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Abstract: This paper presents novel discrete differential operators for periodic functions of
one- and two-variables, which relate the values of the derivatives to the values of the function
itself for a set of arbitrarily chosen points over the function’s area. It is very characteristic,
that the values of the derivatives at each point depend on the function values at all points in
that area. Such operators allow one to easily create finite-difference equations for boundary-
value problems. The operators are addressed especially to nonlinear differential equations.
Key words: arbitrary meshes, finite-difference operators, partial finite difference operators,
periodic functions, two-variable periodic functions

1. Introduction

The finite-difference method is an important approach for solving boundary-value problems
of nonlinear ordinary and partial differential equations. In this approach, derivatives and partial
derivatives are substituted by finite-difference operators and finite-difference algebraic equations
are developed. A large class of discrete operators exists and has been presented in many books
on numerical methods. A few exemplary are [1–6].

The finite-difference methods are still subject to investigations for quite different subjects.
Some exemplary works from previous years are mentioned. The finite-difference method has
been used in [7] to solve the 3D magnetic field problem. In [8], it has been proved that the finite-
difference method with hexahedral elements and the edge element method, applied to magnetic
field 3D problems, have common features. The new structures of finite-difference schemes are
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proposed in [9–11]. In [12], high-order finite-difference schemes for Navier-Stokes 2D equations
are proposed. Trends combining the finite-difference method with other approaches also are
observed. In [13], finite-difference and finite-element methods are mixed.

However, in all these books and papers the finite-difference operators are defined based on
the values of the adjacent points with respect to the point, in which the derivative is determined.
Existing finite-difference operators are created for the meshes rectangular for 2D or cuboidal
for 3D problems, even if, the meshes are irregular with respect to an individual axis. This
is an important disadvantage of the Finite-Difference Method (FDM), which does not occur
in the case of the Finite-Element Method (FEM). This paper presents novel discrete Finite-
Difference Operators (FDOs) dedicated to solving boundary value problems for 1D and 2D
cases for arbitrary located points of the mesh. The first- and second-order FDOs are presented,
applicable to a class of second-order Partial Differential Equations (PDEs), the most important
for engineering applications.

The FDOs of periodic and two-periodic time functions are presented in [14] and [15] and
have been successfully tested in [16,17] for steady-state analysis of electromagnetic circuits. The
same methodology has been used in [18] to develop FDOs to solve boundary-value problems
for Ordinary Differential Equations (ODEs). The FDOs for 2D problems are shown in [19] and
successfully tested in [20]. All those FDOs are determined for point sets regularly distributed
over the rectangular function’s area. This paper presents FDOs for an arbitrary chosen point set.
An important advantage is that using new FDOs finite-difference equations can be created directly
for a given PDE and any functional related to the PDE is not required.

2. Discrete differential operators for one-variable periodic function
for an arbitrary point set

2.1. First-order discrete operator

If one assumes that the function 𝑦(𝑥) is approximated by the Fourier series with a limited
number of terms

𝑦(𝑥) = 𝑦(𝑥 + 2𝜋) =
𝑅∑︁

𝑟=−𝑅
𝑌𝑟 · 𝑒j𝑟 𝑥 , (1)

unique relations can be found between values and Fourier coefficients when selecting an arbitrary
set of (2𝑅 + 1) points: {𝑥1, 𝑥2, . . . , 𝑥𝑛, . . . , 𝑥2𝑅+1} for 0 < 𝑥𝑛 < 2𝜋 (Fig. 1).

2�0
x3x1 xnx2 x2R x2R+1

Fig. 1. An arbitrary point set {𝑥𝑛}
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This relation, after proper ordering, can be written as:



𝑦1
𝑦2
...

𝑦2𝑅
𝑦2𝑅+1


=



𝑒j·𝑅 ·𝑥1 · · · 1 · · · 𝑒−j·𝑅 ·𝑥1

𝑒j·𝑅 ·𝑥2 · · · 1 · · · 𝑒−j·𝑅 ·𝑥2

...
...

...
...

...

