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Abstract. The article presents the process of identifying discrete-continuous models with the use of heuristic algorithms. A stepped cantilever
beam was used as an example of a discrete-continuous model. The theoretical model was developed based on the formalism of Lagrange
multipliers and the Timoshenko theory. Based on experimental research, the theoretical model was validated and the optimization problem was
formulated. Optimizations were made for two algorithms: genetic (GA) and particle swarm (PSO). The minimization of the relative error of
the obtained experimental and numerical results was used as the objective function. The performed process of identifying the theoretical model
can be used to determine the eigenfrequencies of models without the need to conduct experimental tests. The presented methodology regarding
the parameter identification of the beams with the variable cross-sectional area (according to the Timosheno theory) with additional discrete
components allows us to solve similar problems without the need to exit complex patterns.
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1. INTRODUCTION
Due to economic aspects and time constraints, experimental
studies of prototypes of working machines are not profitable
[1]. In the systems that are exposed to continual vibrations, it
is necessary to protect these systems against the resonance phe-
nomenon [2]. Modeling is often used to determine the behavior
of these systems under operating conditions. However, during
the design or construction phase, it is necessary to identify and
optimize the adopted theoretical models. In order to identify
the designated theoretical models, it is necessary to conduct ex-
perimental research that will enable the determination of the
accuracy and fidelity to the real object.

In the literature, one can find works that most often use
heuristic methods to optimize discrete or discrete-continuous
models. The determination of the location and depth of the
crack in the Euler-Bernoulli cantilever beam was presented in
the work [3]. A modified cuckoo optimization algorithm was
used to detect the damage. The difference of squares between
the experimental and numerical results was adopted as the ob-
jective function. The work [4] presents an inverse analysis of
the crack location problem based on the obtained theoretical
and experimental frequencies. A modified particle swarm opti-
mization (PSO) algorithm was used for identification. The mod-
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ification of the algorithm was to use the strategy of squeezing
the domain of searching space in each iteration. As a result, the
process of finding the optimal solution was accelerated and the
inherent structure of the algorithm was preserved. The assess-
ment of the cantilever beam damage detection using the PSO
algorithm is also presented in the article [5]. Apart from de-
termining the location of the crack, the influence of particular
parameters of the algorithm on the structural condition moni-
toring was also determined. The mean fitness value and success
rate were used as the criteria for measuring the convergence
and stability of the algorithm. The process of identifying the
viscous damping parameter of the cantilever beam has been de-
scribed in the article [6]. The PSO algorithm was used as an
identification tool. Objective functions were determined using
incomplete complex eigenvectors that appear in the model in
relation to external damping. The proposed method can be used
even in the situation when incomplete modal data is available.
In the optimization processes of dynamic problems, apart from
the PSO algorithm, a genetic algorithm (GA) or its modifica-
tions are also often used [7, 8]. In paper [9], an optimized re-
gression model was developed to determine the damping coef-
ficient of a cantilever beam. Xia et al. used a GA to identify the
optimal variables of the model. Cross-validation and support
vector regression were performed and compared with other re-
gression methods. The obtained numerical results were verified
by the experimental results. The problem of identifying cracks
in a cantilever beam using both the PSO and GA algorithms is
presented in tthe manuscript [8]. Based on the eigenfrequencies
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of the beam and the mode shape, the objective function was
determined. A reinforced beam made of graphite-epoxy mate-
rial was analyzed. The finite element method was used for nu-
merical simulations, in which the Timoshenko beam theory and
laminated composite theory were applied. The identification of
the parameters of a discrete-continuous system using the finite
element method and the iterative method was presented among
others in the work [10].

This paper proposes the process of identifying the parameters
of discrete-continuous models on the basis of known experi-
mental frequencies with the use of heuristic algorithms. The
identification included a solution to the optimization problem
based on two methods: GA and PSO. The proposed method en-
ables the analysis of the changes impact of individual model pa-
rameters on the vibrations of the considered system without the
need to perform experimental tests. The methodology presented
in the paper for the identification of parameters of beams with a
variable cross-sectional area with additional discrete elements
can be used for beams of any shape (variable cross-sectional
area) and with any method of attachment, as well as to take into
account additional discrete elements. Knowing the solution pre-
sented in the work, it is possible to automatically formulate and
solve similar problems, without the need to derive complex for-
mulas.

