
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 3, PP. 463–468
Manuscript received March 24, 2022; revised August, 2022. DOI: 10.24425/ijet.2022.139890

How to Compute an Isogeny on the Extended
Jacobi Quartic Curves?

Łukasz Dzierzkowski, and Michał Wroński

Abstract—Computing isogenies between elliptic curves is a sig-
nificant part of post-quantum cryptography with many practical
applications (for example, in SIDH, SIKE, B-SIDH, or CSIDH
algorithms). Comparing to other post-quantum algorithms, the
main advantages of these protocols are smaller keys, the similar
idea as in the ECDH, and a large basis of expertise about
elliptic curves. The main disadvantage of the isogeny-based
cryptosystems is their computational efficiency - they are slower
than other post-quantum algorithms (e.g., lattice-based). That is
why so much effort has been put into improving the hitherto
known methods of computing isogenies between elliptic curves.
In this paper, we present new formulas for computing isogenies
between elliptic curves in the extended Jacobi quartic form
with two methods: by transforming such curves into the short
Weierstrass model, computing an isogeny in this form and then
transforming back into an initial model or by computing an
isogeny directly between two extended Jacobi quartics.

Keywords—cryptology; post-quantum; elliptic curves; Jacobi
quartics; isogenies

I. INTRODUCTION

IN the last few years, a threat from quantum computers has
been rising, and the classical ECC may be at risk in some

time. That is why cryptosystems, which are believed to be
quantum-resistant, such as algorithms based on:

• lattices theory,
• computing isogenies between elliptic curves,
• codes theory,
• multivariate polynomials,
• hash functions
are becoming more important and more popular. In this
paper, we will focus on the elliptic curve cryptography

(ECC), which is prominent in public-key cryptography. It is
used in number theory algorithms as well, e.g., for integer
factorization or primality testing. Classic ECC algorithms are
believed to be vulnerable to quantum computers but due to a
large base of expertise, which was built up so far, it would
be a pity to abandon this idea. That is the moment when the
isogenies come to the rescue.

Isogenies are the morphisms between elliptic curves which
preserve mappings between them. Finding these morphisms is
hard. It requires many mathematical operations and resources.
Therefore implementations efficiency leaves much to be de-
sired, making searching for more efficient formulas worth
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the effort. Most of these equations use elliptic curves in the
Weierstrass or Montgomery model, but there are many more
such models that can be used, maybe even more efficiently.
To compute isogeny between curves on an alternative model,
one may transform the given elliptic curve, presented by an
alternative model, via isomorphism to one of the standard
models, then compute isogeny based on known formulas
and finally transform obtained curve back into an alternative
model.

There exist several methods for computing isogenies be-
tween elliptic curves. The first of them, which may be called
,,the basis” for any discussions about isogenies, was presented
by Vélu in [1]. It allows calculating a morphism between two
Weierstrass elliptic curves. The analogs of the primary formu-
las for isogenies on alternative models of elliptic curves were
presented by Moody and Shumow in [2]. They gave equations
for two other models: Edwards and general Huff’s. As for
the computing isogenies on the extended Jacobi quartics, two
articles should be mentioned [3], [4] and they will be in one
of the following parts.

This paper presents two new methods for computing iso-
genies between elliptic curves in an extended Jacobi quartic
model. The first way is to transform such elliptic curve
to Weierstrass model by formulas described in [5], then to
compute isogeny with Vélu’s formulas from [1] and at the end,
to transform obtained curve into an extended Jacobi quartic
model analogous to the first conversion. The second way is
to compute an isogeny directly from one extended Jacobi
quartic to another with formulas presented by us. Knowing the
properties that must be met for the morphism to be an isogeny,
we show new additive formulas which satisfy those properties.
That allows obtaining equations for computing coefficients of
an isogenous elliptic curve than known so far.

II. VÉLU’S FORMULAS FOR ISOGENIES

Any elliptic curve over a finite field K can be written
in the Weierstrass form. There exist alternate models, such
as Montgomery, Edwards, or Huff curves, and others. They
differ in the equations and arithmetic formulas. In evaluating
isogenies, the chosen elliptic curve model is not relevant from
a conceptual point of view, but it is for the computational
aspects. The first one, who gave explicit formulas for isogenies
between Weierstrass curves, was Jacques Vélu in 1971 [1].
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A. Isogenies

Elliptic curve over K can be presented by a smooth Weier-
strass equation

ELW : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

or, if char(K) ̸= 2, 3, in the short Weierstrass form

EW : y2 = x3 + a4x+ a6 (2)

with coefficients ai ∈ K, a point at infinity, denoted as O
and a point of order two PW,2 = (θ, 0), if such exists on the
particular curve [2].