𝑒j·𝑅 ·𝑥2𝑅 · · · 1 · · · 𝑒−j·𝑅 ·𝑥2𝑅

𝑒j·𝑅 ·𝑥2𝑅+1 · · · 1 · · · 𝑒−j·𝑅 ·𝑥2𝑅+1





𝑌𝑅
...

𝑌0
...

𝑌−𝑅


, 𝑦 = 𝐹 · 𝑌 . (2)

The F matrix is the square and non-singular.
The relationship between the Fourier coefficients of function (1) and its first derivative (3)

can be written as:

Y ′ = j R(1) · Y ,

where Y ′ =
[
𝑌 ′
𝑅

· · · 𝑌 ′
1 𝑌 ′

0 𝑌 ′
−1 · · · 𝑌 ′

−𝑅
]𝑇

.
(3)

The R(1) matrix is the differential operator in the frequency domain and it is the diagonal

R(1) = diag
[
𝑅 · · · 1 0 −1 · · · −𝑅

]𝑇
.

To obtain the first-order deterministic design optimization (DDO), relating the values of
function (1) and its first derivative, Eq. (3) can be rewritten in the form:

F · Y ′ = j
(
F · R(1) · F−1

)
· (F · Y),

or shortly as:
y′ = D(1) · y,

where y′ =
[
𝑦′1 𝑦′2 · · · 𝑦′2𝑅 𝑦′2𝑅+1

]𝑇
.

(4)

The first-order DDO D(1) is defined as:

D(1) = F ·
(
jR(1)

)
· F−1. (5)

The D(1) matrix is the first-order discrete differential operator of the periodic function for an
arbitrary set of discretization points. It is a singular skew-Hermitian matrix because its eigenvalues
are purely imaginary and one eigenvalue equals zero.

D(1) = −
∗(

D(1)
)𝑇

. (6)

It should be noticed that the F matrix becomes Hermitian when choosing the uniform set of
points, for Δ𝑥 = 2𝜋/(2𝑅 + 1) [15]. Its invers matrix has the form:

F−1 =
1

(2𝑅 + 1)

∗(
F𝑇

)
. (7)
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The operator D(1) for arbitrary located points over period (6) requires finding the invers matrix
F−1. To omit that operation the operator D(1) can be developed based on the expressions defining
a set of the Fourier coefficients

{
𝑌𝑅 · · · 𝑌1 𝑌0 𝑌−1 · · · 𝑌−𝑅

}
.

𝑌𝑟 =
1

2𝜋

2𝜋∫
0

(
𝑦(𝑥) · 𝑒−j𝑟 𝑥

)
d𝑥 . (8)

These integrals can be approximated by a linear combination of function values

{𝑦1, 𝑦2, . . . , 𝑦𝑟 , . . . , 𝑦2𝑅+1} .

and written in the matrix form as:
Y = Fint · y , (9)

where
Y =

[
𝑌𝑅 · · · 𝑌1 𝑌0 𝑌−1 · · · 𝑌−𝑅

]𝑇
and

y = [𝑦1, 𝑦2, 𝑦𝑟 , 𝑦2𝑅+1]𝑇 .

In the simplest case, the integrals in (8) can be approximated by the sums

𝑌𝑟 =
1

2𝜋

2𝑅+1∑︁
𝑙=1

𝑥𝑙+1∫
𝑥𝑙

(
𝑦(𝑥) · 𝑒−j𝑟 𝑥

)
d𝑥 =

=
1

2𝜋

2𝑅+1∑︁
𝑙=1

(
1
2

(
𝑦𝑙+1 · 𝑒−j𝑟 𝑥𝑙+1 + 𝑦𝑙 · 𝑒−j𝑟 𝑥𝑙

)
· (𝑥𝑙+1 − 𝑥𝑙)

)
. (10)

This leads to the relation of (9) with a nonsingular Fint matrix. Now, the discrete operator
D(1) is determined by the formula:

D(1) = jF−1
int · R(1) · Fint . (11)

Combining those two definitions, the first-order DDO can be approximated by the formula:

D(1) ≈ jF · R(1) · Fint , (12)

eliminating operation of inversing matrices F or Fint.

