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Application of the generalized nonlinear constitutive law 
in 2D shear flexible beam structures 
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Abstract: The paper presents a modified finite element method for nonlinear analysis of 2D beam structures. To 
take into account the influence of the shear flexibility, a Timoshenko beam element was adopted. The algorithm 
proposed enables using complex material laws without the need of implementing advanced constitutive models 
in finite element routines. The method is easy to implement in commonly available CAE software for linear 
analysis of beam structures. It allows to extend the functionality of these programs with material nonlinearities. 
By using the structure deformations, computed from the nodal displacements, and the presented here generalized 
nonlinear constitutive law, it is possible to iteratively reduce the bending, tensile and shear stiffnesses of the 
structures. By applying a beam model with a multi layered cross-section and generalized stresses and strains to 
obtain a representative constitutive law, it is easy to model not only the complex multi-material cross-sections, 
but also the advanced nonlinear constitutive laws (e.g. material softening in tension). The proposed method was 
implemented in the MATLAB environment, its performance was shown on the several numerical examples. The 
cross-sections such us a steel I-beam and a steel I-beam with a concrete encasement for different slenderness 
ratios were considered here. To verify the accuracy of the computations, all results are compared with the ones 
received from a commercial CAE software. The comparison reveals a good correlation between the reference 
model and the method proposed. 

Keywords: generalized nonlinear constitutive law, finite element analysis, nonlinear materials, composite 
structures, Timoshenko beam element 
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1. Introduction 

For decades a finite element (FE) analysis has been a popular method for modelling advanced 

engineering problems. The FE models in comparison to the analytical ones have wider applicability 

and universality, therefore it is often implemented in various modern engineering tools. Most civil 

structures can be analysed using simple 2D beam or frame models without sacrificing the accuracy 

of the results obtained with these simplified models. Therefore, majority of commercial software for 

strength analyses of engineering structures use the beam, truss or frame finite elements formulation. 

Nowadays, the developers of FE software more and more often provide their users new functions 

extending its capabilities. Following this trend, the software often allows to include users’ material 

or element subroutines tailored for particular needs. However, despite its popularity, they usually 

allow only linear elastic analysis. In order to extend its functionality with nonlinear (material or 

geometric) analyses through user subroutines the computational and / or material mechanics 

expertise is required. A practical solution may be the use of classic beams and frames FE linear 

solver extended with a simple implemented generalized nonlinear constitutive law (GNCL) 

algorithm. This idea was first time mentioned by Mahin and Bertero in 1977 [13]. The idea of 

dividing the cross-section into layers was then used to analyse the strength of reinforced concrete 

columns. A similar approach was used by El-Tawil and Mirza [3, 14], where e.g. uni- and biaxial 

bending strengths of composite short columns were analysed. In 1978, the layer model was used by 

Rotter and Ansourian to analyse the behaviour of bending composite beams [18]. The theoretical 

values were compared with the results obtained from the experiments, obtaining a good correlation. 

In 1982, Łodygowski used generalized nonlinear constitutive law (GNCL) method for 

geometrically and physically nonlinear analysis of beams and plane frames [11]. Later, Łodygowski 

and Szumigała used the division into layers in a two-stage analysis of bending composite beams 

[12]. In the first stage of the method, the cross-section is discretized and the constitutive law is 

formulated in the form of bending moment-curvature relationship. In the second stage, the 

constitutive law is adopted in the finite element nonlinear code. The two-stage approach was also 

used by Szumigała [21] to analyse composite steel-concrete frame structures. In this case, the 

constitutive law was formulated in the form of bending stiffness-curvature relationship. In 2019, 

Grzeszykowski and Szmigiera used the GNCL method to compute the nonlinear longitudinal shear 

distribution in composite steel-concrete beams [8]. 