Let F be a subgroup of EW of an order l. Vélu’s formulas
show how to explicitly find the rational function form of an
isogeny ϕ : EW → ẼW with kernel F . For P = (xP , yP ) ∈
EW , ϕ is defined as

ϕ(P ) =


(
xP +

∑
Q∈F−{O}(xP+Q − xQ),

yP +
∑

Q∈F−{O}(yP+Q − yQ)
)
, P /∈ F,

O, P ∈ F,

(3)

where from [6] it is known, that

xP+Q + xP−Q = 2
(xP + xQ)(xPxQ + a4) + 2a6

(xP − xQ)2
(4)

Then if

tP =

{
3x2

P + a4, P is of order two,
2(3x2

P + a4), P is not of order two, (5)

and

uP = 4x3
P + 4a4xP + 4a6, (6)

coefficients of a new curve ẼW are given by

ã4 = a4 − 5
∑

P∈F−{O} tP ,

ã6 = a6 − 7
∑

P∈F−{O} (uP + xP tP ) .
(7)

Calculations based on the following formulas must be per-
formed to find an image point P ′ = (x′, y′) on the new curve

x′ = x+
∑

P∈F−{O}

(
tP (x−xP )+uP

(x−xP )2

)
,

y′ = y −
∑

P∈F−{O}

(
2yuP+tP (y−yP )(x−xP )+2yP (3x2

P+a4)(x−xP )

(x−xP )3

)
.

(8)

By computing isogenies between elliptic curves over a
certain field, an isogeny graph can be drawn.

Fig. 1. An isogeny graph [7]

Since it is believed that the development of the quantum
computer will not significantly affect the effectiveness of
computing the isogenies between elliptic curves, such graphs
as the above and the way of ,,navigating” through them are
used in post-quantum cryptographic algorithms such as, for
example, CSIDH.

Fig. 2. Exemplary isogeny graphs that can be used in the
CSIDH algorithm [8]

III. EXTENDED JACOBI QUARTICS

Let K be a finite field with char(K) ̸= 2. An extended
Jacobi quartic [9] is an elliptic curve over K given by equation

EJ : y2 = dx4 + 2ax2 + 1, (9)

where coefficients a, d ∈ K and ∆ = 256d(a2 − d)2 ̸= 0.
All elliptic curves containing a point of order two [4], [5]

can be represented in the form of the Equation (9)). Assume
that EW has a point of order two PW,2 = (θ, 0) ∈ EW (K).
Then, the Weierstrass elliptic curve from the Equation (2) is
birationally equivalent to the extended Jacobi quartic from the
Equation (9), where

d = − 3θ2+4a4

16 ,
a = − 3

4θ,

(x, y) →
(

2(3x−4a)
3y , 54x3−108ax2+64a3−27y2

27y

)
.

(10)

The negation of a point P = (xP , yP ) on the extended Jacobi
curve is given by −P = (−xP , yP ), the point at infinity
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is represented as O = (0, 1) and the point’s of order two
coordinates are PJ,2 = (0,−1).

If coefficient d is not a square in K, then there exists
complete arithmetic on the extended Jacobi curves, which
means that addition formulas may be used for a point doubling.
Let P = (xP , yP ) and Q = (xQ, yQ) be points on the
extended Jacobi curve EJ . The formulas [5] for points addition
P +Q = (xP+Q, yP+Q) are given by

xP+Q =
xP yQ+xQyP

1−dx2
P x2

Q
,

yP+Q =
(yP yQ+2axP xQ)(dx2

P x2
Q+1)+2dxP xQ(x2

P+x2
Q)

(1−dx2
P x2

Q)
2 .

(11)

IV. ISOGENIES ON EXTENDED JACOBI QUARTICS

In this section, we will recall previous articles about iso-
genies on the extended Jacobi quartic and present our two
methods, which are presented in Graph 3.

The first method is a composition ϕ′
J = π−1 ◦ ϕW ◦ π of

three morphisms:
1) π - an isomorphism from an extended Jacobi curve to

a Weierstrass curve,
2) ϕW - an isogeny between two Weierstrass curves,
3) π−1 - an inverse isomorphism to π, transforming

a Weierstrass curve to an extended Jacobi quartic.
The second way to find an isogenous extended Jacobi

quartic is to use formulas for the ϕJ isogeny described below.

EJ EW

ẼJ ẼW

π

ϕJ

π−1

ϕW

Fig. 3. Our two methods of computing isogeny between
extended Jacobi quartics - direct and composite

A. Functions composition

The first method of finding an isogenous extended Jacobi
quartic curve is performing three transformations, as described
in the introduction to the current section.