2.2. Second-order discrete operator
The relationship between the Fourier coefficients of function (1) and its second derivative

using (8) can be written as:
Y ′′ = jR(1) · Y ′ = −R(2) · Y , (13)

where
R(2) = R(1) · R(1) = diag

[
𝑅2 · · · 4 1 0 1 4 · · · 𝑅2]𝑇 .
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The second-order discrete operator D(2) fulfilling the relation

y′′ = D(2) · y (14)

can be obtained by the formulas:

D(2) = −F · (R(2) ) · F−1,

or
D(2) = −𝐹−1

int · (R
(2) ) · Fint ,

or
D(2) ≈ −F · (R(2) ) · Fint . (15)

All such operators can be extended for an 𝑁-dimensional vector-function y(𝑥).

3. Discrete differential operators of two-variable periodic function
for an arbitrary point set

3.1. First-order discrete partial differential operators
Discrete partial differential operators for the two-variable periodic function 𝑧(𝑥, 𝑦) can be

specified using the Fourier series approach

𝑧(𝑥, 𝑦) = 𝑧(𝑥 + 2𝜋, 𝑦) = 𝑧(𝑥, 𝑦 + 2𝜋) =
∞∑︁

𝑟=−∞

∞∑︁
𝑠=−∞

𝑍𝑟 ,𝑠 · 𝑒j𝑟 𝑥 · 𝑒j𝑠𝑦 . (16)

If one assumes that the sought function has first partial derivatives, it follows that

𝜕𝑧(𝑥, 𝑦)
𝜕𝑦

=

∞∑︁
𝑠=−∞

( ∞∑︁
𝑟=−∞

(
j · 𝑟 · 𝑍𝑟 ,𝑠 · 𝑒j·𝑟 ·𝑥

))
· 𝑒j·𝑠 ·𝑦 ,

𝜕𝑧(𝑥, 𝑦)
𝜕𝑦

=

∞∑︁
𝑟=−∞

( ∞∑︁
𝑠=−∞

(
j · 𝑠 · 𝑍𝑟 ,𝑠 · 𝑒j·𝑠 ·𝑦

))
· 𝑒j·𝑟 ·𝑥 .

(17)

To obtain the discrete differential operators relating the values of that function and its first
partial derivatives, the relations between the values of the periodic function and its Fourier
coefficients should be determined for the series in (17), when limited to a finite number of terms
−𝑅 < 𝑟 < 𝑅 and −𝑆 < 𝑠 < 𝑆. For such a function, unique relations can be found between
values of the function 𝑧(𝑥, 𝑦) and its Fourier coefficients 𝑍𝑟 ,𝑠 , when selecting an arbitrary set
of (2𝑅 + 1) · (2𝑆 + 1) points {𝑥𝑛, 𝑦𝑛}, where: 0 < 𝑥𝑛 < 2𝜋 for 𝑛 ∈ {1, 2, . . . , 2𝑅 + 1}, and
0 < 𝑦𝑛 < 2𝜋 for 𝑚 ∈ {1, 2, . . . , 2𝑆 + 1}. It is illustrated in Fig. 2.

This relation can be written in the matrix form:

z = F · Z . (18)
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2 2( , )x y

(2 1)(2 1) (2 1)(2 1)( , )R S R Sx y

1 1( , )x yy

3 3( , )x y

(0,0)

+ + + +

Fig. 2. An arbitrary set of points over the rectangular area

The vector z contains the function values 𝑧𝑛 in the selected set of (2𝑅 + 1) · (2𝑆 + 1)
points (𝑥𝑛𝑦𝑛), ordered arbitrary from the first, numbered by 𝑛 = 1, to the last, with the number
𝑛 = (2𝑅 + 1) · (2𝑆 + 1).

z =
[
𝑧1 𝑧2 · · · 𝑧𝑛 · · · 𝑧 (2𝑅+1) ·(2𝑆+1)

