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CONTROL AND INFORMATICS

Positivity and cyclicity of descriptor electrical circuits
with chain structure
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Abstract. The positivity and cyclicity of descriptor linear electrical circuits with chain structure is considered. Two classes of descriptor linear
electrical circuits are analyzed. Some new properties of these classes of electrical circuits are established. The results are extended to fractional
descriptor linear electrical circuits.
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1. INTRODUCTION
A dynamical system and an electrical circuit is called positive
if its state variables take nonnegative values for all nonnega-
tive inputs and nonnegative initial conditions. The positive lin-
ear systems have been investigated in [1–9]. Examples of pos-
itive systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollution mod-
els. A variety of models having positive linear behavior can be
found in engineering, management science, economics, social
sciences, biology and medicine, etc.

Mathematical fundamentals of the fractional calculus are
given in the monographs [5,7,10,11]. Fractional dynamical sys-
tems have been investigated in [4–7, 10, 12–16].

Positive linear systems with different fractional orders have
been addressed in [4, 5, 7, 15].

An overview of state of the art in descriptor systems theory
is given in [17–20]. Stability of this class of dynamical systems
was investigated in [18, 19, 21–23].

In this paper the positivity and cyclicity of descriptor linear
electrical circuits with chain structure are investigated. The pa-
per is organized as follows. In Section 2 some definitions and
theorems concerning positive descriptor systems and cyclic ma-
trices are recalled. New results concerning descriptor electrical
circuits with cyclic state matrices are presented in Section 3.
An extension of these results to fractional descriptor electrical
circuits is given in Section 4. Concluding remarks are given in
Section 5.

The following notation will be used: R – the set of real num-
bers, Rn×m – the set of n×m real matrices, Mn – the set of n×n
Metzler matrices (real matrices with nonnegative off-diagonal
entries), In – the n×n identity matrix.
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2. PRELIMINARIES
Consider the descriptor continuous-time linear system

E
dx(t)

dt
= Ax(t)+Bu(t), (1a)

y(t) =Cx(t), (1b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and
output vectors and E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. It is
assumed that detE 6= 0 and

det[Eλ −A] 6= 0 for some λ ∈ C. (2)

Assuming that for some chosen c ∈ C we have det[Ec−A] 6= 0
and premultiplying (1a) by [Ec−A]−1 we obtain

Ē
dx(t)

dt
= Āx(t)+ B̄u(t), (3a)

where

Ē = [Ec−A]−1E, Ā = [Ec−A]−1A, B̄ = [Ec−A]−1B. (3b)

Note that equations (1a) and (3a) have the same solution x(t).

Definition 1. [19, 20] The smallest nonnegative integer q sat-
isfying

rankĒq = rankĒq+1 (4)

is called the index of the matrix Ē ∈ Cn×n.

Definition 2. [19,20] A matrix ĒD is called the Drazin inverse
of Ē if it satisfies the conditions:

ĒĒD = ĒDĒ, (5a)

ĒDĒĒD = ĒD, (5b)

ĒDĒq+1 = Ēq. (5c)
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The Drazin inverse of a square matrix always exists and is
unique. If det Ē 6= 0 then ĒD = Ē−1. Some methods for compu-
tation of the Drazin inverse are given in [20].

Lemma 1. [19,20] The matrices Ē and Ā defined by (3b) have
the following properties:

ĀĒ = ĒĀ, ĀDĒ = ĒĀD, ĒDĀ = ĀĒD, ĀDĒD = ĒDĀD, (6a)

kerĀ∩kerĒ = {0}, (6b)(
In− ĒĒD) ĀĀD = In− ĒĒD,

(
In− ĒĒD)(ĒĀD)q

= 0.
(6c)

Also, the matrices Ē, ĒD and Ā can be written in the form

Ē = T

[
J 0
0 N

]
T−1, Ā = T

[
A1 0
0 A2

]
T−1,

ĒD = T

[
J−1 0
0 0

]
T−1,

(6d)

where T ∈Rn×n, detT 6= 0, J ∈Rn1×n1 is a nonsingular matrix,
N ∈Rn2×n2 is a nilpotent matrix with the nilpotency index q, i.e.
Nq−1 6= 0, Nq = 0, A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 and n1 +n2 = n.