The proposed method can have many applications in engineering computations regarding multi 

material cross-sections. It can be used for strength analysis of engineering structures. An example of 
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such application can be found in the paper of Farhan [4], where behaviour of concrete-filled steel 

tube composite beams was experimentally tested. Also, the proposed method can be adopted as 

a method of homogenization in cases, in which a cross-section composed of several materials is 

used. One of such methods was proposed by Siwiński [19], where the cross-sections of reinforced 

concrete elements were homogenized. Notice that when using composite structures, it is important 

to ensure homogeneity in transferring the loads by material integrity. This problem was addressed 

by Jayanthi [10] where the performance of different types of shear connectors in steel-concrete 

composite construction was analysed. The GNCL method can be adopted in such cases, but also in 

all kinds of beam or truss structure analyses. One of the examples is the work by Barszcz [2], in 

which a multi-storey steel structure is analysed. Having in mind that for some complex structures or 

materials, as examples discussed above, it is important to take into account the shear effect in the 

finite element model, the paper presents the following method that takes into account the shear 

forces. 

2. Methods & materials 

2.1. Normal and shear strains 

The proposed method is embedded in the classical framework of FE analysis, see Fig. 1a. Here 

beam and frame FE implemented in the small strains and deformations framework, loaded with 

external forces and/or displacements are considered. Since the presented method is based on the 

iterative change of the flexural and shear element stiffness, the nodal displacements in 𝑘-th iteration 𝑑௞ should be computed.  

Classically, the global stiffness matrix is assembled by considering the stiffness matrices of all 

elements. In the method proposed, the element stiffness is iteratively reduced during the analysis 

due to deformations, namely, 𝜀଴ − normal strains, 𝛾 − shear strains and 𝜅 − curvature, which are 

computed from the nodal displacements 𝑑, see Fig. 1a. Normal strain, 𝜀଴ is taken as the ratio of 

an elongation Δ𝐿 to a beam length 𝐿, which takes the following form: 

 

(2.1) 𝜀଴ = Δ𝐿𝐿 = 𝑢ଶ − 𝑢ଵ𝐿 ,  

 

where 𝑢ଵ, 𝑢ଶ are the nodal displacements along the beam axis.  
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Shear strains, 𝛾, according to Timoshenko theory are computed as the difference between the nodal 

rotation 𝜑 and the first derivative of vertical deflection, 𝑣, of the beam: 

(2.2) 𝛾 = 𝜑 − d𝑣d𝑥 .  

 

In the paper, for comparison only, Bernoulli beams are also considered. Bernoulli’s hypothesis 

assumes that the cross-section is perpendicular to the axis of the deformed beam, consequently, this 

assumes that the shear strains, 𝛾, are equal to zero. 

 

a)  b)  

Fig. 1. Block diagrams of the computational algorithm of the proposed method: a) the overall finite element 
method framework (𝑘 is the finite element method iteration number), and b) detailed framework of stiffness 

reduction function (𝑙 is the iteration number of deriving neutral axis position) 
 

The curvature, 𝜅, is derived from the beam deflection function 𝑣(𝑥), which is represented by a third 

degree polynomial: 
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(2.3) 𝑣(𝑥) = 𝐶ଵ + 𝐶ଶ𝑥 + 𝐶ଷ𝑥ଶ + 𝐶ସ𝑥ଷ .  

 

The constants of the polynomial are determined from the boundary conditions. Thus, let assume 

that: 

 𝑥 = 0,     𝑣(0) = 𝑣ଵ ,     d𝑣(0)d𝑥 = 𝑣ଵᇱ , 
𝑥 = 𝐿,     𝑣(𝐿) = 𝑣ଶ ,     d𝑣(𝐿)d𝑥 = 𝑣ଶᇱ . 

 

From above, we obtain the following: 

 𝐶ଵ = 𝑣ଵ , 𝐶ଶ = 𝑣ଵᇱ , 𝐶ଷ = − 3(𝑣ଵ − 𝑣ଶ) + (2𝑣ଵᇱ + 𝑣ଶᇱ)𝐿𝐿ଶ  , 
𝐶ସ = 2(𝑣ଵ − 𝑣ଶ) + (𝑣ଵᇱ + 𝑣ଶᇱ)𝐿𝐿ଷ  . 

 

Knowing the beam deflection function, 𝑣(𝑥), enables determining the curvature. In the case of 

small displacements, the following simplification can be taken: 

 

(2.4) 𝜅(𝑥) = dଶ𝑣d𝑥ଶ .  