]𝑇
. (19)

The vector Z contains the Fourier coefficients 𝑍𝑟 ,𝑠, limited to |𝑟 | ≤ 𝑅 and |𝑠 | ≤ 𝑆, and is
arranged in the hyper-vectors form as follows:

Z =
[
Z𝑅 · · · Z1 Z0 Z−1 · · · Z−𝑅

]𝑇
,

Z𝑟 =
[
𝑍𝑟 ,𝑆 · · · 𝑍𝑟 ,1 𝑍𝑟 ,0 𝑍𝑟 ,−1 · · · 𝑍𝑟 ,−𝑆

]𝑇
.

(20)

The square, nonsingular matrix F combines those two sets of values and has the form:


𝑧1
𝑧2
...

𝑧 (2𝑅+1) ·(2𝑅+1)


=


𝐹𝑅,1 · · · 𝐹0,1 · · · 𝐹𝑅,1
𝐹𝑅,2 · · · 𝐹0,1 · · · 𝐹𝑅,2
...

...
...

...
...

𝐹𝑅, (2𝑅+1) ·(2𝑅+1) · · · 𝐹0, (2𝑅+1) ·(2𝑅+1) · · · 𝐹𝑅, (2𝑅+1) ·(2𝑅+1)





𝑧𝑅
...

𝑧0
...

𝑧𝑅


, (21)

where
F𝑟 ,𝑘 =

[
𝑒j·𝑟 ·𝑥𝑛 · 𝑒j·𝑆 ·𝑦𝑛 · · · 𝑒j·𝑟 ·𝑥𝑛 · 𝑒j·0·𝑦𝑛 · · · 𝑒j·𝑟 ·𝑥𝑛 · 𝑒−j·𝑆 ·𝑦𝑛

]
.

So, the invers relation also exists.

Z = F−1 · z . (22)

The relation in (18) is valid also for the first partial derivatives:

z′𝑥 = F · Z′
𝑥 ,

z′𝑦 = F · Z′
𝑦 .

(23)
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The vectors Z′
𝑥 and Z′

𝑦 contain the Fourier coefficients of the respective partial derivatives
from (17), and are ordered analogously as the Z vector.

Z′
𝑥 =

[
Z′
𝑥,𝑅 · · · Z′

𝑥,1 Z′
𝑥,0 Z′

𝑥,−1 · · · Z′
𝑥,−𝑅

]𝑇
,

Z′
𝑥,𝑟 =

[
𝑍 ′
𝑥,𝑟 ,𝑆

· · · 𝑍 ′
𝑥,𝑟 ,1 𝑍 ′

𝑥,𝑟 ,0 𝑍 ′
𝑥,𝑟 ,−1 · · · 𝑍 ′

𝑥,𝑟 ,−𝑅
]𝑇

and

Z′
𝑦 =

[
Z′
𝑦,𝑅 · · · Z′

𝑦,1 Z′
𝑦,0 Z′

𝑦,−1 · · · Z′
𝑦,−𝑅

]𝑇
,

Z′
𝑦,𝑟 =

[
𝑍 ′
𝑦,𝑟 ,𝑆

· · · 𝑍 ′
𝑦,𝑟 ,1 𝑍 ′

𝑦,𝑟 ,0 𝑍 ′
𝑦,𝑟 ,−1 · · · 𝑍 ′

𝑦,𝑟 ,−𝑅

]𝑇
.

In addition, the relationships between the Fourier coefficients of the series in (17) can be easy
find and written in the matrix forms:

Z′
𝑥 = j · R(1)

𝑥 · Z ,

Z′
𝑦 = j · R(1)

𝑦 · Z .
(24)

The matrices R(1)
𝑥 and R(1)

𝑦 are the differential operators of a two-variable periodic function in
frequency domain with respect to each of variables. They have hyper-diagonal forms. The matrix
R(1)
𝑥 is constituted by the (2𝑅 + 1) diagonal matrices R(1)

𝑟 .