Lemma 2. [20] If

x1(t) = ĒĒDx(t), x2(t) = (In− ĒĒD)x(t), (7a)

x1(t)+ x2(t) = x(t), (7b)

then equation (3a) is equivalent to the following equations:

dx1(t)
dt

= Ā1x1(t)+ B̄1u(t), (8a)

N̄
dx2(t)

dt
= x2(t)+ B̄2u(t), (8b)

where

Ā1 = ĒDĀ, B̄1 = ĒDB̄

N̄ = (In− ĒĒD)ĀDĒ, B̄2 = (In− ĒĒD)ĀDB̄.
(8c)

In this class of dynamical systems the matrix Ā1 = ĒDĀ can
not be considered as a typical state matrix. From the solution of
equation (8a) it follows that the matrix Ā1 may contain unim-
portant entries that are further canceled through multiplication
by x0 ∈ Im ĒĒD. Therefore, as a state matrix of the system we
will assume

ĀG = Ā1 +G(In− ĒĒD), (9)

where G ∈ Rn×n is arbitrary. The term G(In− ĒĒD) eliminates
from the matrix Ā1 those unimportant entries [20, 21].

Definition 3. [20] The descriptor continuous-time linear sys-
tem (3a), (1b) (or equivalently (1)) is called (internally) positive
if x(t) ∈Rn

+ and y(t) ∈Rp
+, t ≥ 0 for any consistent initial con-

ditions x(0) ⊂ Rn
+ and all admissible inputs u(t) ⊂ Rm

+, t ≥ 0

such that
dku(t)

dtk ∈ Rm
+, k = 1, . . . ,q−1.

Theorem 1. [20] The descriptor continuous-time linear system
(3a), (1b) (or equivalently (1)) is positive if and only if there
exists a matrix G ∈ Rn×n such that

ĀG ∈Mn (10a)

and

Im ĒĒD ⊂ Rn
+, B̄1 ∈ Rn×m

+ , C ∈ Rp×n
+ , D ∈ Rp×m

+

−N̄kB̄2 ∈ Rn×m
+ , k = 1, . . . ,q−1.

(10b)

Definition 4. The positive descriptor continuous-time linear
system (3a), (1b) (or equivalently (1a)) is called asymptotically
stable if

lim
t→∞

x(t) = 0 (11)

for all consistent initial conditions x0 ∈ ĒĒDv (where v ∈ Rn is
an arbitrary vector) and u(t) = 0.

Theorem 2. [20] The positive descriptor continuous-time lin-
ear system (3a), (1b) (or equivalently (1a)) for u(t) = 0 is
asymptotically stable if and only if one of the following equiv-
alent conditions is satisfied:
1. All coefficients of the characteristic equation

det[Es−A] = arsr +ar−1sr−1 + . . .+a1s+a0 = 0 (12)

are positive, i.e. ai > 0 for i = 0,1, . . . ,r, where r < n.
2. There exists strictly positive vector λ T = [ λ1 . . . λn ],

λk > 0, k = 1, . . . ,n such that

ĀGλ < 0 for an arbitrary matrix G ∈ Rn×n. (13)

Let

ϕ(s) = det
[
Ins− ĀG

]
= sn + ān−1sn−1 + . . .+ ā1s+ ā0 (14)

be the characteristic polynomial of the matrix ĀG. The minimal
polynomial ψ(s) of the matrix ĀG is related to the characteristic
polynomial (14) by

ψ(s) =
ϕ(s)

Dn−1(s)
, (15)

where Dn−1(s) is the greatest common divisor of all n−1 order
minors of the matrix

[
Ins− ĀG

]
[3, 6, 24]. From (15) it follows

that ψ(s) = ϕ(s) if and only if Dn−1(s) = 1.

