of 1

2 .

Step 4: Check the existence of 4-th moment from (5) as well as ω > 0.

Step 5: Obtain two measurements of the l̂n based on the simultaneous perturbation
around the current θ̂k, as follows

y±k (θ̂k) = l̂n(θ̂k ± ck∆k) + δ±k

where δ−k and δ+
k are two independent random vectors having Uniform

distribution over the interval [0, 1].

Step 6: Generate the simultaneous perturbation approximation of the gradient ĝ(θ̂k)

ĝ(θ̂k) =
y+
k (θ̂k)− y−k (θ̂k)

2ck
(∆−1

k1 ,∆
−1
k2 ,∆

−1
k3 )′

where ∆ki, i = 1, 2, 3 is the ith component of ∆k vector.

Step 7: Check the second order stationarity condition from (4).

Step 8: Use the recursive stochastic updating

θ̂k+1 = θ̂k − akĝ(θ̂k). (21)

Step 9: Return to Step 2 with k + 1 replacing k.

Step 10: Terminate the algorithm if the sequence (θk) converges, or the maximum
allowable number of iterations has been reached.

5 Simulation evidence
In this section, we will conduct three simulation studies. The two first simulations
aime at evaluating the performance of the proposed robust estimation of the
conditional variance in estimating the GARCH(1,1) parameters, whereas the last
simulation tends to shed some light on the usefulness of our approach in improving
the quality of the parameter estimates in the case of availability a priori of some
information on volatility. The absolute error (AE), the mean absolute error (MAE)
and the mean squared error (MSE) are used to measure the difference between the
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true and estimated parameters. Parameters together with the unconditional variance,
denoted σ2, are represented together by the vector π := (θ′, σ2)′, where π0 := (θ′0, σ2

0)′
contains the true initial values. Referring to Carnero et al. (2012) and Bahamonde
and Veiga (2016), including the unconditional variance for the results analysis is
justifiable insofar as the accurate estimation of the unconditional variance is also
a significant measure of the volatility estimation quality. Indeed, notice that the
volatility estimation error can be written as

ξt = σ̂2
t − σ2

t =
= (ω̂ − ω) + (α̂− α)ε2

t−1 + (β̂ − β)σ2
t−1 + β̂ξt−1 =

=
t−2∑
i=0

[
(ω̂ − ω) + (α̂− α)ε2

t−i−1 + (β̂ − β)σ2
t−i−1

]
β̂i + (σ̂1 − σ1)β̂t−1.

It’s, then, clear that the expected error depends, not only on the parameter biases,
but also on the unconditional variance σ2 = Eσ2

1 = ω/(1− α− β).
In the following simulation studies, we use notation QML (resp. ML) for the standard
quasi-maximum likelihood estimation (resp. maximum likelihood estimation) with
corresponding estimate π̂ and Q-CK for the estimation by the proposed algorithm
with corresponding estimate π̃. The number of replications used for all simulations is
1000.

Table 1: MAE and MSE of estimated parameters with Gaussian innovation
assumption

Q-CK QML

n π0 π̃ MAE(π̃) MSE(π̃) π̂ MAE(π̂) MSE(π̂)

500

1.5 1.5026 0.0079 0.0001 1.5696 0.3278 0.1698
0.3 0.3056 0.0080 0.0001 0.3059 0.0515 0.0043
0.2 0.1976 0.0089 0.0001 0.1752 0.1153 0.0192
3 3.0271 0.0546 0.0068 3.0509 0.2711 0.1304

1000

1.5 1.4999 0.0070 < 10−4 1.5135 0.2144 0.0780
0.3 0.3050 0.0071 < 10−4 0.3022 0.0448 0.0031
0.2 0.1995 0.0073 < 10−4 0.1852 0.0903 0.0129
3 3.0295 0.0529 0.0068 2.9634 0.1682 0.0486