R(1)
𝑥 = diag

[
R(1)
𝑅

· · · R(1)
1 R(1)

0 R(1)
−1 · · · R(1)

−𝑅

]
,

R(1)
𝑟 = 𝑟 · E𝑠 ,

where E𝑠 is the unit matrix with dimensions (2𝑆 + 1). The matrix R(1)
𝑦 is also constituted by the

(2𝑅 + 1) diagonal matrices R(1)
𝑠 .

R(1)
𝑦 = diag

[
R(1)
𝑠 · · · R(1)

𝑠 R(1)
𝑠 R(1)

𝑠 · · · R(1)
𝑠

]
.

The matrix R(1)
𝑠 is diagonal, has dimensions (2𝑆 + 1) with respective harmonic numbers on

the main diagonal
R(1)
𝑠 = diag

[
𝑆 · · · 1 0 −1 · · · −𝑆

]
.

The compounds relations of (18), (23) and (24) allow for writing:(
F · Z′

𝑥

)
= j ·

(
F · R(1)

𝑥 · F−1
)
· (F · Z) ,(

F · Z′
𝑦

)
= j ·

(
F · R(1)

𝑦 · F−1
)
· (F · Z) .

These lead to relationships between the values of the first partial derivatives and of the function
itself at the point set {𝑥𝑛, 𝑦𝑛}.

z′𝑥 = D(1)
𝑥 · z ,

z′𝑦 = D(1)
𝑦 · z .

(25)
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The matrices D(1)
𝑥 and D(1)

𝑦 are the sought discrete partial differential operators of a two-
variable function, periodic with respect to each of variables

D(1)
𝑥 = j · F · R(1)

𝑥 · F−1, D(1)
𝑦 = j · F · R(1)

𝑦 · F−1. (26)

It should be notice that the F matrix becomes Hermitian when choosing the points regularly
distributed [15].

The operators D(1)
𝑥 and D(1)

𝑦 can be developed based on the expressions defining a set of the
Fourier coefficients of the series in (17).

𝑍𝑟 ,𝑠 =

(
1

2𝜋

)2
·

2𝜋∫
0

2𝜋∫
0

(
𝑧(𝑥, 𝑦) · 𝑒−j𝑟 𝑥 · 𝑒−j𝑠𝑦

)
d𝑥d𝑦 (27)

and finding the matrix Fint satisfying the relation

Z = Fint · z (28)

analogously to Formula (9) for one-variable functions. The integrals in (27) can be approximated
by the sums

𝑍𝑟 ,𝑠 ≈
(

1
2𝜋

)2
·
∑︁
𝑘

1
3
𝑆𝑘 ·

(
𝑧𝑘,1 · 𝑒−j𝑟 𝑥𝑘,1 · 𝑒−j𝑠𝑦𝑘,1 + 𝑧𝑘,2 · 𝑒−j𝑟 𝑥𝑘,2 · 𝑒−j𝑠𝑦𝑘,2 +

+ 𝑧𝑘,3 · 𝑒−j𝑟 𝑥𝑘,3 · 𝑒−j𝑠𝑦𝑘,3
)
, (29)

where 𝑆𝑘 is the surface of an elementary triangle as it is shown in Fig. 3.

(0,0) 2π

2π

x

y

,1 ,1(x , y )k k × ×

×

,2 ,2(x , y )k k

,3 ,3(x , y )k k

kΔ

Fig. 3. An elementary triangle in the rectangular area

This surface can be calculated by the elementary formulas:

𝑆𝑘 =
√︁
𝑝𝑘 · (𝑝𝑘 − 𝑑𝑘,1) · (𝑝𝑘 − 𝑑𝑘,2) · (𝑝𝑘 − 𝑑𝑘,3) ,

𝑝𝑘 =
1
2

(
𝑑𝑘,1 + 𝑑𝑘,2 + 𝑑𝑘,3

)
,
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𝑑𝑘,1 =

√︃(
𝑥𝑘,2 − 𝑥𝑘,1

)2 +
(
𝑦𝑘,2 − 𝑦𝑘,1

)2
,

𝑑𝑘,2 =

√︃(
𝑥𝑘,3 − 𝑥𝑘,2

)2 +
(
𝑦𝑘,3 − 𝑦𝑘,2

)2
,

𝑑𝑘,3 =

√︃(
𝑥𝑘,1 − 𝑥𝑘,3

)2 +
(
𝑦𝑘,1 − 𝑦𝑘,3

)2
.