 

Therefore, the curvature reduces to: 

 

(2.5) 𝜅(𝑥) = − 2𝐿ଷ [𝑣ଵᇱ𝐿(2𝐿 − 3𝑥) + 𝑣ଶᇱ𝐿(𝐿 − 3𝑥) + 3(𝑣ଵ − 𝑣ଶ)(𝐿 − 2𝑥)] .  

 

In the approach proposed here, the representative curvature is used, namely, a weighted mean 

curvature, 𝜅̅, computed in three Gauss points: 

 

(2.6) 𝜅̅ = 𝐴ଵ𝜅ଵ + 𝐴ଶ𝜅ଶ + 𝐴ଷ𝜅ଷ ,  
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where 𝐴ଵ, 𝐴ଶ, 𝐴ଷ are weights, which takes the values: 𝐴ଵ = 5/18, 𝐴ଶ = 4/9  and 𝐴ଷ = 5/18. The 

curvatures 𝜅ଵ, 𝜅ଶ, 𝜅ଷ are computed in the following Gaussian coordinates: 𝑥ଵ = 1/9 𝐿,   𝑥ଶ = 1/2 𝐿, 

and  𝑥ଷ = 8/9 𝐿. 

2.2. Stiffness reduction 

In Fig. 1, an overall algorithm of the method proposed here in the form of a block diagram is 

presented. The method proposed, as an extension of the approach proposed by Szumigała [21], is 

introduced in the following section. The extension is including the influence of shear strains on 

a stiffness reduction. Similar to the original version of the method, here, the element cross-section is 

also divided into thin horizontal layers, see Fig. 1b. The stiffness reduction may be now computed 

from element deformations, namely 𝜀଴, 𝛾, and 𝜅 − introduced in the previous subsection. For each 

layer, a location, height, width and cross-sectional area of individual material are determined. This 

is repeated for all layers and materials. 

Next, see Fig. 1b, the reduced (effective) strains, 𝜀௥௘ௗ, are computed by considering, both, the 

normal and shear strains: 

 

(2.7) 𝜀௥௘ௗ = sign(𝜀௫)ඨ12 ቂ൫𝜀௫ − 𝜀௬൯ଶ + ൫𝜀௬ − 𝜀௭൯ଶ + (𝜀௭ − 𝜀௫)ଶቃ + 13 ൫𝛾௫௬ଶ + 𝛾௬௭ଶ + 𝛾௭௫ଶ൯ ,  

 

where: 𝜀௫, 𝜀௬ and 𝜀௭ are normal strains and 𝛾௫௬, 𝛾௬௭ and 𝛾௭௫ are shear strains. Later, the reduced 

stress, 𝜎௥௘ௗ, in each layer is determined from the reduced strain based on 𝜎௥௘ௗ vs. 𝜀௥௘ௗ plot for a particular 

material. If multi-material cross-section is considered, the computations are performed for each material.  

In the next step, see Fig. 1b, the Young's modulus, 𝐸, is computed from the values of stresses and 

strains by the following: 

 

(2.8) 𝐸 = 𝜎௥௘ௗ𝜀௥௘ௗ .  

 

Further, the shear modulus for isotropic materials, 𝐺, can be computed from: 

 

(2.9) 𝐺 = 𝐸2(1 + 𝜈) ,  
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where 𝜈 is Poisson’s ratio. After determining the Young’s and shear modulus, it is possible to 

compute the tensile and shear stiffnesses, 𝐵ே and 𝐵௏, respectively: 

 

(2.10) 𝐵ே = ෍ ෍ 𝐸௜ ௝௡
௜ୀଵ 𝐴௜ ௝௠

௝ୀଵ , 𝐵௏ = ෍ ൭෍ 𝐺௜ ௝௡
௜ୀଵ 𝐴௜ ௝൱ /𝑘ത௝௠

௝ୀଵ  ,  

 

where 𝑖 and 𝑗 are number of layers in the cross section and number of materials, respectively; 𝑛 and 𝑚 are the total number of layers and number of materials, respectively. 𝐴௜ ௝ is a cross-section area of 𝑖-th layer and 𝑗-th material, and 𝑘ത௝ is a shear correction factor for 𝑗-th material, which is computed 

from: 

 

(2.11) 𝑘ത௝ = 𝐴𝐼ଶ න 𝑆ଶ(𝑧)𝑏ଶ(𝑧)஺ 𝑑𝐴 ,  

 

where 𝐼 is a moment of inertia about the horizontal axis of the cross-section, 𝑆 is a static moment 

about the horizonal axis of the severed part, 𝐴 is a cross-section area and 𝑏 is a width of a layer. 