5000

1.5 1.5016 0.0081 0.0001 1.5075 0.1186 0.0227
0.3 0.3063 0.0080 0.0001 0.3011 0.0205 0.0007
0.2 0.2017 0.0080 0.0001 0.1969 0.0454 0.0033
3 3.0554 0.0690 0.0122 3.0667 0.0909 0.0136
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5.1 Simulation study: Gaussian distribution

We assume the true distribution of ηt as Gaussian with 0 means and variance
1. Three series of the GARCH(1,1) process of size n ∈ {500, 1000, 5000}, where
π0 = (1.5, 0.3, 0.2, 3). Table (1) reports the Monte Carlo means, MAE and MSE of the
parameter and the unconditional variance estimates. Thus, as reported in table (1),
it is observed that both MAE and MSE of the Q-CK estimates are on the same scale
for all sample sizes and all widely smaller than those obtained by QML estimation.
Yet, the unconditional variance is satisfactorily estimated by Q-CK approach, and
once again, the corresponding MAE and MSE are both less than those obtained
by QML estimation. From the simulation results, it is expected that the proposed
algorithm estimates better the volatility. For this purpose, we complete the evaluation
of Q-CK estimation accuracy considering three trajectories generated by the same
GARCH(1,1) given previously. Figure (1) shows that altogether, the simulated
volatility of all generated series is completely close to the estimated volatility. In
parallel, except for the size 5000, the outcomes displayed in table (2) confirm the
accuracy of the Q-CK method for the estimation of the volatility in view of the
smallest values of the MAE of the Q-CK estimates compared to those obtained by
QML.

Table 2: MAE of the estimated Q-CK and QML volatilities, denoted respectively by
σ̃t and σ̂t, with Gaussian innovation assumption

(ω0, α0, β0) n MAE(σ̃t) MAE(σ̂t)

(1.5, 0.3, 0.2)
500 0.0047 0.1022

1000 0.0030 0.0088
5000 0.0081 0.0014

5.2 Simulation study: Student-t distribution

Now, we set the true distribution of ηt as Student-t with ν = 5 for which the existence
of the fourth moment is ensured. We generate three series of GARCH(1,1) process
with true parameter values π0 = (1.2, 0.07, 0.04, 1.34) , with the same sample sizes
considered previously. Simulation results are reported in table (3) where it can
be seen that the Q-CK parameter estimates, including the unconditional variance,
still have smaller MAE and MSE compared with those estimated by ML estimation.
Additionally, from figure (2), the estimated volatility using the Q-CK method is very
close to the true volatility for all simulation sizes with the smallest values of MAE
compared to the ML estimates, except for size 5000 as displayed in (4).
Broadly speaking, the comparison of the results of the two distribution cases leads
to the conclusion that the Q-CK estimation based on the Gaussian distribution
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outperforms its Student-t version in terms of MAE and MSE, while the accuracy
of the unconditional variance remains stable for both cases.

Table 3: MAE and MSE of estimated parameters with Student-t innovation
assumption

Q-CK ML

n π0 π̃ MAE(π̃) MSE(π̃) π̂ MAE(π̂) MSE(π̂)

500 1.2 1.2002 0.0241 0.0008 0.7438 0.4922 0.4173
0.07 0.0704 0.0218 0.0007 0.0782 0.0521 0.0044
0.04 0.0493 0.0260 0.0010 0.3788 0.3669 0.2567
1.34 1.3669 0.0599 0.0063 1.3568 0.1726 0.0743

1000 1.2 1.1991 0.0240 0.0008 0.4744 0.2144 0.4091
0.07 0.0734 0.0245 0.0010 0.0626 0.0401 0.0021
0.04 0.0475 0.0235 0.0008 0.3772 0.3610 0.2537
1.34 1.3676 0.0624 0.0061 1.3094 0.1522 0.0899