2. RESEARCH METHODS
2.1. Genetic algorithm
The genetic algorithm is one of the most frequently used evo-
lutionary algorithms that were initiated by J. Holland in 1975
[11]. One of their most important advantages is the effective
mechanism of searching the large solution space. It is used
in optimization problems of complex nonlinear models, where
finding the optimal location is often a difficult task. Like the
other evolutionary algorithms, the main operators are selection,
mutation, and crossover [12].

The principle of the classical GA can be presented in the
following points (Fig. 1): first, the population of chromosomes
that are solution candidates to a problem is randomly generated;

Fig. 1. Genetic algorithm

then the fitness function of each chromosome in the population
is calculated; next Selection, Crossover, and Mutation are re-
peated until a steady number of offspring will be created or the
value of the solution will be satisfactory [13].

The Selection operator selects chromosomes in the popu-
lation for reproduction. The fitter the chromosome, the more
times it is likely to be selected to reproduce. Crossover and Mu-
tation are the reproduction operators, the former forms a new
chromosome by combining parts of each of the two parental
chromosomes, and the latter forms a new chromosome by mak-
ing alterations to the values of genes in a copy of a single parent
chromosome.

2.2. Particle swarm optimization
The PSO algorithm is one of the most modern heuristic global
optimization methods and also an optimization algorithm, it
was firstly proposed by Kennedy and Eberhart in 1995 in
work [14].

The PSO algorithm is based on observation of phenomena
occurring in nature, such as foraging of a swarm of insects or
shoal of fish. Each particle of the swarm is able to remember
and use its experience that is taken from the whole iteration
process and, also, is able to communicate with other members.
The swarm of particles is able to identify "good" areas of the
domain and can search deeply in these areas for an optimum.

The PSO algorithm, used in this work, is presented in a sim-
plified form in Fig. 2.

Fig. 2. PSO algorithm

Initial values of sought after variables (the position of par-
ticular particle) and starting velocities are random. Then, in an
iteration step n+1, distance covered by a particle in m-th di-
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rection (the velocity of the particle in m-th direction) can be
described as following [15, 16]

V (n+1)
m = χ

(
wV (n)

m + c1r1

(
pm − xm(n)

)
+ c2r2

(
gm − x(n)m

))
, (1)

where m = 1,2, χ is a constriction factor, w is a weight of coef-
ficient, V (n)

m is a velocity in the previous iteration step, c1 and c2
are cognitive and social parameters suitable, r1 and r2 are ran-
dom numbers taken from (0, 1), pm is a personal best position
of the considered particle from the whole iteration process, gm

is a global best position obtained by the entire swarm and x(n)m
is a particle position in the previous iteration step.

A new position for each particle in each considered direction
is equal to

x(n+1)
m = x(n)m +V (n+1)

m . (2)

3. PROBLEM FORMULATION
A rigid restraint is often used as a type of fixing in computa-
tional models. However, in real systems, such fastening is im-
possible to obtain. It is used because of the simplicity and lack
of real parameters values in the fixing system. The theoretical
models developed based on such fastening do not fully reflect
the real object. Therefore, it is necessary to conduct experimen-
tal verification of the mathematical models. When the obtained
experimental results differ significantly from the theoretical re-
sults, it is necessary to perform the identification of the devel-
oped model.

The problem of identifying the parameters of the discrete-
continuous model was presented in the example of the stepped
cantilever beam (Fig. 3), which was circumscribed according to
the Timoshenko theory [17].

Multi-stepped beams are important in the design process of
various types of structures (e.g. aircraft, manipulators, build-
ings). Their variable geometry and/or material properties along
the length can be used to increase the strength and stability of
the structure, but also to reduce weight and volume [18, 19].

To formulate and solve the problem of free vibrations of the
analyzed system, the formalism of Lagrange multipliers was
used [20]. The method is especially used for determining the
system frequency consisting of many continuous and discrete
components. The free vibration problem of the cantilever beam

can be reduced to the matrix system of equations, which can be
presented in the form:

C~Λ = 0, (3)

where:
~Λ = [Λ1, Λ2, . . . , Λ6]

T (4)

is the vector of Lagrange multipliers, Λ1, Λ2, . . . , Λ6 are am-
plitudes of Lagrange multipliers and the square matrix C has
the form