A position of neutral axis in 𝑙-th iteration of computing 𝑦௚௟ is obtained from: 

 

(2.12) 𝑦௚௟ = ∑ ∑ 𝐸௜ ௝௡௜ୀଵ 𝐴௜ ௝௠௝ୀଵ 𝑦௜𝐸𝐴 .  

 

Knowing the position of the neutral axis enables computing a moment of inertia of 𝑖-th layer, 𝐼௜ ௝; 

then a bending stiffness, 𝐵ெ, may be determined according to the expression: 

 

(2.13) 𝐵ெ = ෍ ෍ 𝐸௜ ௝௡
௜ୀଵ 𝐼௜ ௝௠

௝ୀଵ .  

 

In the original version of the method [21], a cross-section analysis is done prior to main 

computations. The relationship 𝐵ெ − 𝜅 is created for assumed values of normal forces only. 

Element stiffness values are then obtained by interpolating in-between values, is such case the 

accuracy depends on a prior assumed mesh density. Therefore, another modification proposed in 
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this paper is to analyse the cross-section during computations (within each iteration loop), what 

allows to compute exact values and avoid the interpolation errors. 

2.3. Materials 

The proposed method allows to use a nonlinear constitutive law of any material. In the examples 

analysed here, the nonlinear law describing the behaviour of concrete and steel were used. In Table 

1, the engineering parameters of the materials used in the study are presented, where 𝑓௖௠ is 

a medium value of a compressive strength of concrete, 𝑓௖௧௞ is a characteristic value of a tension 

strength of concrete, 𝐺௙ is the fracture energy and 𝑓௬ is a yield strength of steel. 

 
Table 1. Material parameters of concrete and steel used in the study. 

Material 
𝐸 𝐺 𝜈 𝑓௖௠ 𝑓௖௧௞ 𝐺௙ 𝑓௬ [GPa] [GPa] [−] [MPa] [MPa] [N/m] [MPa] 

concrete 35.0 15.0 0.2 48.0 2.5 120.0 − 

steel 210.0 81.0 0.3 − − − 235.0 

 

In Fig. 2, the nonlinear stress-strain relations for concrete and steel are presented. The reference FE 

models used in the results section were computed in a commercial software of ABAQUS FEA [1]. 

In these examples, the steel was described by an elastic perfectly-plastic model: 

 

(2.14) 𝜎௥௘ௗ = ⎩⎪⎨
⎪⎧𝐸௦𝜀௥௘ௗ, for ε௥௘ௗ < 𝑓௬𝐸௦ ,𝑓௬ for ε௥௘ௗ ≥ 𝑓௬𝐸௦ ,  

 

where 𝐸௦ is the Young’s modulus of steel. 

For concrete in compression, a nonlinear model presented in Eurocode 2 was used: 

 

(2.15)  𝜎௥௘ௗ = 𝑘∗𝜂 − 𝜂ଶ1 + (𝑘 + 2)𝜂 𝑓௖௠ ,  

 

where 𝜂 = 𝜀௥௘ௗ/𝜀௖ଵ and 𝑘∗ is computed as 
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The boundary conditions of simply supported beam were applied at the ends of the structures. In all 

FE computations, the displacement control was used. The kinematically enforced displacement was 

applied in the middle point of the beams. 

3. Examples 

3.1. Bernoulli vs. Timoshenko beam 

In order to verify the effect of taking the shear into account on the beam displacement the 

relations between results from Timoshenko and Bernoulli theories were compared. In Fig. 6, the 

effect of the shear force included while computing vertical displacement of the beam is shown. 

For this purpose, a simply-supported beam of a rectangular cross-section of 0.12 m was used, the 

length of the beam was 2.4 m. The height of the beam varied from 0.12 m to 0.60 m to obtain its 

different slenderness ratios (from 20 to 4). Both Bernoulli and Timoshenko beam theories were 

used for comparison. The Fig. 6 presents on the horizontal axis the beam slenderness ratios and 

on the vertical axis the ratio of Timoshenko beam displacements (new approach) to Bernoulli 

beam displacements (classic approach [21]) is shown. In results, as expected, the smaller the 

slenderness ratio of the beam, the greater the influence of the shear force on the displacements. 