In consequence, the operators D(1)
𝑥 and D(1)

𝑦 can take the form:

D(1)
𝑥 = j F−1

int · R(1)
𝑥 · Fint ,

D(1)
𝑦 = j F−1

int · R(1)
𝑦 · Fint .

(30)

Omitting calculations of the inverse matrices F−1 in (26) or F−1
int in (30), the operators can be

approximated by the formulas:

D(1)
𝑥 ≈ j F · R(1)

𝑥 · Fint ,

D(1)
𝑦 ≈ j F · R(1)

𝑦 · Fint .
(31)

Such D(1)
𝑥 and D(1)

𝑦 matrices should have purely imaginary eigenvalues, i.e. should be close to

skew-Hermitian and fulfil conditions D(1)
𝑥 ≈ −

(
∗
D

(1)
𝑥

)𝑇
and D(1)

𝑦 ≈ −
(
∗
D

(1)
𝑦

)𝑇
. These conditions

are equivalent to the requirement that a product of matrices F and Fint should be close to the unit
matrix F · Fint ≈ E.

3.2. Second-order discrete partial differential operators
Second-order discrete operators for the function 𝑧(𝑥, 𝑦) in (17), if the second-order partial

derivatives exist, can be found based on the discrete operators developed in the previous chapters.
Three discrete operators could be determined to three second-order partial derivatives when
represented by their Fourier series:

𝜕2

𝜕𝑥2 𝑧(𝑥, 𝑦) = −
∞∑︁

𝑠=−∞

( ∞∑︁
𝑟=−∞

(
𝑟2 · 𝑍𝑟 ,𝑠 · 𝑒 j𝑟 𝑥

))
· 𝑒 j𝑠𝑦 ,

𝜕2

𝜕𝑦2 = −
∞∑︁

𝑟=−∞

( ∞∑︁
𝑠=−∞

(
𝑠2 · 𝑍𝑟 ,𝑠 · 𝑒 j𝑠𝑦

))
· 𝑒 j𝑟 𝑥 ,

𝜕2

𝜕𝑥𝜕𝑦
= −

∞∑︁
𝑟=−∞

𝑟 ·
( ∞∑︁
𝑠=−∞

(
𝑠 · 𝑍𝑟 ,𝑠 · 𝑒 j𝑠𝑦

))
· 𝑒 j𝑟 𝑥 .

Those operators should relate the values of respective derivatives to the values of the function
in the point set 𝑥𝑛𝑦𝑚, choosing as before. Those relations can be denoted as:

z′′𝑥𝑥 = D(2)
𝑥𝑥 · z ,

z′′𝑦𝑦 = D(2)
𝑦𝑦 · z ,

z′′𝑥𝑦 = D(2)
𝑥𝑦 · z = D(2)

𝑦𝑥 · z .

(32)
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The operators D(2)
𝑥𝑥 , D(2)

𝑦𝑦 and D(2)
𝑥𝑦 can be found by multiplying the respective first-order

operators

D(2)
𝑥𝑥 = D(1)

𝑥 · D(1)
𝑥 ,

D(2)
𝑦𝑦 = D(1)

𝑦 · D(1)
𝑦 ,

D(2)
𝑥𝑦 = D(1)

𝑥 · D(1)
𝑦 .

(33)

4. Conclusions

The new class of the discrete difference operators for periodic functions is presented in this
paper. The main advantages of those operators are: they operate on an arbitrary discretization mesh
and allow creating discrete-difference equations directly from the partial differential equation. It
can make the finite-difference approach more flexible. It is also important that any functional is
not necessary to create finite difference equations, which is required for the finite element method.
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