In [4] Hu et al. presented an isomorphic transformation from
the extended Jacobi quartic to the Weierstrass curve in two
ways:

1) computing the isomorphisms from extended Jacobi quar-
tic EJ to other Jacobi quartic ẼJ and then to the
Weierstrass curve ẼW ,

2) computing the isomorphisms from extended Jacobi quar-
tic EJ to the Weierstrass curve EW and then to other
Weierstrass curve ẼW ,

as shown on a graph below.

ẼEJ ẼJ

ẼEW ẼW

Fig. 4. Two methods of computing an isomorphic elliptic curve
[4]

We partly drew from the above idea, but our goal was to
obtain an isogenous extended Jacobi quartic. To conduct such
calculations, three steps need to be followed.

1) Isomorphism from an extended Jacobi quartic curve to
a short Weierstrass curve:

The composition begins with specifying the initial extended
Jacobi quartic. It is in the same form as in the Equation (9)

EJ : y2 = dx4 + 2ax2 + 1.

A purpose of the first transformation is a transition from an
extended Jacobi quartic to a Weierstrass elliptic curve in the
form as in the Equation (2)

EW : y2 = x3 + a4x+ a6.

To compute Weierstrass coefficients a4 and a6, few modifi-
cations of the Equations (10) are necessary. Calculating a4 is
possible by changing the first formula from (10) and obtaining

a4 = −3θ2 + 16d

4
. (12)

Knowing that a = − 3
4θ, Equation (12) may be modified as

follows

a4 = −4(a2 + 3d)

3
. (13)

The second coefficient is calculable via using the point of order
two on the short Weierstrass elliptic curve and the curve’s
equation. Because the point PW,2 = (θ, 0) lies on the curve,
its coefficients must satisfy the curve’s equation, which means
that

θ3 + a4θ + a6 = 0. (14)

Being aware of the above formulas for converting a4 and θ,
the Equation (14) may be transformed to

a6 = −θ3 − a4θ =
16a(a2 − 9d)

27
. (15)

As a result of the described modifications, the knowledge
about an extended Jacobi quartic and its coefficients a and d is
sufficient to obtain coefficients a4 and a6 of the isomorphic
short Weierstrass curve.

To transform a point on an extended Jacobi quartic (x, y)
to a point on a Weierstrass curve, the third formula from
Equation (10) may be used.
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2) Isogeny between short Weierstrass curves:

The second part of the composition is computing an isogeny
between two Weierstrass curves. It is feasible to do by Vélu’s
formulas [1].

Conducting the second morphism may begin after receiving
the Weierstrass curve EW coefficients a4 and a6 from a pre-
vious section. Then the obtained curve may be transformed
into

ẼW : y2 = x3 + ã4x+ ã6. (16)

Computing the isogenous curve’s coefficients may be done
with formulas from Equation (7) and transferring a point from
EW to ẼW may be done with Equation (8).

3) Isomorphism from a short Weierstrass curve to an
extended Jacobi quartic curve:

The last part of the composition is finding an isogenous
extended Jacobi quartic ẼJ , given by

ẼJ : y2 = d̃x4 + 2ãx2 + 1, (17)

which is isomorphic to the short Weierstrass curve, computed
during the previous morphism. To calculate coefficients d̃ and
ã, point PW̃ ,2 =

(
θ̃, 0
)

of order two from the ẼW curve
is required. Then, it is enough to use analogous formulas to
described in Equation (10)

d̃ = − 3θ̃2+4ã4

16 ,

ã = − 3
4 θ̃,

(18)

and an isogenous extended Jacobi quartic ẼJ is given.
Transferring a point P = (xP , yP ) from the ẼW to ẼJ

requires completing computations based on the following
formulas

(xP , yP ) →
(
−2(ax2 − 3y − 3)

3x2
,−4(ax2 − y − 1)

x3

)
.

(19)
4) Final composition: Having the above trans-

formations, one can perform the whole process
ϕ′
J = π−1 ◦ ϕw ◦ π. Computing the coefficients of the

ẼJ curve requires using a composition of the formulas given
in Equations (13), (15), (7) and (18). Finding the coordinates
of the point, transferred from the curve EJ to the curve ẼJ ,
consists of operations from Equations (10), (8) and (19).