Definition 5. The matrix ĀG is called cyclic if ψ(s) = ϕ(s).

Theorem 3. [25] The real matrix

A1 =



a11 a12 0 . . . 0 0
a21 a22 a23 . . . 0 0

...
...

...
. . .

...
...

an−2,1 an−2,2 an−2,3 . . . an−2,n−1 0
an−1,1 an−1,2 an−1,3 . . . an−1,n−1 an−1,n

an1 an2 an3 . . . an,n−1 ann


(16a)
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and

A2 =



a11 a12 . . . a1,n−2 a1,n−1 a1n

a21 a22 . . . a2,n−2 a2,n−1 a2n

0 a32 . . . a3,n−2 a3,n−1 a3n
...

...
. . .

...
...

...
0 0 . . . 0 an,n−1 ann

 (16b)

are cyclic matrices if the matrix (16a) satisfies the condition

a12, a23, . . . , an−2,n−1, an−1,n 6= 0 (17a)

and the matrix (16b)

a21, a32, . . . , an−1,n−2, an,n−1 6= 0, (17b)

respectively.

Remark 1. Every square matrix with only one nonzero entry in
each row and in each column and its inverse are cyclic matrices.

Remark 2. Every nonsingular matrix A ∈ R2×2 (detA 6= 0) is
cyclic.

Definition 6. The descriptor system is called normal if its ma-
trix ĀG is cyclic.

Normal systems have very useful properties and play impor-
tant role in technical sciences [2–4, 24].

3. POSITIVE DESCRIPTOR ELECTRICAL CIRCUITS
WITH CYCLIC STATE MATRICES

Consider the electrical circuit shown in Fig. 1 with given re-
sistances R1, R2, . . . , Rn, inductances L1, L2, . . . , Ln and source
voltage e = e(t).

Fig. 1. Electrical circuit with inductances

Using Kirchoff’s laws we may write the equations

L1
di1
dt

+(R1 +R2)i1−R2i2 = e,

L2
di2
dt

+(R2 +R3)i2−R2i1−R3i3 = 0,

...

Ln−2
din−2

dt
+Ln−1

din−1

dt
−Rn−2 (in−3− in−2) = 0,

Ln
din
dt
−Ln−1

din−1

dt
+Rn−1in = 0,

in + in−1− in−2 = 0,

(18)

which can be written in the form

EL
dxL

dt
= ALxL +BLe, (19a)

where

EL =



L1 0 . . . 0 0 0
0 L2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . Ln−2 Ln−1 0
0 0 . . . 0 −Ln−1 Ln

0 0 . . . 0 0 0


, BL =



1
0
...
0
0

 ,

AL =



−R12 R2 . . . 0 0 0 0
R2 −R23 . . . 0 0 0 0
0 R3 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . Rn−2 −Rn−2 0 0
0 0 . . . 0 0 0 −Rn−1

0 0 . . . 0 −1 1 1


,

xL =
[
i1 i2 . . . in−1 in

]T
, Ri j = Ri +R j.

(19b)

As the output y = y(t) of the electrical circuit the voltage on the
resistor Rn−1 is chosen

y = Rn−1in =CLxL, CL =
[
0 . . . 0 Rn−1

]
. (19c)

To simplify the notation we assume n = 4. Thus, we have

EL =


L1 0 0 0
0 L2 L3 0
0 0 −L3 L4

0 0 0 0

 , BL =


1
0
0
0

 ,

AL =


−(R1 +R2) R2 0 0

R2 −R2 0 0
0 0 0 −R3

0 −1 1 1

 ,
CL =

[
0 0 0 R4

]
.