5000 1.2 1.2028 0.0248 0.0009 1.0873 0.1636 0.0709
0.07 0.0743 0.0256 0.0010 0.0693 0.0184 0.0005
0.04 0.0593 0.0291 0.0013 0.1261 0.1211 0.0425
1.34 1.3917 0.0717 0.0077 1.3522 0.0390 0.0024

Table 4: MAE of the estimated Q-CK and ML volatilities, denoted respectively by
σ̃t and σ̂t, with Student-t innovation assumption

(ω0, α0, β0) n MAE(σ̃t) MAE(σ̂t)

(1.2, 0.07, 0.04)
500 0.0061 0.0205

1000 0.0061 0.0112
5000 0.0155 0.0035

5.3 Effect of additional information on volatility
In order to reflect one special situation when the conditional variance
parametrization is enriched by additional information on volatility process, we carry
out a simulation of sample size n = 1000 of a GARCH(1,1) process with true
parameter values ω0 = 1.5, α0 = 0.4 and β0 = 0.1. We assume that a prior information
on volatility is available and given for all t = 1, . . . , n as follows:

1
N

+ σt,0 − 1 ≤ σt ≤ N + σt,0 − 1, (22)

where σt,0 is the true volatility of the generated GARCH(1,1) (in practice σt,0 can
be replaced by the realized volatility estimate under stability assumption of volatility
in several periods) and N is a constant greater than 1. Then, it is clear that σt
approaches the true value σt,0 as N → 1. In other words, more N approaches 1,
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Figure 1: Volatility estimates with Gaussian innovation assumption using
a logarithmic scale respectively for n = 500, 1000 and 5000. Black dashed line
represents the original volatility, and the grey continuous line indicates the estimated
Q-CK volatility
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Figure 2: Volatility estimates with Student-t innovation assumption using
a logarithmic scale respectively for n = 500, 1000 and 5000. Black dashed line
represents the original volatility, and the grey continuous line indicates the estimated
Q-CK volatility
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more the information on σt is accurate and, conversely, the higher a value of N , the
less accurate this information. Thus, let N = 1 + 10−i, for i ∈ J1, 10K and let’s
fit a GARCH(1,1) using the Q-CK algorithm. Table (5) as well as figure (3) provide
evidence that the estimation accuracy is improved exploiting the available information
(22). Indeed, the AE of parameter estimates fall to 0 as soon as i ≥ 8. In other word,
the more accurate the information on volatility, the more accurate the parameter
estimates.

Table 5: AE of estimated parameters according to the information level i

i ω̃ AE(ω̃) α̃ AE(α̃) β̃ AE(β̃)

1 1.6251 0.1251 0.0315 0.3684 0.1630 0.0630
2 1.4564 0.0435 0.3215 0.0784 0.2064 0.1064
3 1.4897 0.0102 0.2395 0.1604 0.1091 0.0091
4 1.2805 0.2194 0.4003 0.0003 0.1003 0.0003
5 1.6512 0.1512 0.4198 0.0198 0.0870 0.0129
6 1.5391 0.0391 0.3755 0.0244 0.0056 0.0943
7 1.4031 0.0968 0.4968 0.0968 0.1123 0.0123
8 1.5000 0.0000 0.4000 0.0000 0.1000 0.0000
9 1.5000 0.0000 0.4000 0.0000 0.1000 0.0000

10 1.5000 0.0000 0.4000 0.0000 0.1000 0.0000

Figure 3: AE of Q-CK estimated parameters according to the information accuracy on
volatility. Dashed line indicates the AE(ω̃), grey and black continuous lines represent
respectively the AE(α̃) and AE(β̃)
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6 Conclusions
The non-negativity constraint of the conditional variance plays an important part in
the definedness of the GARCH model and the estimation performance as well because
of its reliance on the GARCH parameters sign. Bearing this fact in mind, we propose,
in this paper, a robust estimation of the conditional variance which aime at guaranting
its non-negativity independently of the parameter sign so that the likelihood function
would be well defined. The results of our evaluation indicated that the constrained
Kalman filter is advantageous for estimating the conditional variance with respect
to the non-negativity constraint. Simulations demonstrated the effectiveness of the
proposed approach in improving the accuracy of the QML estimation, notably, for
taking account other boundedness information beyond non-negativity.
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Appendix: Proofs
Proof of Lemma 1. First, assuming that