B. Direct isogeny

Xu et al. [3] were the first to present the formulas for
isogeny on the extended Jacobi quartic curve as

ϕ(P ) =

xP

∏
Q∈F−(0,1)

xP+Q

xQ
, yP

∏
Q∈F−(0,1)

yP+Q

yQ

 . (20)

The newer paper that contained other formulas for isogenies
on the extended Jacobi quartic is the one presented by Hu et
al. [4], whose formulas were given by

ϕ(P ) =

xP

∏
Q∈F−(0,1)

xP+Q, yP
∏

Q∈F−(0,1)

yP+Q

yQ

 . (21)

In this section, basing on the described above works, we
present the second of our two methods of computing an
isogenous extended Jacobi quartic.

Theorem 1: Let F = {(0, 1), (±α1, β1), . . . , (±αs, βs)} be
a subgroup of the extended Jacobi quartic curve EJ with odd
order l = 2s+ 1. Then ϕl, given by a formula

ϕl(P ) =

∑
Q∈F

xP+Q,

∑
Q∈F

yP+Q∑
Q∈F

yQ

 (22)

is an l-isogeny with kernel F, from EJ to ẼJ : y2 = d̃x4 +
2ãx2 + 1, where

d̃ =
d(

1 + 2
s∑

i=1

yi

)2 (23)

and

ã =

a

(
1 + 2

s∑
i=1

yi

)
+ 6d

(
s∑

i=1

yix
2
i

)
(
1 + 2

s∑
i=1

yi

)3 . (24)

Let F+ = {(α1, β1), . . . , (αs, βs)}, F− =
{(−α1, β1), . . . , (−αs, βs)} and F+ ∪ F− ∪ {O} = F ,
then a point’s coordinates maps are given by

ϕl(x, y) =

(
x+

∑
Q∈F+

2xyQ

1−dx2x2
Q
, 1
1+2

∑
Q∈F+

yQ

·
(
y +

∑
Q∈F+

2yyQ(dx2x2
Q+1)

(1−dx2x2
Q)2

))
.

(25)

Proof 1: At the beginning, it is easy to see that ϕl(0, 1) =
(0, 1) and of course ϕl is invariant under the translation by any
element of F , which means that F ⊆ ker(ϕl). To prove that
F = ker(ϕl), the form of the given map can be considered.
The formula for x-coordinate from Equation (25) may be
transformed as follows

xϕl(P ) = xP +
∑

Q∈F+

2xP yQ
1−dx2

P
x2
Q

=

xP
∏

Q∈F+
(1−dx2

P x2
Q)+

∑
Q∈F+

(
2xP yQ

∏
R∈F+

R ̸=Q

(1−dx2
P x2

Q)

)
∏

Q∈F+
(1−dx2

P
x2
Q
)

= N
D
.

For any point P ∈ ker(ϕl) the value of xϕl(P ) must be equal
to 0, and therefore the value of the nominator N also. N may
be expanded into a polynomial in the indeterminate xP . The
cardinality of the set F+ is |F+| = s. It means the degree
of the polynomial N is 2s+ 1, so it may only have so many
solutions. Due to the fact, that |F | = 2s + 1 as well, it is
clear that only points from F belong to the kernel, therefore
F = ker(ϕ).

Let P = (xP , yP ) and Q = (xQ, yQ) ̸= (0, 1) be points on
EJ , then



HOW TO COMPUTE AN ISOGENY ON THE EXTENDED JACOBI QUARTIC CURVES? 467

xP+Q + xP−Q =
xP yQ+xQyP
1−dx2

P
x2
Q

+
xP yQ−xQyP
1−dx2

P
x2
Q

=
2xP yQ

1−dx2
P
x2
Q

,

yP+Q + yP−Q =
(yP yQ+2axP xQ)(dx2

P x2
Q+1)+2dxP xQ(x2

P+x2
Q)(

1−dx2
P
x2
Q

)2

+
(yP yQ−2axP xQ)(dx2

P x2
Q+1)−2dxP xQ(x2

P+x2
Q)(

1−dx2
P
x2
Q

)2

=
2yP yQ(dx2

P x2
Q+1)(

1−dx2
P
x2
Q

)2 .

(26)

Knowing the coordinates of the point at infinity O = (0, 1)
and the inverse of the point −Q = (−xQ, yQ), it is easy to
obtain the formulas from Equation (25) basing on those from
Equation (26).

The last part of the proof is to derive the formulas for
coefficients d̃ and ã of the extended Jacobi quartic ẼJ : y2 =
d̃x4+2ãx2+1, where x and y are coordinates computed with
formulas from Equation (25). Let f(x, y) be a function given
by

f(x, y) = (d̃x4+2ãx2+1−y2)
( ∏

Q∈F+

(1−dx2
P x2

Q)
)4(

1+2
∑

Q∈F+

yQ

)2
.