C =



C11,1 C11,2 C11,3 C11,4 0 0
C12,1 C12,2 C12,3 C12,4 0 0
C13,1 C13,2 c3,3 c3,4 −C23,5 −C23,6

C14,1 C14,2 c4,3 c4,4 −C24,5 −C24,6

0 0 −C25,3 −C25,4 c5,5 c5,6

0 0 −C26,3 −C26,4 c6,5 c6,6


, (5)

where:

c3,3 =C13,3 +C23,3 , c3,4 =C13,4 +C23,4 ,

c4,3 =C14,3 +C24,3 , c4,4 =C14,4 +C24,4 ,

c5,5 =C25,5 +C35,5 , c5,6 =C25,6 +C35,6 ,

c6,5 =C26,5 +C36,5 , c6,6 =C26,6 +C36,6 .

(6)

Coefficients Cnk,r , which can be defined as

Cnk,r =
m

∑
i=0

bni,k bni,r

Kni − f 2Mni

, (7)

describe the dynamic properties of the individual parts of the
beam. The selected denotations bni,r map the i-th translational
and rotational vibrational modes of n-th beam segments with-
out additional elements. The descriptions of the mathemat-
ical expressions presented above are discussed in detail in
works [20, 21].

Using the existence of non-trivial solutions of the system of
equations (equation (3)), the equation describing free vibrations
of a beam takes the form:

detC = 0. (8)

On the basis of the dependencies determined above, an al-
gorithm and a script were developed to enable numerical simu-
lations. The analyzed cantilever beam was made of S235 steel

Fig. 3. The cantilever stepped beam
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with the following material data: density – 7850 kg/m3, Young
modulus – 2.1·1010 N/m2. In addition, the following character-
istic parameters of the beam were adopted hb = 0.005 m, L1 =
0.25 m, L2 = 0.15 m, L3 = 0.10 m, b1 = 0.06 m, b2 = 0.04 m,
b3 = 0.02 m.

Table 1 presents the results of numerical calculations ob-
tained for a different number of terms of coefficients Cnk,r
(equation (7)).

Table 1
Frequencies from the numerical calculations of the cantilever

stepped beam

Number of terms Frequency [Hz]
of coefficients Cnk,r f1 f2 f3 f4 f5

10 24.71 126.45 322.67 635.99 1002.51

20 23.95 121.12 311.72 597.90 963.03

30 23.74 119.72 308.34 588.22 952.29

40 23.63 118.95 306.59 583.84 946.77

60 23.52 118.23 305.06 579.44 941.82

The first stage of the identification process concerned the val-
idation of the adopted theoretical model. The validation was
performed by comparing the theoretical and experimental re-
sults. Moreover, the relative error was calculated (Table 2).

Table 2
Comparison of numerical and experimental results and the relative

error between them

Frequency [Hz]

f1 f2 f3 f4 f5
Presented method 23.52 118.23 305.06 579.44 941.82

EMA* [21] 20.8 112.0 290.0 542.0 901.0

Relative error [%] 13.08 5.56 5.19 6.90 4.50

*Experimental Modal Analysis

Based on the values of the obtained relative errors of the
natural frequencies (Table 2), one can state that the theoretical
model does not correctly reflect the real object.

The differences in the results, obtained through experimental
tests and numerical simulations, are caused by the inaccuracy
of the beam material data and/or the method of fixing during
the experimental tests (ideal restraint). The solution to the first
issue is to conduct the strength tests, while the representation of
an ideal restraint is impossible to achieve in experimental tests.

4. PROBLEM SOLUTION
Assuming that the beam material data used for calculation are
correct, then the theoretical model should be modified by re-
placing the rigid fixing by rotational Cb and translational Kb
spring (Fig. 4). Spring constants values are unknown and must
be identified.

Fig. 4. Elastic fixed beam

Taking into account the elastic fixing of the beam, the matrix
C can be written in the form

C =



c1,1 C11,2 C11,3 C11,4 0 0

C12,1 c2,2 C12,3 C12,4 0 0

C13,1 C13,2 c3,3 c3,4 −C23,5 −C23,6

C14,1 C14,2 c4,3 c4,4 −C24,5 −C24,6

0 0 −C25,3 −C25,4 c5,5 c5,6

0 0 −C26,3 −C26,4 c6,5 c6,6


, (9)

where:
c1,1 =C11,1 + ε1, c2,2 =C12,2 + ε2 (10)

and

ε1 =
1

Kb
, ε2 =

1
Cb

. (11)

In order to formulate the identification problem the GA [22–
25] and PSO method [26–28] have been used. The following
objective function was adopted in optimization process [29]:

f (Kb,Cb) =

n

∑
i=1

∣∣∣∣∣ f (n)t − f (n)e

f (n)e

∣∣∣∣∣100%

n
, for n = 5. (12)

In this function, the average relative error between the first five
frequencies values of free vibration from the experimental tests
( fe) and the numerical simulations ( ft ) has been minimized.