For slenderness ratio of 20, the effect of the shear force is less than 1% and increases 

hyperbolically to almost 10% for a slenderness ratio of 5. 

 

 

 
Fig. 6. The effect of the shear force on the beam displacement. 
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4. Conclusions 

In the paper, the method of generalized nonlinear constitutive law (GNCL) together with FE 

formulation including shear theory in beams was presented. It enables computing the shear strains 

and take them into account in the element stiffness reduction. The GNCL method derived here 

enables a nonlinear description of materials used, i.e. concrete and steel. The stiffness of various 

cross sections depending on internal forces was shown. In the presented examples, the beam 

structures with a different length to height ratios were analysed. Performed computations for 

various beam slenderness ratios with Timoshenko beam theory showed expected influence of the 

shear force on the structure behaviour (deflections). 

The method proposed allows an easy consideration of material nonlinearities in the beam/frame 

models. By applying a GNCL model, computations can be performed for complex cross-section 

composed of several materials with different physical properties. This may be obtained not only for 

slender structures, but also in cases of short beams, in which the shear effects are crucial. 

The GNCL provides the simple homogenization of the complex cross-section which then enables 

the iterative stiffness reduction based on the internal forces or deformations. The static equilibrium 

path in a nonlinear form can be easily computed with this approach. Main advantage of the method 

is that there is no need to build a full 3D model with elasto-plastic constitutive models and iterative 

solvers. This makes the modelling of the structure easy; one does not require a knowledge and 

experience in FE method. Also, compared to commercial software, the method gives good results 

and the computational time is several times shorter, due to small number of degrees of freedom, 

while comparing with 3D models. 
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Zastosowanie uogólnionego nieliniowego prawa konstytutywnego dla płaskich konstrukcji 
belkowych podatnych na ścinanie 

Słowa kluczowe: uogólnione nieliniowe prawo konstytutywne, analiza elementu skończonego, nieliniowości 
materiałowe, konstrukcje zespolone, belkowy element Timoshenki 

Streszczenie: 
W artykule przedstawiono zmodyfikowaną metodę elementów skończonych do nieliniowej analizy płaskich konstrukcji 
belkowych. Aby wziąć pod uwagę wpływ podatności na ścinanie, zastosowano belkowy element Timoshenki. 
Zaproponowany algorytm umożliwia stosowanie złożonych praw materiałowych bez konieczności implementacji 
zaawansowanych modeli konstytutywnych w procedurach elementów skończonych. Metoda jest łatwa do wdrożenia 
w powszechnie dostępnym oprogramowaniu CAE do liniowej analizy konstrukcji belkowych. Pozwala to na 
rozszerzenie funkcjonalności tych programów o nieliniowości materiałowe. Wykorzystując odkształcenia konstrukcji, 
obliczone z przemieszczeń węzłów oraz przedstawione tutaj uogólnione nieliniowe prawo konstytutywne, możliwe jest 
iteracyjne zmniejszanie sztywności konstrukcji na zginanie, ściskanie/rozciąganie i ścinanie. Stosując model belkowy 
z przekrojem wielowarstwowym oraz uogólnionymi odkształceniami i naprężeniami w celu uzyskania 
reprezentatywnego prawa konstytutywnego, łatwo jest modelować nie tylko złożone przekroje wielomateriałowe, ale 
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także zaawansowane nieliniowe prawa konstytutywne (np. osłabienie materiału przy rozciąganiu). Zaproponowana 
metoda została zaimplementowana w środowisku MATLAB, a jej działanie pokazano na kilku przykładach 
numerycznych. Przeanalizowano przekroje dwuteownika stalowego oraz dwuteownika stalowego obetonowanego dla 
różnych wartości smukłości. Aby zweryfikować dokładność obliczeń, wyniki porównano z wartościami otrzymanymi 
z komercyjnego oprogramowania CAE. Porównanie pokazało dobrą korelację między modelem referencyjnym 
a proponowaną metodą. 
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