Because the extended Jacobi quartic equation was presented
in such form, its value is zero, so we could multiply it by
the denominators to eliminate the fractions without changing
the value. Now, let us use formulas from Equation (25) to
exchange x and y for the coordinates maps

f(xϕl(P ), yϕl(P )) =

(
d̃

(
xP +

∑
Q∈F+

2xP yQ

1−dx2
P x2

Q

)4

+2ã

(
xP +

∑
Q∈F+

2xP yQ

1−dx2
P x2

Q

)2

+ 1− 1(
1+2

∑
Q∈F+

yQ

)2
·y2P
(
1 +

∑
Q∈F+

2yQ(dx2
P x2

Q+1)

(1−dx2
P x2

Q)2

)2
)

( ∏
Q∈F+

(1− dx2
Px

2
Q)
)4(

1 + 2
∑

Q∈F+

yQ

)2
.

After expanding the equation and eliminating yP by substitut-
ing a curve’s equation for it, we get

f(xϕl(P ), yϕl(P )) = d̃

(
xP

∏
Q∈F+

(1− dx2
P x2

Q)

+
∑

Q∈F+

(
2xP yQ

∏
R∈F+

R ̸=Q

(1− dx2
P x2

Q)

))4(
1 + 2

∑
Q∈F+

yQ

)2

+2ã
∏

Q∈F+

(1− dx2
P x2

Q)2

(
xP

∏
Q∈F+

(1− dx2
P x2

Q)

+
∑

Q∈F+

(
2xP yQ

∏
R∈F+

R ̸=Q

(1− dx2
P x2

Q)

))2

·
(
1 + 2

∑
Q∈F+

yQ

)2
+
(
1 + 2

∑
Q∈F+

yQ

)2
− (dx4

P + 2ax2
P + 1)

·
( ∏

Q∈F+

(1− dx2
P x2

Q)2 +
∑

Q∈F+

(
2yQ(dx2

P x2
Q + 1)

·
∏

R∈F+

R ̸=Q

(1− dx2
P x2

Q)2
))2

.

Eventually, the equation has a form

f(xϕl(P ), yϕl(P )) =

(
d̃d4
(
1 + 2

∑
Q∈F+

yQ

)2
− d5

)
x8s+4
P

+ · · ·+

(
2ã

(
1 + 2

∑
Q∈F+

yQ

)4

− 2a

(
1 + 2

∑
Q∈F+

yQ

)2

−12d

( ∑
Q∈F+

x2
QyQ

)(
1 + 2

∑
Q∈F+

yQ

))
x2
P .

Setting the cooefficients of x8s+4
P and x2

P to zero allows to
obtain formulas from Equations (23) and (24).

V. FURTHER WORKS AND CONCLUSIONS

Observing the pace of work on the quantum computer and
on the improvements to Shor’s algorithm, one can see that
thinking about post-quantum cryptography is not unreason-
able.

TABLE I. Number of qubits in IBM’s quantum computer

year number of quibits
2019 27
2020 65
2021 127

...
2022 433
2023 1121

?

In the last year (2021) IBM announced that a quantum
computer with 127 qubits was ready. A company’s roadmap
predicts that in 2022 a computer with 433 qubits will be
delivered and in 2023 a barrier of 1000 qubits will be broken.
It is feasible but requires a lot of effort and implementing
new ideas. The pace achieved nowadays should be a warning
and a reason to think more seriously about threats resulting
from the development of quantum technologies. Maybe some
of them will be neutralised with the isogeny-based algorithms.

In this paper, we recalled a small part of the theory of elliptic
curves and searching isogenies between them. We also pre-
sented two methods of computing isogenies between extended
Jacobi quartics and the explicit formulas for conducting both
of them.

Our first method allows finding an isogenous curve in
a way that was never shown before and can be an alternative
to classical isogeny computations. It allows computing an
isogeny between two extended Jacobi quartic curves by an
isomorphic transformation into the short Weierstrass curve,
using Vélu’s formulas to find an isogeny between two Weier-
strass elliptic curves and then inverse transformation into the
extended Jacobi quartic.

The second method, based on a direct morphism, gives
simpler equations than known so far (e.g., in [4], which
requires calculating roots). Our formulas allow computing an
isogenous extended Jacobi quartic just with simple arithmetic
operations.

Further works may be:
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• checking other formulas for isogenies than given in
Equation (22),

• examining a possibility to compute isogenies on other
elliptic curve models with a composition method,

• verifying feasibility and effectiveness of the practical
application of the methods described in this paper.
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