(20)

Next, using (20) and (3b) for c = 0 we compute

ĒL =



L1

R1

L2

R1

L3

R1
0

L1

R1

L2(R1 +R2)

R1R2

L3(R1 +R2)

R1R2
0

L1

R1

L2(R1 +R2)

R1R2

L3

R3
+

L3(R1 +R2)

R1R2
−L4

R3

0 0 −L3

R3

L4

R3


ĀL =−I4, B̄L =

[
1

R1

1
R1

1
R1

0
]T

(21a)
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ĒD
L =



R1+R2

L1
−L2R2(L3+L4)

L1∆L
−L3L4R2

L1∆L
−L3L4R2

L1∆L

−R2(L3+L4)

∆L

ē22

∆2
L

ē23

∆2
L

ē24

∆2
L

−L4R2

∆L

ē32

∆2
L

ē33

∆2
L

ē34

∆2
L

−L3R2

∆L

ē42

∆2
L

ē43

∆2
L

ē44

∆2
L


(21b)

and from (8c), (21a), (21b) we have

Ā1L =−ĒD
L , B̄1L =


1
L1

0
0
0

 , B̄2L =


0
0
0
0

 ,

N̄L =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

ĒLĒD
L =



1 0 0 0

0
L2(L3+L4)

∆L

L3L4

∆L

L3L4

∆L

0
L2L4

∆L

L3(L2+L4)

∆L
−L2L4

∆L

0
L2L3

∆L
−L2L3

∆L

L4(L2+L3)

∆L


,

(21c)

where

∆L = L2L3 +L2L4 +L3L4,

ē22 = L2(L2
3R2 +L2

3R3 +L2
4R2 +2L3L4R2),

ē23 = L3(R2L2
4 +R2L3L4−L2L3R3),

ē24 = L3L4(L2R3 +L3R2 +L3R3 +L4R2),

ē32 = L2(R2L2
4 +R2L3L4−L2L3R3),

ē33 = L3(R3L2
2 +R2L2

4),

ē34 =−L4(R3L2
2 +R3L2L3−R2L3L4),

ē42 = L2L3(L2R3 +L3R2 +L3R3 +L4R2),

ē43 =−L3(R3L2
2 +L2L3R3−R2L3L4),

ē44 = L4(L2
2R3 +L2

3R2 +L2
3R3 +2L2L3R3).

(21d)

For the matrix

G =



0
R2

L1

R2

L2
−L4R2

L2L3

0 −g22

∆L
0 0

0 0 − g33

L4∆L
0

0 0 0 −g44

∆L


, (22a)

g22 = L2R3 +L3R2 +L3R3 +L4R2,

g33 = R2L2
4 +L3R2L4−L2L3R3,

g44 = L2R3 +L3R2 +L3R3 +L4R2

(22b)

we obtain

ĀGL = ĒD
L ĀL +G(I4− ĒLĒD

L )

=



−R1 +R2

L1

R2

L1
0 0

R2(L3 +L4)

∆L
− ā22

∆2
L

L3R3

∆L
0

L4R2

∆L
0 −L4R2

∆L

ā34

∆L
L3R2

∆L
0 −L3R2

∆L
− ā44

∆L


,

(23a)

ā22 = L3R2 +L3R3 +L4R2,

ā34 = L2R3−L4R2,

ā44 = L2R3 +L3R2 +L3R3,

(23b)

where ∆L is defined by (21d). From (23) it follows that there
does not exist a matrix G ∈ R4×4 such that ĀGL = ĒD

L ĀL +
G(I4− ĒLĒD

L ) is a Metzler matrix (i.e. the negative element in
the fourth row and third column of ĀGL can not be eliminated).
However, by Theorem 3, the matrix ĀGL is a cyclic matrix.

Conclusion 1. The descriptor electrical circuit of R, L, e type
shown in Fig. 1 is a non-positive cyclic one. Similar results can
be obtained for any n.

Consider the electrical circuit shown in Fig. 2 with given resis-
tances R1, R2, . . . , Rn capacitances C1,C2, . . . ,Cn, and source
voltages e1 = e1(t), e2 = e2(t).