4.1. Genetic algorithm
Using the GA, the worked-out algorithm and the numerical pro-
gram made it possible to obtain optimum values of spring con-
stants Kb and Cb. The values of the springs constants have been
searched in the range [1000, 1 ·1010], and the rank selection has
been used in the genetic algorithm. A two-point crossover was
selected as the crossover function in which two points are ran-
domly selected from the parents’ chromosomes. The mutation
process was done by using bit string mutation which consists
in changing the value of the randomly selected bit to the op-
posite. The first population was obtained by using the random
initialization process.

The numerical calculations have been conducted for two dif-
ferent values of genetic operators. However, in the case, where
crossover probability has been equal to 80% and mutation
probability has been equal to 2%, calculations were performed
twice, to verify the correctness of the computations. Due to the
long computation time in the matrix C 10 terms of coefficients
Cnk,r have been taken. The population has consisted of 20 chro-
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mosomes. The computations have been repeated until the num-
ber of offspring reached 400. The obtained results are shown in
Table 3. The target function values for the best individuals are
presented in Fig. 5.

Table 3
Objective function and values of spring constants representing
the elastic support system obtained on the basis of numerical

calculations (GA)

No. cr mr ns
Objective
function

Kb [N/m] Cb [Nm]

1 0.50 0.10 400 1.974 1.97·107 3080.2

2 0.65 0.15 400 2.078 1.47·107 3065.1

3 0.80 0.20 400 2.222 1.00·107 3117.5

Fig. 5. The GA objective function values for best individuals

Taking into account the above values (spring constants) in
the theoretical discrete-continuous model, numerical research
has been conducted for each case, and the obtained results are
presented in Table 4.

Table 4
Free vibration frequencies obtained after the identification

of the theoretical model with the help of GA

Frequency [Hz]

f1 f2 f3 f4 f5
1 20.81 110.14 282.17 555.13 873.57

2 20.79 110.00 281.54 552.76 868.24

3 20.84 110.00 280.84 549.02 858.91

Based on the results from Tables 3 and 4, one can state that
although the obtained values of springs constants are different
from each other (but the order of magnitude is the same), the
free vibration frequencies are very similar.

4.2. Particle swarm optimization
Based on the presented PSO algorithm, the algorithm and nu-
merical program have been worked out, and the next values of
spring constants Kb and Cb have been determined. In the same
way, as in the case of GA, the values of the springs constants
have been searched in the range [1000, 1 ·1010], and the numer-
ical calculations have been conducted for two different values
of coefficients of the velocity of the particle. The individual pa-
rameters of the PSO algorithm were adopted as [30,31]: w = 1,
c1 = 1.49445, c2 = 1.49445. As was the case of the genetic al-
gorithm, in the matrix C 10 terms of coefficients Cnk,r and 400
iterations have been taken to calculation. The particle swarm
consisted of 20 individuals. The obtained results are shown in
Table 5. In Table 5 the free vibration frequencies for calculated
spring constants are also presented.

Table 5
Objective function and values of spring constants representing the

elastic support system obtained on the basis of numerical calculations
and free vibration frequencies obtained after the identification of the

theoretical model using PSO method

χ w C1 C2
Objective
function

Kb [N/m] Cb [Nm]

1
itmax−it

itmax
1.49445 1.49445 2.252 9.8182·106 3241.14

0.8 0.6 2.1 2.0 2.282 9.04976·106 3135.37

f1 f2 f3 f4 f5
Frequency

[Hz]
20.96 110.36 281.45 549.69 859.04

20.86 110.00 280.59 547.72 855.68

where: itmax – maximum iteration, it – actual number of iteration.

Assuming different input parameters of the PSO algorithm,
a similar value of the objective function is obtained. Also the
stiffness values of the translational spring Kb and the rotational
spring Cb are similar.

4.3. Comparison of obtained results
In Table 6, the obtained natural frequencies for identified the-
oretical models with the help of a GA and PSO as well as the
relative errors are summarized.