∑s
i=1 |ai| ≥ 1. Since A(0) = 1 and

A(1) ≤ 0, we have then at least one solution of A(z) = 0 in the interval ]0, 1]. This
contradicts the given condition.
On the other side, for any |z| ≤ 1, we have

|A(z)| =

∣∣∣∣∣1−
s∑
i=1

aiz
i

∣∣∣∣∣ ≥
∣∣∣∣∣1−

∣∣∣∣∣
s∑
i=1

aiz
i

∣∣∣∣∣
∣∣∣∣∣ ≥ 1−

∣∣∣∣∣
s∑
i=1

aiz
i

∣∣∣∣∣
≥ 1−

s∑
i=1
|ai||zi| ≥ 1−

s∑
i=1
|ai| > 0.

Which allows to conclude.

Proof of Proposition 2. Let’s start from the ARMA(1,1) representation of ε2
t ,

which we rewrite in the polynomial form as

A(L)ε2
t = ω +B(L)νt, (23)

where
A(L) = 1− (α+ β)L and B(L) = 1− βL.

Then, it can be easily seen from lemma (1) that ε2
t is invertible since |α + β| ≤

|α|+ |β| < 1. Thus, since νt is a white noise, the Proposition follows.

Proof of Proposition 4. Let’s start from the Markovian representation of
GARCH(p, q) model:

Zt = bt +AtZt−1,

where
Zt =

(
ε2
t , . . . , ε

2
t−p+1, σ

2
t , . . . , σ

2
t−q+1

)′ ∈ Rp+q

and
bt = (ωηt, 0 . . . , 0, ω, 0 . . . , 0)′ ∈ Rp+q.

Let’s rewrite Zt as Zt =
∑∞
l=0 Zt,l where for all l > 0:

At,l = AtAt−1 . . . At−l+1 and Zt,l = At,lbt−l

with the convention that At,0 = Ip+q and Zt,0 = bt. Thus, Zt is almost
surely defined without any restriction on the model coefficients. Let’s denote
Ãt,l =

∏l−1
j=0Abs(At−j). Then, using the independence between the matrices in the
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product AtAt−1 . . . At−l+1bt−l, since At−i is a function of ηt−i and assuming a priori
that σ2

t is non-negative, we get:

‖ Zt ‖m=‖ Abs(Zt) ‖m ≤
∞∑
l=0
‖ Ãt,lAbs(bt−l) ‖m=

=
∞∑
l=0

{
E ‖ Ãt,lAbs(bt−l) ‖m

}1/m
=

=
∞∑
l=0

{
E ‖ Ã⊗mt,l Abs(bt−l)

⊗m ‖
}1/m

=

=
∞∑
l=0

{
‖ EÃ⊗mt,l Abs(bt−l)

⊗m ‖
}1/m

since Ã⊗mt,l Abs(bt−l)⊗m is non-negative, then:

‖ Zt ‖m ≤
∞∑
l=0

‖ E
l−1∏
j=0

Abs(At−j)⊗mAbs(bt−l)⊗m ‖


1/m

=

=
∞∑
l=0

‖
l−1∏
j=0

EAbs(At−j)⊗m EAbs(bt−l)⊗m ‖


1/m

=

=‖ b(m)
1 ‖1/m

∞∑
l=0
‖ (A(m))l ‖1/m .

Thus, ρ(A(m)) < 1 entails ‖ (A(m))l ‖→ 0, as l → ∞, and then the sum converges.
This completes the proof.
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