Fig. 2. Electrical circuit with capacitances

Using Kirchoff’s laws we may write the equations

e1−u1

R1
=

u1−u2

R2
+C1

du1

dt
,

u1−u2

R2
=

u2−u3

R3
+C2

du2

dt
,

...
un−2−un−1

Rn−1
=

un−1−un

Rn
+Cn−1

dun−1

dt
,

un− e2 = 0,

(24)

which can be written in the form

EC
dxC

dt
= ACxC +BCe, (25)
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where

EC =



C1 0 . . . 0 0
0 C2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Cn−1 0
0 0 . . . 0 0

 , BC =



1
R1

0
0 0
...

...
0 0
0 −1


,

AC =



−a1
1

R2
0 . . . 0

1
R2
−a2

1
R3

. . . 0

0
1

R3
−a3 . . . 0

...
...

...
. . .

...
0 0 0 . . . 1


, an =

(
1

Rn
+

1
Rn+1

)
,

xC =
[
u1 u2 . . . un−1 un

]T
.

(26)

As the output y = y(t) of the electrical circuit we choose the
voltage on the capacitor C1

y = u1 =CCxC, CC =
[
1 0 . . . 0

]
. (27)

To simplify the notation we assume n = 4. Thus, we have

EC =


C1 0 0 0
0 C2 0 0
0 0 C3 0
0 0 0 0

 , BC =


1

R1
0

0 0
0 0
0 −1

 ,

AC =



−
(

1
R1

+
1

R2

)
1

R2
0 0

1
R2

−
(

1
R2

+
1

R3

)
1

R3
0

0
1

R3
−
(

1
R3

+
1

R4

)
1

R4

0 0 0 1


,

CC =
[
1 0 0 0

]
.

(28)

Next, using (28) and (3b) for c = 0 we compute

ĒC =
1

R14


C1R1R24 C2R1R34 C3R1R4 0

C1R1R34 C2R12R34 C3R12R4 0

C1R1R4 C2R12R4 C3R13R4 0

0 0 0 0

 ,

ĀC =−I4, B̄C =
1

R14


R24 R1

R34 R12

R4 R13

0 R14

 , Ri j =
j

∑
k=i

Rk ,

(29a)

ĒD
C =



R1 +R2

C1R1R2
− 1

C1R2
0 0

− 1
C2R2

R2 +R3

C2R2R3
− 1

C2R3
0

0 − 1
C3R3

R3 +R4

C3R3R4
0

0 0 0 0


(29b)

and from (8c), (29a), (29b) we have

Ā1C =−ĒD
C ,

B̄1C =



1
C1R1

0

0 0

0
1

C3C4

0 0


, B̄2C =


0 0
0 0
0 0
0 −1

 ,

N̄C =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ĒCĒD
C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

(29c)

For the matrix

G =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 −2

 (30)

we obtain

ĀGC = ĒD
C ĀC +G(I4− ĒCĒD

C )

=



−R1 +R2

C1R1R2

1
C1R2

0 0

1
C2R2

−R2 +R3

C2R2R3

1
C2R3

0

0
1

C3R3
−R3 +R4

C3R3R4
1

0 0 0 −2


.

(31)

From (29)-(31) it follows that all positivity conditions are met
and ĀGC is a cyclic Metzler matrix.

Conclusion 2. The descriptor electrical circuit of R, C, e type
shown in Fig. 2 is a positive cyclic one. Similar results can be
obtained for any n.

Therefore, the following theorem has been proved.