Comparing the free vibration frequencies of the identified
theoretical models and the real object, the high correlation of
the results is visible, which demonstrates the correct matching
of the mathematical models.

Comparing the results shown in Table 6, it is noted that in
the case of the first free vibration frequency the relative error is
minimal (0.05%) for the theoretical model identified using GA
and is more than 0.7% for use in the identification process of
the PSO method. For the second free vibration frequency, the
relative error for both analyzed methods is similar. From the
third free vibration frequency values of the relative errors are
already different, however, from an engineering point of view,
the obtained values are similar and both identified theoretical
models can be considered for further studies.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e140150, 2022 5
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Table 6
Free vibration frequencies obtained after the identification of the

theoretical model, experimental free vibration frequencies and the
relative errors

Frequency [Hz] f1 f2 f3 f4 f5

EMA1 20.8 112 290 542 901

GA2 20.81 110.14 282.17 555.13 873.57

PSO3 20.96 110.36 281.45 549.69 859.04

Relative error [%] f1 f2 f3 f4 f5

GA2 0.05 1.66 2.70 2.42 3.04

PSO3 0.77 1.46 2.95 1.42 4.66

where:
1 – Experimental modal anaylsis [21],
2 – Identified theoretical model using GA,
3 – Identified theoretical model using PSO algorithm

Comparing the obtained results for the identification of the-
oretical models with the use of the GA and PSO algorithm, it
can be concluded that the obtained objective function value is
better in the case of the genetic algorithm (Table 3) and is equal
1.974 (in the case of PSO the best result is 2.282 – Table 5).
As a result, the relative error (between the theoretical and ex-
perimental values) for natural frequencies is different in both
cases. The relative error is minimal for the first free vibration
frequencies for the theoretical model identified using genetic
algorithms and is equal to 0.05%. For the remaining eigenfre-
quencies, this error oscillates in the range from about 1.4% to
about 4.7%. However, from an engineering point of view, the
obtained values for both identified theoretical models can be
considered for further studies.

5. CONCLUSIONS
This paper presents the process of identifying the parameters
of discrete-continuous models with the use of heuristic meth-
ods. Two types of algorithms were used in this process: GA and
PSO. Validation was performed using experimental free vibra-
tion frequencies of the modeled object.

Using the proposed method, the discrete-continuous model
represented by the stepped cantilever beam was identified. The
identification process consisted of determining the translational
and rotational spring constants, which allowed us to model the
system elastic restraint. Due to the significant differences be-
tween experimental research and numerical calculations, this
process was necessary.

For the case of genetic algorithms, the best value of objective
function has been equal to 1.974%, whereas for PSO 2.252%. In
both cases, the same number of iterations has been performed.
The calculated values of the rotational and translational springs
constant in both cases (using genetic algorithm and PSO) are
similar and the free vibration frequencies for identified theoret-
ical models do not differ greatly from each other. This indicates
that both proposed mathematical models at the determined val-
ues of springs constants represent the real system correctly.

The described heuristic algorithms (PSO and GA) used for
identification can be used to determine any parameters of a
discrete-continuous system for which the natural frequencies
were obtained during experimental tests. In addition, the iden-
tified model allows analyzing the impact of parameter changes
(length, width and thickness of the beam and its segments) on
the vibrations of the considered system without the need to con-
duct further experimental tests, assuming that the item is made
of the same material. In the case of shape change of the beam
and/or the material would be required to obtain the experimen-
tal vibration frequency of the “new” system.

ACKNOWLEDGEMENTS
The part of this study has been carried out within statutory re-
search of the Department of Mechanics and Machine Design
Fundamentals at Czestochowa University of Technology.

This work was supported by the European Regional Devel-
opment Fund in the Research Centre of Advanced Mechatronic
Systems project, CZ.02.1.01/0.0/0.0/16_019/0000867 within
the Operational Programme Research, Development and Ed-
ucation and the project SP2021/27 Advanced methods and
technologies in the field of machine and process control sup-
ported by the Ministry of Education, Youth and Sports, Czech
Republic.

REFERENCES
[1] D. Cekus, B. Posiadała, and P. Warys, “Integration of modeling

in SolidWorks and Matlab/Simulink environments,” Arch. Mech.
Eng., vol. 61, no. 1, pp. 57–74, 2014, doi: 10.2478/meceng-
2014-0003.
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