Theorem 4. The following statements are true:
1) descriptor electrical circuits of RL-type chain structure (as

shown in Fig. 1) are non-positive and cyclic,
2) descriptor electrical circuits of RC-type chain structure (as

shown in Fig. 2) are positive and cyclic.
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4. FRACTIONAL DESCRIPTOR ELECTRICAL CIRCUITS
Consider the fractional linear electrical circuit [5, 7, 20] de-
scribed by the equations

E
dα x(t)

dtα
= Ax(t)+Bu(t), 0 < α < 1, (32a)

y(t) =Cx(t), (32b)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and
output vectors and E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

dα x(t)
dtα

=
1

Γ(1−α)

t∫
0

ẋ(τ)
(t− τ)α

dτ, ẋ(τ) =
dx(t)

dt
(32c)

is the Caputo fractional derivative and

Γ(z) =
∞∫

0

tz−1e−tdt, Re(z)> 0 (32d)

is the gamma function [5, 11]. Assuming that for some chosen
c ∈ C we have det[Ec− A] 6= 0 and premultiplying (32a) by
[Ec−A]−1 we obtain

Ē
dα x(t)

dtα
= Āx(t)+ B̄u(t), (33a)

where

Ē = [Ec−A]−1E, Ā = [Ec−A]−1A, B̄ = [Ec−A]−1B. (33b)

Definition 7. [20] The fractional descriptor continuous-time
linear system (33a), (32b) (or equivalently (32)) is called (inter-
nally) positive if x(t) ∈ Rn

+ and y(t) ∈ Rp
+, t ≥ 0 for any con-

sistent initial conditions x(0) ⊂ Rn
+ and all admissible inputs

u(t)⊂ Rm
+, t ≥ 0 such that

dkα u(t)
dtkα

∈ Rm
+, k = 1, . . . ,q−1.

Theorem 5. [20] The fractional descriptor continuous-time
linear system (33a), (32b) (or equivalently (32)) is positive if
and only if there exists a matrix G ∈ Rn×n such that

ĀG ∈Mn (34a)

and

Im ĒĒD ⊂ Rn
+, B̄1 ∈ Rn×m

+ , C ∈ Rp×n
+ , D ∈ Rp×m

+

−N̄kB̄2 ∈ Rn×m
+ , k = 1, . . . ,q−1,

(34b)

where the matrix ĀG is defined by (9) and the matrices B̄1, B̄2,
N̄ are given by (8c).

Definition 8. The positive fractional descriptor continuous-
time linear system (33a), (32b) (or equivalently (32)) is called
asymptotically stable if

lim
t→∞

x(t) = 0 (35)

for all consistent initial conditions x0 ∈ ĒĒDv (where v ∈ Rn is
an arbitrary vector) and u(t) = 0.

Theorem 6. [20] The positive fractional descriptor continu-
ous-time linear system (33a), (32b) (or equivalently (32)) for
u(t) = 0 is asymptotically stable if and only if one of the fol-
lowing equivalent conditions is satisfied:
1. All coefficients of the characteristic equation

det[Esα −A] = arsrα +ar−1s(r−1)α + . . .

+a1sα +a0 = 0 (36)

are positive, i.e. ai > 0 for i = 0,1, . . . ,r, where r < n.
2. There exists strictly positive vector λ T = [ λ1 . . . λn ],

λk > 0, k = 1, . . . ,n such that

ĀGλ < 0 for an arbitrary matrix G ∈ Rn×n. (37)

In a similar way as for integer order circuits we can write us-
ing Kirchhoff’s laws similar equations as (18) and (24) substi-
tuting the first order derivatives by corresponding fractional α-
order derivatives of the currents in the coils and voltages on the
capacitors. In a similar way as for descriptor electrical circuits
we can prove for the fractional descriptor electrical circuits the
following theorem.

Theorem 7. The following statements are true:
1) fractional descriptor electrical circuits of RL-type chain

structure (as shown in Fig. 1) are non-positive and cyclic,
2) fractional descriptor electrical circuits of RC-type chain

structure (as shown in Fig. 2) are positive and cyclic.

5. CONCLUDING REMARKS
The positivity and cyclicity of descriptor electrical circuits with
chain structure have been investigated. Some new results con-
cerning non-positive and positive descriptor electrical circuits
with cyclic state matrices have been established (Theorem 4)
and next extended to fractional electrical circuits (Theorem 7).
An open problem is an extension of these considerations to frac-
tional descriptor linear electrical circuits and systems with dif-
ferent fractional orders.
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